
i 
 

 
 
 
 
 

            
 

Security Implications of Quantum 
Computing on Cryptography 

            
 
 

An Independent Study 
Submitted to the Faculty of 

The Department of Electrical and Computer Engineering 
Villanova University  

 
By 

 
Jeffrey A. King 

 
 

In Partial Fulfillment  
Of the Requirements for the Degree of 

Master of Science in Computer Engineering 
 

 
 
 

May 7, 2020 
  



ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2020 by Jeffrey A. King 
All Rights Reserved 

  



iv 
 

Abstract 
 
 
In recent years, there has been significant progress in the development of quantum 
computers, which perform computations based on the principles of quantum mechanics.  
Quantum algorithms are much different in nature than classical algorithms, but they are 
known to provide speedup over classical algorithms for certain problems.  Currently, two of 
the best-known quantum algorithms are Grover’s algorithm for unstructured searches, and 
Shor’s algorithm for factoring numbers.  These algorithms are known to pose a threat to 
currently used cryptographic systems, but there are currently no quantum computers powerful 
enough to execute them.  If a large-scale quantum computer is ever built, many public key 
cryptography schemes would be broken by Shor’s algorithm.  For this reason, research is 
being done in the area of post-quantum cryptography.  Secret key cryptography schemes will 
fare better, as the threat posed by Grover’s algorithm is easily mitigated by doubling the key 
length. 
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Chapter 1 
 

Introduction 
In the early 1980’s, Richard Feynman described the idea of a computer that uses the 
principles of quantum mechanics to perform computations, after concluding that it was not 
possible to simulate quantum mechanics on a classical computer [10].  In the time since then, 
the theory of quantum computing was developed.  A well-designed quantum algorithm can 
provide significant speedup when compared to a corresponding classical algorithm.  One 
well-known example is Shor’s algorithm, which can factor numbers in polynomial time [8].  
The problem of factoring numbers is considered so difficult that the security of the RSA 
encryption algorithm is based on that problem.  If a large-scale quantum computer powerful 
enough to run Shor’s algorithm is ever built, RSA will be broken. 
 
For a long time, the field of quantum computing was purely theoretical.  It was known how 
the principles of quantum mechanics could be used to perform computations, but it was not 
known how to build a quantum computer.  However, the situation is different today.  
Currently, there are commercially available quantum computers, such as IBM’s Quantum 
Experience [14].  There has been noticeable progress in the development of quantum 
computers, and architectures that have potential to scale up to larger systems have been 
demonstrated [15].  As the capabilities of quantum computers scale up, they will eventually 
pose a real threat to currently used cryptographic systems. 
 
This report is a study of the ways that quantum computers could be used to attack present-
day cryptographic systems.  The remainder of the report is organized as follows.  Chapter 2 
explains some fundamental principles of quantum computing.  Next, Chapter 3 describes the 
use of quantum algorithms to attack secret key cryptography.  Then, Chapter 4 explains how 
quantum algorithms can be used to attack public key cryptography.  Next, Chapter 5 provides 
a survey of post-quantum cryptography, which aims to create cryptographic algorithms that 
are secure against attacks by quantum computers.  Chapter 6 looks at future work that could 
be done for further study.  Finally, Chapter 7 concludes the report. 
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Chapter 2 
 

Quantum Computing Principles 
 
2.1 Qubits 
 
The goal of quantum mechanics is to find the wave function Ψ(ݔ,  of a particle, which can (ݐ
be obtained by solving the Schrödinger equation [1]: 
 

݅ℏ ߲Ψ߲ݐ = − ℏଶ
2݉

߲ଶΨ
ଶݔ߲ + ܸΨ 

 
In this equation, ℏ is a constant known as Planck’s constant, m is the mass of the particle, 
and V is the potential energy function.  For the study of quantum computing, we will not 
examine the details of the wave functions, but we will represent a particle’s wave function, 
also known as its state, as a normalized vector, |߰ۧ [1].  For a given system, there can be 
multiple solutions to the Schrödinger equation, and the state can be a linear combination of 
these solutions, since a linear combination of solutions to the Schrödinger equation is also a 
solution [1]. 
 
The simplest system we will consider is a quantum bit, or qubit.  A qubit has two states that 
form an orthonormal basis for a two-dimensional state space [2].  We will label these basis 
states |0ۧ and |1ۧ, and refer to them as the standard basis.  Unlike a classical bit, a qubit can 
be not only 0 or 1, but any combination of 0 and 1.  This concept, which is known as 
superposition, is very important in quantum computing algorithms.  The general form of a 
qubit’s state is 
 

|߰ۧ = 0ۧ|ߙ +  ,1ۧ|ߚ
 
where ߙ and ߚ are complex numbers.  The state is always a unit vector, therefore, 
 

ଶ|ߙ| + ଶ|ߚ| = 1. 
 
The state can also be represented as follows [5]: 
 

|߰ۧ = ቂߚߙቃ 
 
Obviously, the top element is the |0ۧ component, and the bottom element is the |1ۧ 
component.  The basis vectors can be represented as 
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|0ۧ = ቂ10ቃ; |1ۧ = ቂ01ቃ. 
 
The representation |߰ۧ is known as a “ket,” while the conjugate transpose is represented by 
 can be |߰ۦ  .and is known as a “bra.”  This notation is known as “bra-ket” notation ,|߰ۦ
represented as 
 

|߰ۦ = ሾߙ∗  .ሿ∗ߚ
 
An expression such as ߰ۦ|߶ۧ is called an inner product [5].  If all the components of the two 
vectors are real numbers, the inner product is the same as the dot product.  The inner product 
of a unit vector and itself is always 1: 
 

ۧ߰|߰ۦ = ሾߙ∗ ሿ∗ߚ ቂߚߙቃ = ߙ∗ߙ + ߚ∗ߚ = ଶ|ߙ| + ଶ|ߚ| = 1 
 
The inner product of two orthogonal unit vectors is always zero.  Concerning the basis states, 
we see that 
 
0ۧ|0ۦ = ሾ1 0ሿ ቂ10ቃ = 1ۧ|1ۦ ;1 = ሾ0 1ሿ ቂ01ቃ = 0ۧ|1ۦ ;1 = ሾ0 1ሿ ቂ10ቃ = 1ۧ|0ۦ ;0 = ሾ1 0ሿ ቂ01ቃ = 0. 

 

2.2 Quantum Measurement 
 
Because a qubit is represented by two complex numbers, it can represent an infinite number 
of different states [4].  A classical bit can only represent two states:  0 and 1.  However, the 
laws of quantum mechanics do not allow us to view the entire quantum state.  When a qubit 
is measured, one of two possible outcomes will be observed.  Therefore, we can only extract 
a classical bit’s worth of information from a qubit [4].  In most of the examples in this 
report, qubits will be measured in the standard basis.  When a qubit 0ۧ|ߙ +  is measured 1ۧ|ߚ
in the standard basis, |0ۧ will be observed with probability |ߙ|ଶ, while |1ۧ will be observed 
with probability |ߚ|ଶ.  Furthermore, the act of measurement changes the state to the basis 
state that was observed [4].  So, the state is now either |0ۧ or |1ۧ, and the original state is no 
longer recoverable.  However, if the original state was one of the basis states, the state is 
unchanged by the measurement.  Formally, each basis vector has an operator known as a 
projector [3], which is given by the outer product of the basis vector with itself: 
 

଴ܲ = |0ۦ0ۧ| = ቂ10ቃ ሾ1 0ሿ = ቂ1 0
0 0ቃ ;	 ଵܲ = |1ۦ1ۧ| = ቂ01ቃ ሾ0 1ሿ = ቂ0 0

0 1ቃ 
 
A measurement of |߰ۧ changes the state to  
 

௜ܲ|߰ۧ
| ௜ܲ|߰ۧ|

 

 
with probability | ௜ܲ|߰ۧ|ଶ [3]. 
 
It is possible to measure a qubit in a basis other than the standard basis.  For example, 
consider the basis vectors 
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|+ۧ = ቈ1 √2⁄
1 √2⁄ ቉; |−ۧ = ቈ 1 √2⁄

−1 √2⁄ ቉ 
 
The projectors for these basis vectors are 
 

ାܲ = | |+ۦۧ+ = ൤1 2⁄ 1 2⁄
1 2⁄ 1 2⁄ ൨ ;	ܲି = | |−ۦۧ− = ൤ 1 2⁄ −1 2⁄

−1 2⁄ 1 2⁄ ൨ 
 
If |0ۧ is measured in the standard basis, the outcome will always be |0ۧ.  But, in this basis, 
the outcome will be either |+ۧ or |−ۧ, each with 50% probability. 
 

2.3 Quantum Key Distribution 
 
The principles of the previous example have been applied to create a quantum key 
distribution protocol.  One such protocol, named BB84 after its inventors (Charles Bennett 
and Giles Brassard) and the year it was invented [3], is explained in [4] as follows:  Alice 
and Bob, who wish to exchange a secret key, are connected by a bidirectional classical 
channel and a unidirectional quantum channel.  Alice can use the quantum channel to send 
particles to Bob, who measures the state of each particle.  Alice encodes a bit of the key in 
each particle by randomly choosing one of two bases to encode each bit:  0 = |→ۧ; 1 = |↑ۧ, or 
0 = |↖ۧ; 1 = |↗ۧ.  Using the notation from the previous example, the bases could also be 
represented as 0 = |0ۧ; 1 = |1ۧ, 	0 = |+ۧ; 1 = |−ۧ.  For each particle that Bob receives, he 
randomly chooses one of the two bases to measure the particle.  If Alice and Bob chose the 
same basis for a given particle, Bob is guaranteed to have measured the state exactly as Alice 
sent it, and that bit can be used for the key.  After Alice has sent all the bits, she and Bob 
share the bases that they chose over the classical channel.  They can use this information to 
determine which bits were sent correctly and can be used in the key.  However, a third party 
cannot determine the values of the bits from this information.  If a third party, Eve, measures 
a particle sent by Alice and then resends it to Bob, she will measure in the wrong basis, and 
change the particle’s state, on average 50% of the time.  As a result, if Bob measures in the 
correct basis (the basis Alice chose), there is a 25% chance the value he measured is 
incorrect (50% chance Eve picked the wrong basis x 50% chance of Bob measuring the 
wrong value).  If Alice and Bob are sending parity bits over the classical channel, they will 
detect a high error rate, and conclude that somebody is eavesdropping on them.  The BB84 
protocol is illustrated in Figure 2.1: 
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Figure 2.1: The BB84 quantum key distribution protocol [3]. 

 

2.4 Multiple Qubits and Entanglement 
 
In a system with multiple qubits, qubits are combined using the tensor product [4]: 
 

(ܽଵ|0ۧ + ܾଵ|1ۧ)⨂(ܽଶ|0ۧ + ܾଶ|1ۧ) = ܽଵܽଶ|00ۧ + ܽଵܾଶ|01ۧ + ܾଵܽଶ|10ۧ + ܾଵܾଶ|11ۧ 
 
For two qubits, the basis states are |00ۧ, |01ۧ, |10ۧ, and |11ۧ.  (Depending on the situation, we 
may choose to label these |0ۧ, |1ۧ, |2ۧ, and |3ۧ instead.)  When written in vector form, by 
convention, the components are listed from top to bottom (or left to right) starting with the 
lowest-numbered basis state and increasing.  For a system of n qubits, there are 2n basis 
states.  Therefore, as the number of qubits increases, the number of parameters needed to 
describe the system increases exponentially. 
 
The state shown above is known as a product state [5], since it can be expressed as a tensor 
product of the individual qubits.  However, it is also possible to have a state that cannot be 
expressed in terms of its individual qubits; an example is (1 √2⁄ )(|00ۧ + |11ۧ) [4].  Such a 
state is said to be entangled.  The concept of entanglement has no classical counterpart [4]. 
 
The previously discussed concepts of measurement extend to multi-qubit systems [3].  For 
example, if we measure the first qubit of the state 
 

ܽ|00ۧ + ܾ|01ۧ + ܿ|10ۧ + ݀|11ۧ 
 
in the standard basis, the projectors are 
 

଴ܲ = |00ۦ00ۧ| + |01ۦ01ۧ| = ൦
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

൪ ;	 ଵܲ = |10ۦ10ۧ| + |11ۦ11ۧ| = ൦
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

൪ 

 
After measurement, the state will be either  
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ܽ|00ۧ + ܾ|01ۧ
ඥ|ܽ|ଶ + |ܾ|ଶ

 

 
or 
 

ܿ|10ۧ + ݀|11ۧ
ඥ|ܿ|ଶ + |݀|ଶ

 

 
with probabilities of |ܽ|ଶ + |ܾ|ଶ and |ܿ|ଶ + |݀|ଶ, respectively.  If we measure both qubits in the 
standard basis, we will get one of the four basis vectors with probabilities |ܽ|ଶ, |ܾ|ଶ, |ܿ|ଶ, and 
|݀|ଶ. 
 

2.5 Quantum Circuits 
 
We will now look at operations that can be performed on qubits to perform computations.  
The laws of quantum mechanics dictate that operations performed on a qubit must be unitary 
[2], and it follows from this stipulation that operations must also be reversible [4].  This 
means that the transformation performed by a quantum gate can be described as a unitary 
matrix.  In theory, any arbitrary unitary matrix could be a quantum operation.  However, in 
practice, not every unitary operation can be implemented efficiently, as we will see later.  
But first, we will look at quantum gates that operate on only one qubit.  Figure 2.2 shows 
several common single-qubit gates and their associated matrices: 
 

 
Figure 2.2: Single-qubit gates [2]. 

 
The Hadamard gate transforms |0ۧ to (1 √2⁄ )(|0ۧ + |1ۧ) and |1ۧ to (1 √2⁄ )(|0ۧ − |1ۧ).  The state 
(1 √2⁄ )(|0ۧ + |1ۧ) is a superposition of |0ۧ and |1ۧ.  If we apply a Hadamard gate to every 
qubit in an nqubit register, and all the qubits are |0ۧ, the register will be in a superposition of 
all the basis vectors: 
 

|߰ۧ = ෍ 1
√2௡

ۧݔ|
ଶ೙షభ

௫ୀ଴
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This is very powerful, because it enables a quantum circuit to perform computations on all 
basis vectors at the same time, and the output is a superposition of the results.  This is known 
as quantum parallelism [4].  For that reason, this is the first step in many quantum algorithms 
[5]. 
 
The Pauli-X gate acts like a NOT, flipping |0ۧ to |1ۧ and vice versa [5].  The Pauli-Y gate 
transforms |0ۧ to ݅|1ۧ and |1ۧ to −݅|0ۧ.  The Pauli-Z gate transforms |1ۧ to −|1ۧ and does not 
change |0ۧ [5].  This gate is also known as a “phase flip” gate [5], since it shifts the phase of 
|1ۧ by ߨ (݁௜గ = −1).  The phase gate transforms |1ۧ to ݅|1ۧ, which is a phase shift of ߨ 2⁄  
(݁௜గ ଶ⁄ = ݅).  The ߨ 8⁄  gate has a misleading name (according to [2], this is for historical 
reasons), as it shifts the phase of |1ۧ by ߨ 4⁄ .  To reduce confusion, we will refer to this gate 
as the T gate. 
 
Next, we will look at gates that operate on more than one qubit.  Figure 2.3 shows some 
common multi-qubit gates: 
 

 
Figure 2.3: Multi-qubit gates [2]. 

 
The controlled-NOT, or CNOT, gate flips the second bit if the first bit is 1 [4].  The swap 
gate, as its name implies, swaps the two bits; |01ۧ is transformed to |10ۧ, and vice versa, 
while |00ۧ and |11ۧ are unchanged.  The controlled-Z gate transforms |11ۧ to −|11ۧ; it does a 
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phase flip on the second bit if both bits are 1.  The controlled-phase gate shifts the phase of 
the second bit by ߨ 2⁄  if both bits are 1.  The Toffoli gate is also called the doubly-controlled 
NOT, or CCNOT, gate [5]; it flips the third bit if the first two bits are 1.  The Fredkin, or 
controlled-swap gate, swaps the last two bits if the first bit is 1. 
 
A Toffoli gate can also be used to implement an AND gate; if the input to the third bit is 0, 
the output on that bit will be 1 if and only if the first two bits are 1 [4].  It can also be used 
to implement a NAND gate; if the input to the third bit is 1, the output on that bit will be 0 if 
and only if the first two bits are 1 [8].  Because the NAND gate is a universal gate for 
classical computers [8], this shows that any computation that can be done on a classical 
computer can also be done on a quantum computer.  However, it may be more efficient to 
perform to perform these computations on a classical computer.  For this reason, a quantum 
computer may have a classical component attached to it [2].  In some cases, a quantum 
computer may be treated like a coprocessor in a classical computer, such as a GPU or an 
FPGA [17]. 
 
There are several sets of universal quantum gates.  Nielsen and Chuang [2] show that any 
arbitrary unitary operation can be implemented using only CNOT and single-qubit gates.  
However, they also point out that this cannot always be done in a way that is resistant to 
errors.  Hadamard, phase, CNOT, and T gates are a universal set of gates to approximate an 
arbitrary unitary operation [2].  But this approximation cannot always be done efficiently.  
So, while, in theory, any arbitrary unitary operation can be implemented on a quantum 
computer, not all unitary operations can be implemented efficiently [2]. 
 

2.6 Quantum Error Correction 
 
Quantum algorithms work very well in theory, but in practice, the interaction of qubits with 
the external environment leads to decoherence, producing errors in the quantum state [4].  In 
[4], it is explained that quantum error correction uses an error correcting code that is 
designed to detect and correct a specific set of errors in the state.  The code consists of a 
mapping that embeds n data bits into n+k code bits.  Thus, like classical error correction, 
quantum error correction uses redundant bits.  A syndrome extraction operator maps n+k 
code bits to a set of indices representing the set of errors that can be corrected.  In other 
words, the syndrome extraction operator determines which error occurred, so that the error 
can be corrected by applying a transformation that has the inverse effect of the error.  
Quantum error correction is performed by applying the syndrome extraction operator to a 
quantum state containing the code bits plus enough bits to hold the index.  The code bits may 
contain not just one error, but a linear combination of all the errors the code is designed to 
detect.  After the syndrome extraction operator is applied, the state is a superposition of the 
different errors each associated with the corresponding error index.  The next step is to 
measure the bits that hold the index; this yields a random index and changes the state so that 
the code bits contain the effects of only the error associated with the measured index.  The 
inverse error transformation for that error can then be applied, allowing the original encoded 
state to be recovered. 
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2.7 Overview of Quantum Algorithms 
 
As we pointed out earlier, quantum algorithms typically begin with a Hadamard gate being 
used to put the computer in a superposition of all possible states.  It is important to note that 
quantum computing requires new, non-traditional techniques that use the unique properties of 
qubits and measurements to their advantage. In [4], two such techniques are highlighted.  The 
first is amplitude amplification, which is the manipulation of the state to maximize the 
probability that values of interest are measured.  Grover’s algorithm, which is discussed in 
Chapter 3, is an example of amplitude amplification.  The second technique is finding 
common properties in the value of a function.  An example is Shor’s algorithm, discussed in 
Chapter 4, which uses a quantum Fourier transform to find the period of a function. 
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Chapter 3 
 
Attacks on Secret Key Cryptography 
 
 
 

3.1 Overview 
 
In secret key cryptography, two parties wish to communicate securely with each other.  They 
share a key that is known only to them, and this key is used both for encryption and 
decryption of data.  Two well-known examples are the Data Encryption Standard (DES) and 
the Advanced Encryption Standard (AES).  If the encryption algorithm is well-designed, the 
best possible attack is a brute-force attack.  If the attacker has one or more plaintext-
ciphertext pairs, a brute-force attack can be done by trying every possible key to decrypt the 
ciphertext, until a match is found with the known plaintext [6].  If the number of possible 
keys is ܰ = 2௡, where n is the length of the key in bits, the average number of attempts 
needed is ܰ 2⁄ = 2௡ିଵ [6].  The number of attempts needed to determine the key increases 
exponentially as the key length increases.  As we will see, Grover’s algorithm can provide 
some speedup to this brute-force attack. 
 

3.2 Grover’s Algorithm 
 
Grover’s algorithm is designed to perform an unstructured search [4].  An unstructured 
search involves finding an item that satisfies a given condition in a list that is in random 
order.  In this case, the average number of items that would need to be examined is ܰ 2⁄  [9].  
(If the items were ordered in some way, such as alphabetically or numerically, a binary 
search could find the desired item faster).  A brute-force attack on DES or AES is an 
unstructured search.  The basic idea of the algorithm is to use superposition to examine every 
item in the list simultaneously [9].  Now, if we were able to examine the entire quantum 
state, only one iteration would be needed; but, as we have already seen, the nature of 
quantum measurement does not allow us access to the entire state.  So, the approach of 
Grover’s algorithm is to maximize the probability that the state corresponding to the desired 
item is measured; this is an example of amplitude amplification [3]. 
 
To begin, assume there are ܰ = 2௡ items to be searched, and the search can be represented by 
a function f(x), where x is between 0 and N-1 inclusive.  f(x) is equal to 1 if item x satisfies a 
condition, and 0 otherwise [2].  For now, we need not be concerned with its inner workings, 
so we will treat f(x) as a black box.  To execute the algorithm, we will need n qubits so that 
each item has its own quantum state, and one auxiliary qubit that is used to handle the output 
of f(x) [5]. 
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The algorithm uses a quantum circuit known as an oracle, which performs the following 
transformation [2], which will be referred to as Uf [5]: 
 

ۧݍ|ۧݔ| → ݍ|ۧݔ| ⊕  ۧ(ݔ)݂
 
The auxiliary, or oracle, qubit |ۧݍ, is XOR’d with the output of f(x).  If f(x)=0, then |ۧݍ is 
unchanged.  But, if f(x)=1, |0ۧ → |1ۧ and |1ۧ → |0ۧ.  An important case occurs when |ۧݍ =
(|0ۧ − |1ۧ) √2⁄ .  In that case, if f(x)=1, 
 

ۧݔ| ⊗ (|0ۧ − |1ۧ) √2⁄ → |ۧݔ| ⊗ (|1ۧ − |0ۧ) √2⁄ = ⊗ۧݔ|− (|0ۧ − |1ۧ) √2⁄  
 
This effectively flips the sign of the state, while leaving the oracle qubit unchanged.  For this 
case, the transformation can be summarized as follows [2]: 
 

ۧݔ| ⊗ (|0ۧ − |1ۧ) √2⁄ → (−1)௙(௫)|ۧݔ ⊗ (|0ۧ − |1ۧ) √2⁄ , 
 
or, 
 

ۧݔ| → (−1)௙(௫)|ۧݔ. 
 
The algorithm begins, as all quantum algorithms do, with all qubits being set to |0ۧ.  The 
oracle qubit is then set to |1ۧ using the X gate.  To complete initialization, the Hadamard gate 
is applied to all qubits, resulting in the following initial state [5]: 
 

|߰ۧ = 1
√ܰ

෍ ۧݔ|
ேିଵ

௫ୀ଴
⊗ 1
√2

(|0ۧ − |1ۧ) 

 
In the initial state, the first n qubits are in a superposition of all possible x.  In general, the 
state can be represented as 
 

|߰ۧ = ෍ ۧݔ|௫ߙ
ேିଵ

௫ୀ଴
⊗ 1
√2

(|0ۧ − |1ۧ) 

 
where ߙ௫ = 1 √ܰ⁄  at initialization. 
 
An iteration of Grover’s algorithm consists of two steps:  a sign flip on the state 
corresponding to the desired item and an inversion about the average for all items [5].  
Because the oracle qubit is in the state (|0ۧ − |1ۧ) √2⁄ , the sign flip can be done simply by 
applying the oracle.  The resulting state is 
 

௙ܷ|߰ۧ = ෍(−1)௙(௫)ߙ௫|ۧݔ
ேିଵ

௫ୀ଴
⊗ 1
√2

(|0ۧ − |1ۧ) 

 
Figure 3.1 illustrates the effect of the sign flip: 
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Figure 3.1:  Grover’s algorithm sign flip [5]. 

 
Again, we notice that the oracle qubit is unchanged.  Since the oracle qubit does not change 
throughout the algorithm, we will ignore it from this point on. 
 
The second step of the Grover iteration is inversion about the average.  This is represented 
by the following transformation on the first n qubits [5]: 
 

෍ߙ௝|݆ۧ →
ேିଵ

௝ୀ଴
෍ ൥2൭෍ ௞ߙ

ܰ

ேିଵ

௞ୀ଴
൱ ௝൩ߙ	−

ேିଵ

௝ୀ଴
 

 
Alternately, this can be represented as 
 

෍ߙ௝|݆ۧ →
ேିଵ

௝ୀ଴
෍൫2ܣ ௝൯ߙ	−
ேିଵ

௝ୀ଴
 

 
where A is the average of all values of ߙ.  The term 2ܣ ܣ ௝ can be rewritten asߙ	− + ൫ܣ  ௝൯ߙ	−
[9], which illustrates how the inversion works.  Since the state that had its sign flipped is 
further away from the average, its magnitude ends up larger than those for the other states.  
This is illustrated by Figure 3.2: 
 

 
Figure 3.2:  Inversion about the average [9]. 
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Notice that the only state that is treated differently from the rest is the state for the desired 
item; only its sign is flipped, but all states are inverted about the average.  Therefore, all 
undesired states will have the same magnitude, while the desired state will have a different 
magnitude. 
 
The inversion about the average can be implemented by the following unitary matrix [5]: 
 

ܹ =

ۏ
ێ
ێ
ێ
2ൗܰۍ − 1 2ൗܰ ⋯ 2ൗܰ
2ൗܰ 2ൗܰ − 1 ⋯ 2ൗܰ
⋮ ⋮ ⋱ ⋮

2ൗܰ 2ൗܰ ⋯ 2ൗܰ − ے1
ۑ
ۑ
ۑ
ې
=

ۏ
ێ
ێ
ێ
2ൗܰۍ 2ൗܰ ⋯ 2ൗܰ
2ൗܰ 2ൗܰ ⋯ 2ൗܰ
⋮ ⋮ ⋱ ⋮

2ൗܰ 2ൗܰ ⋯ 2ൗܰ ے
ۑ
ۑ
ۑ
ې
−  ௡⊗ܫ

 
This can be re-written as 
 

ܦ,௡⊗ܪܦ௡⊗ܪ− = ൦
−1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

൪ 

 
Note that the negative sign does not affect the probabilities of measuring any of the basis 
states, so it can safely be ignored.  (This is a global phase factor [2] of ݁௜గ.)  Figure 3.3 
shows a circuit that will implement D: 
 

 
Figure 3.3: Grover’s algorithm D circuit [5]. 

 
So, the full inversion about the average can be performed by applying Hadamard gates to all 
qubits before and after the D operation. 
 
After an optimal number of iterations is performed, the first n qubits are measured.  The 
desired state will have the highest probability of being measured, and that probability will be 
close to one.  Figure 3.4 summarizes the algorithm: 
 

 
Figure 3.4:  Summary of Grover’s algorithm [2]. 
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In Figure 3.4, G represents a single Grover iteration.  In the next section, we will show how 
the optimal number of iterations is determined. 
 

3.3 Optimal Number of Grover Iterations 
 
 
As we just mentioned, the optimal number of iterations is such that the probability of 
measuring the desired state is as close to one as possible.  Nannicini [5] shows how this can 
be illustrated geometrically.  The state after the k-th iteration can be split into two 
components; one for the desired state, and the other for the undesired states: 
 

|߰௞ۧ = ݀௞|߰஽ۧ +  ௞|߰௎ۧݑ
 
At initialization, ݀଴ = 1 √ܰ⁄  and ݑ଴ = ඥ(ܰ − 1) ܰ⁄ .  By applying a Grover iteration to the 
state vector in this form, it can be shown that 
 

݀௞ାଵ = ൬1 − 1
ܰ − 1൰݀௞ +

2√ܰ − 1
ܰ  ௞ݑ

 

௞ାଵݑ = −2√ܰ − 1
ܰ ݀௞ + ൬1 − 1

ܰ − 1൰ݑ௞ 
 
Inspection of the above equations shows that they have the form of a clockwise rotation 
matrix: 
 

൤݀௞ାଵݑ௞ାଵ൨ = ቂ cos ߠ sin ߠ
− sinߠ cos ቃߠ ൤

݀௞
 ௞൨ݑ

 
where  

sin ߠ = 2√ܰ − 1
ܰ ;	cosߠ = 1 − 1

ܰ − 1 
 
and this satisfies the relationship sinଶ cosଶ+ߠ ߠ = 1.  In other words, each Grover iteration is a 
rotation of a two-dimensional vector by an angle ߠ.  We need to find the optimal number of 
iterations, k, such that dk is as close to 1 and uk is as close to 0 as possible.  When N is large, 
we can use the approximation ܰ − 1	 ≈ ܰ; as a result, d0 is almost 0, and u0 is almost 1.  
Therefore, we want to rotate the vector ߨ 2⁄  radians to obtain the optimal solution.  We can 
also use the small-angle approximation sinߠ ≈  The optimal number of iterations is then  .ߠ
 

݇ = ߨ
ߠ2 ≈

ܰߨ
4√ܰ − 1 ≈

ܰߨ
4√ܰ

= ߨ
4 √ܰ 

 
Figure 3.5 shows the rotation of the vector for N=65536.  The first graph shows the initial 
state, represented by the black arrow, and the optimal state, represented by the green arrow.  
The second graph shows the state after 100 iterations, and the third graph shows the state 
after the optimal number of 201 iterations. 
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Figure 3.5:  Grover’s algorithm state for N=65536; initial, after 100 iterations, after 200 

iterations. 
 
One thing that is important to note about Grover’s algorithm is that performing additional 
iterations does not converge further on the optimal solution; rather, it rotates the vector past 
the optimal solution.  Figure 3.6 shows the state after 250 iterations. 
 

 
Figure 3.6:  Grover’s algorithm state for N=65536 after 250 iterations. 

 
So, it is important to do exactly the optimal number of iterations. 
 

3.4 Demonstration 
 
 
The following tables and figures show the calculations of Grover’s algorithm for N=8, N=16, 
and N=32, respectively.  The tables have two columns for each iteration; the first column 
shows the result of the sign flip, while the second column shows the result of the inversion 
about the average.  The desired item and the state after the optimal number of iterations are 
both highlighted.  The figures show the amplitude of the desired state after each iteration. 
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Table 3.1:  Grover’s algorithm, N=8. 

 

 
Figure 3.7:  Amplitude of desired state vs. number of iterations, N=8. 

 
 

 
Table 3.2:  Grover’s algorithm, N=16. 

Init
0.353553 0.353553 0.176777 0.176777 -0.08839 -0.08839 -0.30936
0.353553 0.353553 0.176777 0.176777 -0.08839 -0.08839 -0.30936
0.353553 0.353553 0.176777 0.176777 -0.08839 -0.08839 -0.30936
0.353553 -0.35355 0.883883 -0.88388 0.972272 -0.97227 0.574524
0.353553 0.353553 0.176777 0.176777 -0.08839 -0.08839 -0.30936
0.353553 0.353553 0.176777 0.176777 -0.08839 -0.08839 -0.30936
0.353553 0.353553 0.176777 0.176777 -0.08839 -0.08839 -0.30936
0.353553 0.353553 0.176777 0.176777 -0.08839 -0.08839 -0.30936

Iter 1 Iter 2 Iter 3

0

0.2

0.4

0.6

0.8

1

1 2 3

Init
0.25 0.25 0.1875 0.1875 0.078125 0.078125 -0.05078 -0.05078 -0.16699 -0.16699 -0.24146
0.25 0.25 0.1875 0.1875 0.078125 0.078125 -0.05078 -0.05078 -0.16699 -0.16699 -0.24146
0.25 0.25 0.1875 0.1875 0.078125 0.078125 -0.05078 -0.05078 -0.16699 -0.16699 -0.24146
0.25 0.25 0.1875 0.1875 0.078125 0.078125 -0.05078 -0.05078 -0.16699 -0.16699 -0.24146
0.25 0.25 0.1875 0.1875 0.078125 0.078125 -0.05078 -0.05078 -0.16699 -0.16699 -0.24146
0.25 0.25 0.1875 0.1875 0.078125 0.078125 -0.05078 -0.05078 -0.16699 -0.16699 -0.24146
0.25 0.25 0.1875 0.1875 0.078125 0.078125 -0.05078 -0.05078 -0.16699 -0.16699 -0.24146
0.25 -0.25 0.6875 -0.6875 0.953125 -0.95313 0.980469 -0.98047 0.762695 -0.7627 0.354248
0.25 0.25 0.1875 0.1875 0.078125 0.078125 -0.05078 -0.05078 -0.16699 -0.16699 -0.24146
0.25 0.25 0.1875 0.1875 0.078125 0.078125 -0.05078 -0.05078 -0.16699 -0.16699 -0.24146
0.25 0.25 0.1875 0.1875 0.078125 0.078125 -0.05078 -0.05078 -0.16699 -0.16699 -0.24146
0.25 0.25 0.1875 0.1875 0.078125 0.078125 -0.05078 -0.05078 -0.16699 -0.16699 -0.24146
0.25 0.25 0.1875 0.1875 0.078125 0.078125 -0.05078 -0.05078 -0.16699 -0.16699 -0.24146
0.25 0.25 0.1875 0.1875 0.078125 0.078125 -0.05078 -0.05078 -0.16699 -0.16699 -0.24146
0.25 0.25 0.1875 0.1875 0.078125 0.078125 -0.05078 -0.05078 -0.16699 -0.16699 -0.24146
0.25 0.25 0.1875 0.1875 0.078125 0.078125 -0.05078 -0.05078 -0.16699 -0.16699 -0.24146

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
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Figure 3.8:  Amplitude of desired state vs. number of iterations, N=16. 

 

 
Table 3.3:  Grover’s algorithm, N=32. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

Init
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 -0.17678 0.508233 -0.50823 0.77616 -0.77616 0.947067 -0.94707 0.999591 -0.99959 0.927166 -0.92717 0.738845 -0.73885 0.458169 -0.45817 0.120221
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783
0.176777 0.176777 0.15468 0.15468 0.113248 0.113248 0.05766 0.05766 -0.00514 -0.00514 -0.06729 -0.06729 -0.12103 -0.12103 -0.15964 -0.15964 -0.1783

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 7 Iter 8Iter 6
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Figure 3.9:  Amplitude of desired state vs. number of iterations, N=32. 

 
The MATLAB script grover.m (listed in Appendix A) performs an emulation of Grover’s 
algorithm by using matrix multiplications to simulate the various gates that are used.  The 
optimal number of iterations are performed, and a bar graph is displayed showing the 
amplitude of each state.  Figure 3.10 shows the output of grover(4,4); the first argument 
specifies 24=16 items, while the second argument specifies that the fourth item is the desired 
item. 

 
Figure 3.10:  Output of grover(4,4). 

 
The MATLAB script groveropt.m (listed in Appendix B) plots the amplitude of the desired 
state versus the number of iterations.  Figure 3.11 shows the output of groveropt(16), where 
the argument specifies 216=65,536 items. 
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Figure 3.11:  Output of groveropt(16). 

 
 

3.5 Complexity 
 
As we have shown, the number of iterations required for Grover’s algorithm is ܱ൫√ܰ൯, or 
ܱ൫2௡ ଶ⁄ ൯, while a classical unstructured search is ܱ(ܰ), or ܱ(2௡).  Thus, Grover’s algorithm 
provides a quadratic speedup over the classical search [5].  While this reduces the amount of 
time needed to do a brute-force attack on DES or AES, this problem can easily be solved by 
doubling the length of the key.  If the new key length is 2n, the number of iterations required 
for Grover’s algorithm becomes ܱ(2௡), which is the same as a classical search over the 
original key length.  In addition, the speedup also depends on the efficiency with which the 
oracle can be implemented [3].  Research has been done on the implementation of Grover 
oracles for AES [11] [12].  The findings show that it can take up to nearly 7,000 qubits to 
implement an oracle for AES, making the oracle by far the most complicated part of the 
algorithm for this application.  For these reasons, quantum computing does not pose a serious 
threat to secret key cryptography. 
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Chapter 4 
 
Attacks on Public Key Cryptography 
 
 
 

4.1 Overview 
 
Public key cryptography is described in [6].  Each user generates a pair of keys; one key is 
made public, while the other is kept private.  Anyone can send a user a confidential message 
by encrypting it with the recipient’s public key, but only the recipient can decrypt the 
message with their private key.  Similarly, a digital signature can be produced by encrypting 
with the private key; anyone can use the public key to decrypt and check the signature.  
Public key cryptography is also used to exchange secret keys for algorithms such as DES and 
AES.  In general, public-key cryptographic algorithms derive their security from the 
difficulty of solving certain problems.  For example, RSA, which we will examine in-depth 
in this chapter, bases its security on the difficulty of factoring large numbers.  Another 
example is the Diffie-Hellman key exchange algorithm, which gets its security from the 
difficulty of computing discrete logarithms.  Because of its difficulty, finding an efficient 
algorithm for factoring numbers is a topic of interest in computer science.  The best classical 
factoring algorithms run in exponential time with respect to the number of bits [4].  But, on a 
quantum computer, Shor’s algorithm can factor a number in polynomial time with respect to 
the number of bits [8]. 
 

4.2 The RSA Algorithm 
 
The RSA algorithm is explained as follows in [6].  A user’s public key is given by {e, N}, 
and their private key is given by {d, N}, where N is the product of two prime numbers p and 
q.  Then, encryption is performed using the public key, by 
 

ܥ =  ܰ	mod	௘ܯ
 
where M is the plaintext message and C is the corresponding ciphertext.  Decryption is 
performed using the private key, by 
 

ܯ = ܰ	mod	ௗܥ =  ܰ	mod	௘ௗܯ
 
For this to work, e and d must be multiplicative inverses modulo ߶(ܰ), where ߶(ܰ) is the 
Euler totient function of N.  This relationship is represented by the following equation: 
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݁݀ ≡ 1	mod	߶(ܰ) 
 
If N=pq, and p and q are prime, then 
 

߶(ܰ) = ݌) − ݍ)(1 − 1) 
 
Once ߶(ܰ) is determined, suitable values for e and d can be chosen. 
 
The only values that are publicly known are e and N.  But, if an attacker can factor N into p 
and q, the private key d can be determined.  Unlike the brute-force attack on secret key 
algorithms, this attack does not require any known plaintext or ciphertext.  The only 
information needed by the attacker is the user’s public key, {e, N}. 
 

4.3 The Quantum Fourier Transform 
 
In Shor’s algorithm, the problem of factoring a number is reduced to the problem of finding 
the period of a function [4], specifically, ܽ௫	mod	ܰ, where N is the number to be factored.  As 
such, the Fourier transform is an important part of the algorithm. 
 
The definition of the discrete Fourier transform (DFT) is as follows [7]: 
 

௞ܻାଵ = ෍ ௝ାଵ݁ିଶగ௜௝௞ݕ ே⁄
ேିଵ

௝ୀ଴
 

 
If we define ௞݂௝ = ݁ିଶగ௜(௝ିଵ)(௞ିଵ) ே⁄ , the above equation becomes 
 

௞ܻ = ෍ ௞݂௝ݕ௝
ே

௝ୀଵ
 

 
The DFT can now be written in matrix form:  ܻ =  To illustrate, we will use the case  .ݕܨ
where N=4 as an example: 
 

൦
ଵܻ
ଶܻ
ଷܻ
ସܻ

൪ = ൦
ଵ݂ଵ ଵ݂ଶ ଵ݂ଷ ଵ݂ସ
ଶ݂ଵ ଶ݂ଶ ଶ݂ଷ ଶ݂ସ
ଷ݂ଵ ଷ݂ଶ ଷ݂ଷ ଷ݂ସ
ସ݂ଵ ସ݂ଶ ସ݂ଷ ସ݂ସ

൪ ൦
ଵݕ
ଶݕ
ଷݕ
ସݕ
൪ = ൦

݁ିଶగ௜(଴)(଴) ସ⁄ ݁ିଶగ௜(ଵ)(଴) ସ⁄ ݁ିଶగ௜(ଶ)(଴) ସ⁄ ݁ିଶగ௜(ଷ)(଴) ସ⁄

݁ିଶగ௜(଴)(ଵ) ସ⁄ ݁ିଶగ௜(ଵ)(ଵ) ସ⁄ ݁ିଶగ௜(ଶ)(ଵ) ସ⁄ ݁ିଶగ௜(ଷ)(ଵ) ସ⁄

݁ିଶగ௜(଴)(ଶ) ସ⁄ ݁ିଶగ௜(ଵ)(ଶ) ସ⁄ ݁ିଶగ௜(ଶ)(ଶ) ସ⁄ ݁ିଶగ௜(ଷ)(ଶ) ସ⁄

݁ିଶగ௜(଴)(ଷ) ସ⁄ ݁ିଶగ௜(ଵ)(ଷ) ସ⁄ ݁ିଶగ௜(ଶ)(ଷ) ସ⁄ ݁ିଶగ௜(ଷ)(ଷ) ସ⁄

൪ ൦
ଵݕ
ଶݕ
ଷݕ
ସݕ
൪ 

 
The inverse transform is defined as follows [7]: 
 

௝ାଵݕ =
1
ܰ෍ ௞ܻାଵ݁ଶగ௜௝௞ ே⁄

ேିଵ

௞ୀ଴
 

 
If we define ݃௝௞ = ଵ

ே ݁
ଶగ௜(௝ିଵ)(௞ିଵ) ே⁄ , this becomes 
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௝ݕ = ෍݃௝௞ ௞ܻ

ே

௞ୀଵ
 

 
In matrix form, this become ݕ = ܨܩ Since G is the inverse transform, it follows that  .ܻܩ =   .ܫ
By factoring 1 ܰ⁄  out of G, and absorbing 1 √ܰ⁄  back into F and G, we can redefine fkj and gjk 

as 
 

௞݂௝ =
1
√ܰ

݁ିଶగ௜(௝ିଵ)(௞ିଵ) ே⁄ ;	݃௝௞ =
1
√ܰ

݁ଶగ௜(௝ିଵ)(௞ିଵ) ே⁄  

 
By doing this, we have made the transform unitary, since it can be seen that ܩ =  ற.  Becauseܨ
the transform is unitary, it can be implemented as a quantum circuit.  The quantum Fourier 
transform (QFT) can be used when N is a power of 2 [4].  In the quantum computing 
literature, the QFT is defined with ݁ଶగ௜௝௞ ே⁄ , even though that is actually the inverse 
transform.  We will follow the convention of the quantum computing literature from this 
point on.  With that in mind, the QFT performs the following transformation on each basis 
state [2]: 
 

|݆ۧ → 1
√ܰ

෍ ݁ଶగ௜௝௞ ே⁄
ேିଵ

௞ୀ଴
|݇ۧ 

 
Aside from the change in convention, this is equivalent to the matrix form we discussed 
earlier. 
 

4.4 Factoring Using Shor’s Algorithm 
 
As we mentioned earlier, Shor’s algorithm reduces the problem of factoring N to finding the 
period of ܽ௫	mod	ܰ.  Table 4.1 lists the values of ܽ௫	mod	ܰ for various a and x when N=33: 
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Table 4.1:  Values of ax mod 33. 

 
The table shows the periodic nature of ܽ௫	mod	ܰ.  For example, if we focus on a=5, we see a 
pattern in 5x mod 33 as x increases:  5, 25, 26, 31, 23, 16, 14, 4, 20, 1, 5, 25, 26, and so forth.  
We can see that 51=5 mod 33 and 511=5 mod 33; the pattern repeats once we reach x=11.  
Therefore, the period of 5x mod 33 is 10.  This is shown in the row labeled “p.”  Similar 
patterns can also be observed for the other values of a.  If a is relatively prime to N, and 
ܽ௫ = ܽ௫ା௣	mod	ܰ, then ܽ௣ = 1	mod	ܰ [3].  If p is even, then 
 

ܽ௣ − 1 = 0	mod	ܰ 
൫ܽ௣ ଶ⁄ + 1൯൫ܽ௣ ଶ⁄ − 1൯ = 0	mod	ܰ 

 
This means ܽ௣ ଶ⁄ + 1 and ܽ௣ ଶ⁄ − 1 have nontrivial factors with N, unless one of them is a 
multiple of N [3].  Finding the greatest common divisor (GCD) of ܽ௣ ଶ⁄ + 1 and N will yield 
one of the factors of N [3].  Since N is the product of two prime numbers, the other factor can 
be obtained at this point.  From the table, we see that ܽ௣ ଶ⁄ + 1 = ܽହ + 1 = 24	mod	33.  Since 
the GCD of 24 and 33 is 3, we now have the factors of N:  3 and 11. 
 
The first step in Shor’s algorithm is to choose a value of a.  If that value is not relatively 
prime to N, it can be used to find a factor of N, and we can stop [4].  Otherwise, we continue.  
Next, a value n is chosen such that ܰଶ ≤ 2௡ < 2ܰଶ.  We will compute ܽ௫	mod	ܰ for 0 ≤ ݔ <
2௡.  The algorithm uses two quantum registers.  The first register is n qubits long, and holds 
values of x.  The second register is ڿlogଶܰۀ qubits long and holds values of ܽ௫	mod	ܰ.  At the 
beginning of the algorithm, all qubits are set to |0ۧ.  Hadamard gates are then applied to the 
first register to put it in a superposition.  The resulting state is [8] 
 

|߰ۧ = ෍ 1
√2௡

0ۧ|ۧݔ|
ଶ೙ିଵ

௫ୀ଴
 

N 33
a

x 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
2 4 9 16 25 3 16 31 15 1 22 12 4 31 27 25 25 27 31 4 12 22 1 15 31 16 3 25 16 9 4 1
3 8 27 31 26 18 13 17 3 10 11 12 19 5 9 4 29 24 28 14 21 22 23 30 16 20 15 7 2 6 25 32
4 16 15 25 31 9 25 4 27 1 22 12 16 4 3 31 31 3 4 16 12 22 1 27 4 25 9 31 25 15 16 1
5 32 12 1 23 21 10 32 12 10 11 12 10 23 12 1 32 21 10 23 21 22 23 21 1 23 12 10 32 21 1 32
6 31 3 4 16 27 4 25 9 1 22 12 31 25 15 16 16 15 25 31 12 22 1 9 25 4 27 16 4 3 31 1
7 29 9 16 14 30 28 2 15 10 11 12 7 20 27 25 8 6 13 26 21 22 23 18 31 5 3 19 17 24 4 32
8 25 27 31 4 15 31 16 3 1 22 12 25 16 9 4 4 9 16 25 12 22 1 3 16 31 15 4 31 27 25 1
9 17 15 25 20 24 19 29 27 10 11 12 28 26 3 31 2 30 7 5 21 22 23 6 4 14 9 13 8 18 16 32

10 1 12 1 1 12 1 1 12 1 22 12 1 1 12 1 1 12 1 1 12 22 1 12 1 1 12 1 1 12 1 1
11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
12 4 9 16 25 3 16 31 15 1 22 12 4 31 27 25 25 27 31 4 12 22 1 15 31 16 3 25 16 9 4 1
13 8 27 31 26 18 13 17 3 10 11 12 19 5 9 4 29 24 28 14 21 22 23 30 16 20 15 7 2 6 25 32
14 16 15 25 31 9 25 4 27 1 22 12 16 4 3 31 31 3 4 16 12 22 1 27 4 25 9 31 25 15 16 1
15 32 12 1 23 21 10 32 12 10 11 12 10 23 12 1 32 21 10 23 21 22 23 21 1 23 12 10 32 21 1 32

p 10 5 5 10 10 10 10 5 2 2 1 10 10 5 10 10 10 10 10 2 1 2 10 5 10 5 10 10 10 10 2
a^(p/2) + 1 mod N 0 24 22 11 0 11 12 11 24 2 0 22 11 24 22 24 22 24 11 0 22 2 0
GCD(N, a^(p/2) + 1 mod N) 33 3 11 11 33 11 3 11 3 1 33 11 11 3 11 3 11 3 11 33 11 1 33
a^(p/2) - 1 mod N 31 22 20 9 31 9 10 9 22 0 31 20 9 22 20 22 20 22 9 31 20 0 31
GCD(N, a^(p/2) - 1 mod N) 1 11 1 3 1 3 1 3 11 33 1 1 3 11 1 11 1 11 3 1 1 33 1
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Next, ܽ௫	mod	ܰ is computed on the above superposition, using a quantum circuit that stores 
the values in the second register.  After this step, the state is as follows [4]: 
 

|߰ۧ = ෍ 1
√2௡

ۧܰ	mod	௫ܽ|ۧݔ|
ଶ೙ିଵ

௫ୀ଴
 

 
For example, if a=5 and N=33, the state is 
 

|߰ۧ = 1
√2௡

(|0ۧ|1ۧ + |1ۧ|5ۧ + |2ۧ|25ۧ + |3ۧ|26ۧ + ⋯|10ۧ|1ۧ + |11ۧ|5ۧ + ⋯) 
 
A quantum Fourier transform is then performed on the first register.  Because this is an 
entangled state, we need to consider both registers.  To illustrate how this works, we will 
look at the simplest case possible, where each register has one qubit.  Such a state can be 
represented as 
 

଴|0ۧ|0ۧߙ + ଴|0ۧ|1ۧߚ + ଵ|1ۧ|0ۧߙ +  ଵ|1ۧ|1ۧߚ
 
The matrix representing a QFT on the first register is 
 

൤ ଵ݂ଵ ଵ݂ଶ
ଶ݂ଵ ଶ݂ଶ

൨ ⊗ ܫ = ൦
ଵ݂ଵ 0 ଵ݂ଶ 0
0 ଵ݂ଵ 0 ଵ݂ଶ
ଶ݂ଵ 0 ଶ݂ଶ 0
0 ଶ݂ଵ 0 ଶ݂ଶ

൪ 

 
Applying the above matrix gives us 
 

൦
ଵ݂ଵ 0 ଵ݂ଶ 0
0 ଵ݂ଵ 0 ଵ݂ଶ
ଶ݂ଵ 0 ଶ݂ଶ 0
0 ଶ݂ଵ 0 ଶ݂ଶ

൪ ൦
଴ߙ
଴ߚ
ଵߙ
ଵߚ
൪ = ൦

ଵ݂ଵߙ଴ + ଵ݂ଶߙଵ
ଵ݂ଵߚ଴ + ଵ݂ଶߚଵ
ଶ݂ଵߙ଴ + ଶ݂ଶߙଵ
ଶ݂ଵߚ଴ + ଶ݂ଶߚଵ

൪ 

 
This shows that we have done two Fourier transforms; one on all states where the second 
register is |0ۧ, and one on all states where the second register is |1ۧ.  Therefore, the QFT 
performs a separate Fourier transform for every group of states that have the same value in 
the second register. 
 
After the QFT, the next step is to measure the state.  Because the results of Fourier transform 
will have spikes where the first register is a multiple of 2௡ ⁄݌ , we are likely to measure a 
value v for the first register that is either a multiple j of 2௡ ⁄݌ , or very close.  If p is a power 
of 2, we are guaranteed to measure ݒ = ݆(2௡ ⁄݌ ) [4]. 
 
Once the measurement is obtained, the remainder of the algorithm can be performed 
classically [8].  If p is a power of 2, and j and p are relatively prime, reducing 2/ݒ௡ to its 
lowest terms will yield a fraction with p in its denominator [4].  Otherwise, the continued 
fraction expansion of 2/ݒ௡ can be used to obtain p [4].  If the period is even, we can find the 
factors of N as described at the beginning of this section. 
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In [4], several cases are pointed out where Shor’s algorithm will not give a factor of N.  
These include the period being odd, the measured value not being close enough to a multiple 
of 2௡ ⁄݌ , the period and the multiplier j having a common factor, which makes us unable to 
determine the period by reducing 2/ݒ௡, and the algorithm returning N itself as a factor of N.  
It is also possible that the measured value will be zero, in which case we cannot obtain the 
period.  Shor [8] explains that repeating the algorithm ܱ(log log  times will have a high (݌
probability of returning a factor of N. 
 

4.5 Demonstration 
 
The MATLAB script shor.m (listed in Appendix C) simulates Shor’s algorithm and plots the 
probabilities of measuring each possible value of the first register.  Figure 4.1 shows the 
output of shor(33,5), where the arguments indicate that N=33 and a=5. 
 

 
Figure 4.1:  Output of shor(33,5). 

 
There are 211=2,048 states in the first register (332=1,089; 1,089 ≤ 2,048 < 2,178).  The 
spikes occur at the values of 205, 410, 614, 819, 1,024, 1,229, 1,434, 1,638, and 1,843.  
Because 205 2,048⁄ ≈ 1 10⁄ , it follows that the period is 10. 
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4.6 Complexity 
 
The circuit that calculates the modular exponents combines repeated squaring with a quantum 
implementation of classical circuits for multiplication [8] (recall that any classical 
computation can be implemented on a quantum computer).  The only input to the circuit is x; 
values involving a and N are precomputed classically and built into the circuit [8].  The 
number of gates in this circuit is O(n3) [8].  The QFT circuit is implemented with a 
combination of Hadamard gates that operate on a single qubit, and the following gate that 
operates on qubits j and k, where ݆ < ݇ [8]: 
 

௝ܵ,௞ = ൦
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ݁௜ఏೖషೕ

൪ , ௞ି௝ߠ	 =
ߨ

2௞ି௝ 

 
This gate is a conditional phase shift.  If bits j and k are both 1, a phase shift of ߨ 2௞ି௝⁄  is 
applied.  Otherwise, the bits are left unchanged.  If ݇ − ݆ = 1, this is identical to an S gate, 
since 	ߠ௞ି௝ = ߨ 2⁄ .  If ݇ − ݆ = 2, this is identical to a T gate, since 	ߠ௞ି௝ = ߨ 4⁄ .  To obtain the 
QFT, the transformations are performed in the following order, followed by a bit reversal 
[8]: 
 

,௡ିଵܪ ܵ௡ିଶ,௡ିଵ,ܪ௡ିଶ, ܵ௡ିଷ,௡ିଶ, ܵ௡ିଷ,௡ିଶ,ܪ௡ିଷ,⋯ ,ଵܪ, ܵ଴,௡ିଵ, ܵ଴,௡ିଶ,⋯ , ܵ଴,ଶ, ܵ଴,ଵ,  ଴ܪ
 
The number of gates in the QFT circuit is ݊(݊ − 1) 2⁄ , which is O(n2) [8].  Therefore, the 
complexity of Shor’s algorithm is polynomial with respect to the number of bits in N.  
However, the best classical algorithm for factoring numbers is exponential with respect to 
the number of bits.  As a result, Shor’s algorithm provides a much more dramatic speedup 
over its classical counterpart than Grover’s algorithm. 
 
The number of qubits needed for the first register is 2ڿ	logଶܰۀ, while the number of qubits 
needed for the second register is ڿlogଶܰۀ.  This means thousands of qubits would be needed to 
factor numbers of the size that are typically used for RSA. 
 
Because of the speedup provided by Shor’s algorithm (from exponential to polynomial), 
increasing the number of bits in N will not provide protection against an attack.  However, it 
may provide some protection if it makes the number of qubits needed for Shor’s algorithm 
larger than what is currently possible with quantum computers.  But this also degrades the 
performance of RSA, which is already slow in comparison to secret key algorithms.  When 
quantum computers scale up to the number of qubits required to run Shor’s algorithm, it will 
pose a serious threat to RSA and other currently used public key algorithms. 
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Chapter 5 
 
Post-Quantum Cryptography 
 
 
 
Because of the growth in the development of quantum computers, there has been research 
devoted to finding cryptographic algorithms that are safe from attacks carried out on 
quantum computers.  This is known as post-quantum cryptography.  It is typically focused on 
public-key cryptography, since, as we have shown, it faces the biggest threat from quantum 
computers.  Much research centers around several classes of cryptographic systems for which 
no attacks using Shor’s algorithm are known to exist.  These include hash-based, code-based, 
lattice-based, and multivariate-quadratic-equations cryptography [13] [15]. 
 
The National Institute of Standards and Technology (NIST), noticing the recent progress in 
the development of quantum computers, has begun the process of standardizing post-quantum 
cryptography [16].  In 2019, this process entered its second round, and, at the time this report 
was written, NIST was in the process of evaluating the algorithms that made it to the second 
round.  This process could take two to three years, as time needs to be taken to analyze the 
candidate algorithms and perform cryptanalysis on them. 
 
One challenge in the area of post-quantum cryptography is that, while Shor’s algorithm is 
well-known, and a good area to focus on, it is not possible to know what kinds of quantum 
algorithms will be developed in the future.  It is always possible that new quantum 
algorithms could break cryptographic algorithms previously believed to be secure. 
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Chapter 6 
 
Future Work 
 
 
 
An area for future study is the implementation of the examples throughout this report on 
Qiskit and/or Q#.  Qiskit [18] is a Python-based library for developing quantum circuits, 
while Q# [17] is Microsoft’s language for developing quantum circuits. 
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Chapter 7 
 
Conclusion 
 
 
Quantum computers have the potential to solve certain problems faster than classical 
computers currently can.  One notable example is an unstructured search, for which Grover’s 
algorithm provides a quadratic speedup.  A much more noticeable example is number 
factoring, which Shor’s algorithm can do in polynomial time, while the best that classical 
algorithms can do is exponential time.  However, a side effect of the speedup provided by 
these algorithms is a compromise to the security of cryptographic systems currently in use.  
If large-scale quantum computers become a reality, Grover’s algorithm could reduce the 
amount of time needed to do a brute-force attack on secret-key algorithms such as AES.  But 
this is easily mitigated by doubling the key length.  Shor’s algorithm is the more serious 
threat by far.  If a quantum computer can execute this algorithm, it can render many public-
key algorithms, such as RSA, insecure.  For this reason, research is currently being done on 
post-quantum cryptography, and NIST is currently in the process of developing standards for 
it.  There is much work that needs to be done in order to develop public-key cryptography 
that is secure against attacks from quantum computers. 
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Appendix A 
 
Listing of grover.m 
 
function x=grover(n,p) 
N=2^n; % The total number of items to search 
assert(N>1); 
assert(N<=1024); 
assert(p>0); 
assert(p<=N); 
% Set up oracle 
Uf=eye(N*2); 
Uf(2*p-1,2*p-1)=0; 
Uf(2*p,2*p)=0; 
Uf(2*p,2*p-1)=1; 
Uf(2*p-1,2*p)=1; 
X=[0 1;1 0]; 
InX=kron(eye(N),X); 
H=1; 
for j=1:log2(N)+1 
    H=kron(H,[1 1;1 -1]/sqrt(2)); 
end 
W=repmat(2/N,N)-eye(N); 
WxI=kron(W,eye(2)); 
% Set up a superposition of all states tensored with (|0> - 
|1>)/sqrt(2) 
y=zeros(N*2,1); 
y(1)=1; 
y=InX*y; 
y=H*y; 
% Calculate optimal number of iterations 
k=(pi/4)*sqrt(N) 
for j=1:k 
    % Apply to oracle to sign flip the desired item 
    y=Uf*y; 
    % Invert all states about the average 
    y=WxI*y; 
end 
% Extract first n qubits (the oracle qubit never changes) 
x=zeros(N,1); 
for j=1:N 
    x(j)=y(2*j-1)*sqrt(2); 
end 
bar(x); 
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Appendix B 
 
Listing of groveropt.m 
 
function x=groveropt(n) 
N=2^n 
s=2*sqrt(N-1)/N; 
c=1-2/N; 
R=[c s;-s c]; 
d=1/sqrt(N); 
u=sqrt((N-1)/N); 
k=(pi/4)*sqrt(N) 
for j=1:ceil(sqrt(N)) 
    du=[d u]'; 
    du=R*du; 
    d=du(1); 
    u=du(2); 
    x(j)=d; 
end 
plot(x); 
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Appendix C 
 
Listing of shor.m 
 
function ym=shor(M,a) 
% This function performs the quantum Fourier transform of Shor's 
algorithm 
%  by simulating the changes that occur in the quantum state as 
the 
%  algorithm is executed 
% ym=shor(M,a) 
% Inputs 
%   M = The number we are factoring 
%   a = Arbitrary number such that 0 < a < M 
% Output 
%   ym = The probabilities of measuring each outcome of the QFT 
m=ceil(log2(M*M)); % M^2 <= 2^m < 2*M^2 
L=ceil(log2(M)); 
em=2^m; 
eL=2^L; 
emL=em*eL; % Total number of quantum states 
% State space ranges from |0,0> to |2^m-1,2^L-1> 
y=zeros(1,emL); 
yt=zeros(1,emL); 
% Create superposition of states |x,a^x mod M> for all x where 0 
<= x < 2^m 
% Since a^0 = 1, the first state in the superposition is |0,1> 
axM = 1; 
y(1+axM)=1/sqrt(em); % |0,1> is 2nd element; |0,0> is 1st 
(MATLAB uses 1-based indices) 
for x=1:em-1 
    axM=mod(axM*a, M); 
    y(1+axM+x*eL)=1/sqrt(em); 
end 
% Perform quantum Fourier transform on the first m qubits 
% The last L qubits are unchanged 
% Therefore, the actual state transition matrix is the tensor 
product 
%  of the QFT matrix and a (2^L)x(2^L) identity matrix 
% Because the full matrix is very large, we use a for loop to do 
the 
%  matrix multiplication instead of building the full matrix 
for u=1:eL 
    yt(u:eL:emL)=fft(y(u:eL:emL))/sqrt(em); 
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end 
% Plot and return the probabilities of measuring each possible 
state of the 
% first m qubits; the peaks are used to determine the period of 
a^x mod M 
ym=zeros(1,em); 
for x=0:em-1 
    ym(1+x)=norm(yt(1+eL*x:eL*(x+1)))^2; 
end 
plot(0:em-1,ym); 
return; 


