Consider the polynomial equation in N variables $x_j, j = 1 \dots N$ with degree D < N

$$f(\mathbf{x}) = a_0 + \sum_{i=1}^{M} a_i X_i = 0 \mod p$$
 (1)

with

$$X_i = \prod_{j=1}^N x_j^{r_{ij}} \tag{2}$$

and

$$1 \le \sum_{j=1}^{N} r_{ij} \le D, \quad i = 1 \dots M \tag{3}$$

where the coefficients **a** and the values of the variables **x** are in the prime field Z_p , the set of integers modulo prime p, and the powers r_{ij} are non-negative integers.

The number of terms in the summation of (1) is

$$M = \sum_{d=1}^{D} \binom{N+d-1}{d} = \binom{N+D}{D} - 1 \tag{4}$$

Proposition 1:

The number of solutions to (1) is congruent to 0, mod p.

If $f(\mathbf{x})$ is homogeneous there is at least one solution with all \mathbf{x} values equal to zero, so according to proposition 1 there must always be some multiple of p solutions in this case.

Aside: $f(\mathbf{x})$ is homogeneous with degree D if $a_0 = 0$ and $\sum_{j=1}^{N} r_{ij} = D$, $i = 1 \dots M$. If $f(\mathbf{x})$ is not homogeneous it can be made so by introducing another variable, say x_0 , replacing x_j with $x_j/x_0, j = 1 \dots N$, and multiplying the equation by x_0^D . The original equation is obtained by letting $x_0 = 1$.

Example with N = 1

In this case D = 0, so x_1 does not appear in the equation, and (1) becomes

$$a_0 = 0 \tag{5}$$

If a_0 is non-zero there are 0 solutions.

If a_0 is zero there are p solutions, $x_1 \in \{0, 1, \dots, p-1\}$.

Example with N = 2

If D = 0 then (5) applies, and if a_0 is zero there are p^2 solutions, $(x_1, x_2) \in \{0, 1, \dots, p-1\}$.

If D = 1 then $f(\mathbf{x})$ can be written in general as

$$a_0 + a_1 x_1 + a_2 x_2 = 0 \tag{6}$$

If a_1 and a_2 are both zero, that is the same as D = 0.

If a_1 is not zero then $x_1 = a_1^{-1}(-a_0 - a_2x_2)$ where a_1^{-1} is the modular inverse of a_1 , i.e. $a_1^{-1}a_1 = 1 \mod p$. In general, for each of the p possible values of x_2 , there is a solution for x_1 , so there are p total solutions.

Similarly, if a_2 is not zero, (6) can be solved for x_2 in terms of x_1 , again yielding p total solutions.

Example with N = 3

In this case the general form of $f(\mathbf{x})$ is

$$a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_1^2 + a_5 x_2^2 + a_6 x_3^2 + a_7 x_1 x_2 + a_8 x_1 x_3 + a_9 x_2 x_3 = 0$$
(7)

If $a_4 \ldots a_9$ are all zero, then $D \leq 1$. If $a_1 \ldots a_3$ are also all zero, then D = 0 and if a_0 is non-zero there are 0 solutions, otherwise there are p^3 solutions, $(x_1, x_2, x_3) \in$ $\{0, 1, \ldots, p-1\}$. But if at least one of $a_1 \ldots a_3$ is non-zero, say a_1 , then the solution is $x_1 = a_1^{-1}(-a_0 - a_2x_2 - a_3x_3)$ and for each of the p^2 possible values of (x_2, x_3) , there is a solution for x_1 , so there are p^2 total solutions.

If at least one of $a_4 \dots a_9$ is not zero, then D = 2, and there may be no solutions. For example, with p = 5

 $2 + x_1^2 = 0 \mod 5 \tag{8}$

has no solutions, since for $x_1 = (0, 1, 2, 3, 4)$, $x_1^2 \mod 5 = (0, 1, 4, 4, 1)$ and $2 + x_1^2 \mod 5 = (2, 3, 1, 1, 3)$.

Proof of proposition 1

The characteristic function $g(\mathbf{x})$ which is 1 when $f(\mathbf{x}) = 0$ and 0 otherwise, may be written as

$$g(\mathbf{x}) = 1 - f(\mathbf{x})^{p-1} \mod p \tag{9}$$

The characteristic function $h(\mathbf{x}, \mathbf{b})$ of a point **b** which is 1 when $\mathbf{x} = \mathbf{b}$ and 0 otherwise, may be written as

$$h(\mathbf{x}, \mathbf{b}) = \prod_{i=1}^{N} 1 - (x_i - b_i)^{p-1} \mod p$$
(10)

The characteristic function $g(\mathbf{x})$ may also be written as a summation over $h(\mathbf{x}, \mathbf{b})$

$$g(\mathbf{x}) = \sum_{\mathbf{b}|f(\mathbf{b})=0} h(\mathbf{x}, \mathbf{b})$$
(11)

Since (9) and (11) are equal for all values of **x**, they must represent the same polynomial. However (11) has degree N(p-1) and (9) has degree D(p-1), with D < N. Therefore the coefficient of $x_1^{p-1}x_2^{p-1}\ldots x_N^{p-1}$ in (11) must be zero, mod p, i.e.

$$\sum_{\mathbf{b}|f(\mathbf{b})=0} (-1)^N = 0 \mod p$$
 (12)

So the number of terms in the summation, that is the number of values of **b** such that $f(\mathbf{b}) = 0$, must be a multiple of p.

Questions

Is proposition 1 still true if p is not prime? What if the modulus is a power of a prime? What if the modulus is an arbitrary composite number (product of powers of primes)?

Is proposition 1 still true under some conditions if $D \ge N$?

Proposition 2:

The number of solutions to the polynomial equation $f(\mathbf{x}) = 0 \mod p^e$ is a multiple of p^{N-1} , where p is prime and e > 1, with no restriction on the degree of the polynomial.

Proof of Proposition 2 for e = 2:

If $f(\mathbf{b}) = 0 \mod p^2$ for $\mathbf{x} = \mathbf{b}$, then $f(\hat{\mathbf{b}}) = 0 \mod p$ for $\hat{\mathbf{b}} = \mathbf{b} \mod p$.

Each $\hat{\mathbf{b}}$ corresponds to a set $\mathbf{x} = \mathbf{b} + \mathbf{c}$, where $c_i = k_i p$ for some integers $k_i, i = 1 \dots N$.

 $f(\mathbf{b} + \mathbf{c})$ may be written as

$$f(\mathbf{b} + \mathbf{c}) = f(\mathbf{b}) + c_1 \frac{\partial f}{\partial x_1}(\mathbf{b}) + \dots + c_N \frac{\partial f}{\partial x_N}(\mathbf{b}) \mod p^2$$
 (13)

$$= f(\mathbf{b}) + p\left(k_1\frac{\partial f}{\partial x_1}(\mathbf{b}) + \dots + k_N\frac{\partial f}{\partial x_N}(\mathbf{b})\right) \mod p^2 \tag{14}$$

where the 2nd and higher order derivatives are all zero, mod p^2 , since the coefficients of those terms are of the form $c_i c_j \ldots = k_i p k_j p \ldots$

Since $f(\mathbf{b}) = 0$, the cases of interest where $f(\mathbf{b} + \mathbf{c}) = 0$ satisfy

$$k_1 \frac{\partial f}{\partial x_1}(\hat{\mathbf{b}}) + \dots + k_N \frac{\partial f}{\partial x_N}(\hat{\mathbf{b}}) = 0 \mod p$$
 (15)

If at least one of the derivatives is non-zero, say $\frac{\partial f}{\partial x_N}(\hat{\mathbf{b}})$, then $k_1 \dots k_{N-1}$ may be chosen arbitrarily from $\{0, 1, \dots, p-1\}$ and k_N is determined using the inverse of $\frac{\partial f}{\partial x_N}(\hat{\mathbf{b}})$, mod p. So there are p^{N-1} solutions in this case.

If all of the derivatives are zero, then $k_1 \dots k_N$ may be chosen arbitrarily from $\{0, 1, \dots, p-1\}$ and there are p^N solutions.