a little math problem - 13 August 2013

Consider the polynomial equation in N variables $x_{j}, j=1 \ldots N$ with degree $D<N$

$$
\begin{equation*}
f(\mathbf{x})=a_{0}+\sum_{i=1}^{M} a_{i} X_{i}=0 \bmod p \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
X_{i}=\prod_{j=1}^{N} x_{j}^{r_{i j}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \leq \sum_{j=1}^{N} r_{i j} \leq D, \quad i=1 \ldots M \tag{3}
\end{equation*}
$$

where the coefficients a and the values of the variables \mathbf{x} are in the prime field Z_{p}, the set of integers modulo prime p, and the powers $r_{i j}$ are non-negative integers.

The number of terms in the summation of (1) is

$$
\begin{equation*}
M=\sum_{d=1}^{D}\binom{N+d-1}{d}=\binom{N+D}{D}-1 \tag{4}
\end{equation*}
$$

Proposition 1:

The number of solutions to (1) is congruent to $0, \bmod p$.

If $f(\mathbf{x})$ is homogeneous there is at least one solution with all \mathbf{x} values equal to zero, so according to proposition 1 there must always be some multiple of p solutions in this case.

Aside: $f(\mathbf{x})$ is homogeneous with degree D if $a_{0}=0$ and $\sum_{j=1}^{N} r_{i j}=D, i=1 \ldots M$. If $f(\mathbf{x})$ is not homogeneous it can be made so by introducing another variable, say x_{0}, replacing x_{j} with $x_{j} / x_{0}, j=1 \ldots N$, and multiplying the equation by x_{0}^{D}. The original equation is obtained by letting $x_{0}=1$.

Example with $N=1$
In this case $D=0$, so x_{1} does not appear in the equation, and (1) becomes

$$
\begin{equation*}
a_{0}=0 \tag{5}
\end{equation*}
$$

If a_{0} is non-zero there are 0 solutions.

If a_{0} is zero there are p solutions, $x_{1} \in\{0,1, \ldots, p-1\}$.

Example with $N=2$
If $D=0$ then (5) applies, and if a_{0} is zero there are p^{2} solutions, $\left(x_{1}, x_{2}\right) \in\{0,1, \ldots, p-1\}$.
If $D=1$ then $f(\mathbf{x})$ can be written in general as

$$
\begin{equation*}
a_{0}+a_{1} x_{1}+a_{2} x_{2}=0 \tag{6}
\end{equation*}
$$

If a_{1} and a_{2} are both zero, that is the same as $D=0$.
If a_{1} is not zero then $x_{1}=a_{1}^{-1}\left(-a_{0}-a_{2} x_{2}\right)$ where a_{1}^{-1} is the modular inverse of a_{1}, i.e. $a_{1}^{-1} a_{1}=1 \bmod p$. In general, for each of the p possible values of x_{2}, there is a solution for x_{1}, so there are p total solutions.

Similarly, if a_{2} is not zero, (6) can be solved for x_{2} in terms of x_{1}, again yielding p total solutions.

Example with $N=3$
In this case the general form of $f(\mathbf{x})$ is

$$
\begin{equation*}
a_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{1}^{2}+a_{5} x_{2}^{2}+a_{6} x_{3}^{2}+a_{7} x_{1} x_{2}+a_{8} x_{1} x_{3}+a_{9} x_{2} x_{3}=0 \tag{7}
\end{equation*}
$$

If $a_{4} \ldots a_{9}$ are all zero, then $D \leq 1$. If $a_{1} \ldots a_{3}$ are also all zero, then $D=0$ and if a_{0} is non-zero there are 0 solutions, otherwise there are p^{3} solutions, $\left(x_{1}, x_{2}, x_{3}\right) \in$ $\{0,1, \ldots, p-1\}$. But if at least one of $a_{1} \ldots a_{3}$ is non-zero, say a_{1}, then the solution is $x_{1}=a_{1}^{-1}\left(-a_{0}-a_{2} x_{2}-a_{3} x_{3}\right)$ and for each of the p^{2} possible values of $\left(x_{2}, x_{3}\right)$, there is a solution for x_{1}, so there are p^{2} total solutions.

If at least one of $a_{4} \ldots a_{9}$ is not zero, then $D=2$, and there may be no solutions. For example, with $p=5$

$$
\begin{equation*}
2+x_{1}^{2}=0 \bmod 5 \tag{8}
\end{equation*}
$$

has no solutions, since for $x_{1}=(0,1,2,3,4), x_{1}^{2} \bmod 5=(0,1,4,4,1)$ and $2+x_{1}^{2} \bmod 5=$ $(2,3,1,1,3)$.

Proof of proposition 1

The characteristic function $g(\mathbf{x})$ which is 1 when $f(\mathbf{x})=0$ and 0 otherwise, may be written as

$$
\begin{equation*}
g(\mathbf{x})=1-f(\mathbf{x})^{p-1} \bmod p \tag{9}
\end{equation*}
$$

The characteristic function $h(\mathbf{x}, \mathbf{b})$ of a point \mathbf{b} which is 1 when $\mathbf{x}=\mathbf{b}$ and 0 otherwise, may be written as

$$
\begin{equation*}
h(\mathbf{x}, \mathbf{b})=\prod_{i=1}^{N} 1-\left(x_{i}-b_{i}\right)^{p-1} \bmod p \tag{10}
\end{equation*}
$$

The characteristic function $g(\mathbf{x})$ may also be written as a summation over $h(\mathbf{x}, \mathbf{b})$

$$
\begin{equation*}
g(\mathbf{x})=\sum_{\mathbf{b} \mid f(\mathbf{b})=0} h(\mathbf{x}, \mathbf{b}) \tag{11}
\end{equation*}
$$

Since (9) and (11) are equal for all values of \mathbf{x}, they must represent the same polynomial. However (11) has degree $N(p-1)$ and (9) has degree $D(p-1)$, with $D<N$. Therefore the coefficient of $x_{1}^{p-1} x_{2}^{p-1} \ldots x_{N}^{p-1}$ in (11) must be zero, $\bmod p$, i.e.

$$
\begin{equation*}
\sum_{\mathbf{b} \mid f(\mathbf{b})=0}(-1)^{N}=0 \bmod p \tag{12}
\end{equation*}
$$

So the number of terms in the summation, that is the number of values of \mathbf{b} such that $f(\mathbf{b})=0$, must be a multiple of p.

Questions

Is proposition 1 still true if p is not prime? What if the modulus is a power of a prime? What if the modulus is an arbitrary composite number (product of powers of primes)?

Is proposition 1 still true under some conditions if $D \geq N$?

Proposition 2:

The number of solutions to the polynomial equation $f(\mathbf{x})=0 \bmod p^{e}$ is a multiple of p^{N-1}, where p is prime and $e>1$, with no restriction on the degree of the polynomial.

Proof of Proposition 2 for $e=2$:
If $f(\mathbf{b})=0 \bmod p^{2}$ for $\mathbf{x}=\mathbf{b}$, then $f(\hat{\mathbf{b}})=0 \bmod p$ for $\hat{\mathbf{b}}=\mathbf{b} \bmod p$.
Each $\hat{\mathbf{b}}$ corresponds to a set $\mathbf{x}=\mathbf{b}+\mathbf{c}$, where $c_{i}=k_{i} p$ for some integers $k_{i}, i=1 \ldots N$.
$f(\mathbf{b}+\mathbf{c})$ may be written as

$$
\begin{align*}
f(\mathbf{b}+\mathbf{c}) & =f(\mathbf{b})+c_{1} \frac{\partial f}{\partial x_{1}}(\mathbf{b})+\cdots+c_{N} \frac{\partial f}{\partial x_{N}}(\mathbf{b}) \bmod p^{2} \tag{13}\\
& =f(\mathbf{b})+p\left(k_{1} \frac{\partial f}{\partial x_{1}}(\mathbf{b})+\cdots+k_{N} \frac{\partial f}{\partial x_{N}}(\mathbf{b})\right) \bmod p^{2} \tag{14}
\end{align*}
$$

where the 2 nd and higher order derivatives are all zero, $\bmod p^{2}$, since the coefficients of those terms are of the form $c_{i} c_{j} \ldots=k_{i} p k_{j} p \ldots$

Since $f(\mathbf{b})=0$, the cases of interest where $f(\mathbf{b}+\mathbf{c})=0$ satisfy

$$
\begin{equation*}
k_{1} \frac{\partial f}{\partial x_{1}}(\hat{\mathbf{b}})+\cdots+k_{N} \frac{\partial f}{\partial x_{N}}(\hat{\mathbf{b}})=0 \quad \bmod p \tag{15}
\end{equation*}
$$

If at least one of the derivatives is non-zero, say $\frac{\partial f}{\partial x_{N}}(\hat{\mathbf{b}})$, then $k_{1} \ldots k_{N-1}$ may be chosen arbitrarily from $\{0,1, \ldots, p-1\}$ and k_{N} is determined using the inverse of $\frac{\partial f}{\partial x_{N}}(\hat{\mathbf{b}}), \bmod p$. So there are p^{N-1} solutions in this case.

If all of the derivatives are zero, then $k_{1} \ldots k_{N}$ may be chosen arbitrarily from $\{0,1, \ldots, p-1\}$ and there are p^{N} solutions.

