
a little math problem - 13 August 2013

Consider the polynomial equation in N variables xj, j = 1 . . . N with degree D < N

f(x) = a0 +
M
∑

i=1

aiXi = 0 mod p (1)

with

Xi =
N
∏

j=1

x
rij
j (2)

and

1 ≤

N
∑

j=1

rij ≤ D, i = 1 . . .M (3)

where the coefficients a and the values of the variables x are in the prime field Zp, the set
of integers modulo prime p, and the powers rij are non-negative integers.

The number of terms in the summation of (1) is

M =
D
∑

d=1

(

N + d− 1

d

)

=

(

N +D

D

)

− 1 (4)

Proposition 1:

The number of solutions to (1) is congruent to 0, mod p.

If f(x) is homogeneous there is at least one solution with all x values equal to zero, so
according to proposition 1 there must always be some multiple of p solutions in this case.

Aside: f(x) is homogeneous with degree D if a0 = 0 and
∑N

j=1 rij = D, i = 1 . . .M . If f(x)
is not homogeneous it can be made so by introducing another variable, say x0, replacing
xj with xj/x0, j = 1 . . . N , and multiplying the equation by xD

0 . The original equation is
obtained by letting x0 = 1.

Example with N = 1

In this case D = 0, so x1 does not appear in the equation, and (1) becomes

a0 = 0 (5)

If a0 is non-zero there are 0 solutions.
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If a0 is zero there are p solutions, x1 ∈ {0, 1, . . . , p− 1}.

Example with N = 2

IfD = 0 then (5) applies, and if a0 is zero there are p
2 solutions, (x1, x2) ∈ {0, 1, . . . , p−1}.

If D = 1 then f(x) can be written in general as

a0 + a1x1 + a2x2 = 0 (6)

If a1 and a2 are both zero, that is the same as D = 0.

If a1 is not zero then x1 = a−1
1 (−a0 − a2x2) where a−1

1 is the modular inverse of a1, i.e.
a−1
1 a1 = 1 mod p. In general, for each of the p possible values of x2, there is a solution

for x1, so there are p total solutions.

Similarly, if a2 is not zero, (6) can be solved for x2 in terms of x1, again yielding p total
solutions.

Example with N = 3

In this case the general form of f(x) is

a0 + a1x1 + a2x2 + a3x3 + a4x
2
1 + a5x

2
2 + a6x

2
3 + a7x1x2 + a8x1x3 + a9x2x3 = 0 (7)

If a4 . . . a9 are all zero, then D ≤ 1. If a1 . . . a3 are also all zero, then D = 0 and
if a0 is non-zero there are 0 solutions, otherwise there are p3 solutions, (x1, x2, x3) ∈
{0, 1, . . . , p − 1}. But if at least one of a1 . . . a3 is non-zero, say a1, then the solution is
x1 = a−1

1 (−a0 − a2x2 − a3x3) and for each of the p2 possible values of (x2, x3), there is a
solution for x1, so there are p2 total solutions.

If at least one of a4 . . . a9 is not zero, then D = 2, and there may be no solutions. For
example, with p = 5

2 + x2
1 = 0 mod 5 (8)

has no solutions, since for x1 = (0, 1, 2, 3, 4), x2
1 mod 5 = (0, 1, 4, 4, 1) and 2+x2

1 mod 5 =
(2, 3, 1, 1, 3).

Proof of proposition 1

The characteristic function g(x) which is 1 when f(x) = 0 and 0 otherwise, may be written
as

g(x) = 1− f(x)p−1 mod p (9)

The characteristic function h(x,b) of a point b which is 1 when x = b and 0 otherwise, may
be written as

h(x,b) =
N
∏

i=1

1− (xi − bi)
p−1 mod p (10)
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The characteristic function g(x) may also be written as a summation over h(x,b)

g(x) =
∑

b|f(b)=0

h(x,b) (11)

Since (9) and (11) are equal for all values of x, they must represent the same polynomial.
However (11) has degree N(p− 1) and (9) has degree D(p− 1), with D < N . Therefore the
coefficient of xp−1

1 xp−1
2 . . . xp−1

N in (11) must be zero, mod p, i.e.

∑

b|f(b)=0

(−1)N = 0 mod p (12)

So the number of terms in the summation, that is the number of values of b such that
f(b) = 0, must be a multiple of p.

Questions

Is proposition 1 still true if p is not prime? What if the modulus is a power of a prime?
What if the modulus is an arbitrary composite number (product of powers of primes)?

Is proposition 1 still true under some conditions if D ≥ N?
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Proposition 2:

The number of solutions to the polynomial equation f(x) = 0 mod pe is a multiple of pN−1,
where p is prime and e > 1, with no restriction on the degree of the polynomial.

Proof of Proposition 2 for e = 2:

If f(b) = 0 mod p2 for x = b, then f(b̂) = 0 mod p for b̂ = b mod p.

Each b̂ corresponds to a set x = b+ c, where ci = kip for some integers ki, i = 1 . . . N .

f(b+ c) may be written as

f(b+ c) = f(b) + c1
∂f

∂x1

(b) + · · ·+ cN
∂f

∂xN

(b) mod p2 (13)

= f(b) + p

(

k1
∂f

∂x1

(b) + · · ·+ kN
∂f

∂xN

(b)

)

mod p2 (14)

where the 2nd and higher order derivatives are all zero, mod p2, since the coefficients of those
terms are of the form ci cj . . . = kip kjp . . .

Since f(b) = 0, the cases of interest where f(b+ c) = 0 satisfy

k1
∂f

∂x1

(b̂) + · · ·+ kN
∂f

∂xN

(b̂) = 0 mod p (15)

If at least one of the derivatives is non–zero, say ∂f

∂xN
(b̂), then k1 . . . kN−1 may be chosen

arbitrarily from {0, 1, . . . , p − 1} and kN is determined using the inverse of ∂f

∂xN
(b̂), mod p.

So there are pN−1 solutions in this case.

If all of the derivatives are zero, then k1 . . . kN may be chosen arbitrarily from {0, 1, . . . , p−1}
and there are pN solutions.
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