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Abstract—The increasing use of encryption blinds traditional 
network-based intrusion detection systems (IDS) from performing 
deep packet inspection.  An alternative data source for detecting 
malicious activity is necessary.  Log files found on servers and 
desktop systems provide an alternative data source containing 
information about activity occurring on the device and over the 
network.  The log files can be sizeable, making the transport, 
storage, and analysis difficult.  Malicious behavior may appear as 
normal events in logs, not triggering an error or another obvious 
indicator, making automated detection challenging.  The research 
described here utilizes a Python-based toolkit approach with 
unsupervised machine learning to reduce log file sizes and detect 
malicious behavior.  
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I. INTRODUCTION 
To reliably detect malicious activity, signature-based IDSs 

perform deep packet inspection on unencrypted network traffic.  
In a 2018 study conducted by Fortinet, Inc., “…encrypted traffic 
now represents over 72% of all network traffic…” [1], an 
increase of 17% from the previous year.  The ability for 
signature-based IDSs to perform effectively decreases with each 
passing year as encryption use increases.  The increasing use of 
encrypted network traffic impacting IDSs highlights the need for 
alternative data sources to perform routine, automated 
cybersecurity monitoring and analysis.  Without the ability to 
monitor activity, cybersecurity analysts cannot perform their 
work, ensuring an organization is secure or detecting 
compromised systems in their environment. 

Server and desktop log files are rich sources of information 
“…consist[ing] of the voluminous intermixing of messages 
from many software components...”[2]  Transporting, 
analyzing, and storing the log files, even for a single system, can 
be challenging due to the large number of log lines some may 
contain.  Logged cybersecurity events can appear as expected, 
non-error/fault entries, making detection challenging, an aspect 
not covered by other research papers.  We propose a plugin-
based Python toolkit[3] to effectively identify log lines 
indicating malicious behavior and reduce the log size down to 
more manageable sizes.  The toolkit successfully chained 
truncated SVD with K-means to identify malicious log entries 
and significantly reduce log files.  Plugins [4] for each workflow 

step allowed multiple variations to exist while improvements 
were made and tested. 

II. DATA SETS 
Two different data sets were used, a publicly available set of 

log files and a private set.  The public data set includes labels 
and allows other researchers to recreate the results presented 
here.  While not releasable to the public, the private data 
confirms the research approach transfers to real-world data. 

A. Public Data Set - Synthetic 
Experiments used the Apache access log files from the AIT 

Log Data Set [5] provided by the Austrian Institute of 
Technology.  The data set included labels, aiding the 
development, testing, and tuning of the approach in applying 
machine learning to log files.  Table I contains the basic statistics 
of the number of log lines in each Apache access log file and the 
total number of log lines labeled as malicious.  A successful 
attack against a web server results in the corresponding log line 
having a status code of 200, or “OK,” indicating the server 
received, processed, and returned results without encountering a 
problem.  A successful application of machine learning must 
correctly detect and classify malicious log entries with a non-
error 200-status code.  

TABLE I.  AIT DATA SET BASIC STATISTICS 

Server 
Log 
Lines 

Malicious 
Lines 

Malicious/200 
Status 

mail.cup.com 148,534 6,789 475 
mail.insect.com 169,340 6,973 665 
mail.onion.com 81,963 6,429 129 
mail.spiral.com 100,445 7,370 1,047 

 

B. Private Data Set – Real-world 
The real-world, private data set contained unlabeled, Apache 

access log files.  The same data transformations and machine 
learning algorithms were used with a slight adjustment to the file 
processing plugin due to a difference in the logging format.  This 
data set verified the approach worked when applied to real-
world log files and not just a synthetic generated set.  
Classification accuracy was based on labels developed for this 
data set, however this data set did not contain 200-status log 
lines indicating successful, malicious behavior.  

 



TABLE II.  PRIVATE DATA SET BASIC STATISTICS 

Server Log Lines Malicious Lines 
Alpha 180,782 18,990 
Beta 72,488 15,671 
Gamma 68,442 18,476 
Delta 438,208 57,505 

 

 
Fig. 1. AIT cups server results 

C. Feature Extraction 
Initial processing of each log line extracted the basic 

features, including client IP, the number of bytes returned from 
the server, referrer, client user-agent, request type, parameters, 
HTTP protocol version, URL, and HTTP status code.  
Conversion of the status code translated it into a decimal value 
depending on the range the code belonged.  For example, status 
codes from 200 to 299 inclusive translated to 0.2.   

The request feature extraction had two variations.  The first 
performed a simple split, breaking each request into the 
requested URL and parameter portion creating two features.  
The second variation extended the first by splitting the URL 
where the forward-slash occurred, generating a variable number 
of features.  A maximum number of eight splits, starting from 
the left side of the URL and proceeding right, were performed. 

An additional experiment built on the URL and parameter 
splitting by splitting the user-agent. Splitting the user-agent 
occurred where any semicolons appeared, after replacing any 
parenthesis with semicolons.  Like spitting the URLs, this 
generated a variable number of features per log line up to a 
maximum of ten. 

III. MACHINE LEARNING 
Before applying the first machine learning algorithm in the 

chain, a new, machine learning ready matrix is created from the 
raw data matrix by hashing and scaling non-numerical values.  
Numerical values migrate into the new matrix without additional 
changes. 

The first machine learning plugin used in the workflow, 
Truncated SVD, reduces the matrix's dimensionality to two 
dimensions.  K-means, the second machine learning plugin, 
performs clustering, identifies the two centroids and performs 
classification using the reduced matrix. 

The resulting output is a zero or a one, where one indicates 
the corresponding log line is malicious and retained for further  

Fig. 2. Alpha Server Results 

analysis.  Lines corresponding to a zero should be removed, 
resulting in a log file size reduction. 

IV. RESULTS 
Experiments used several variants of the file processing 

plugin for extracting features from the log files.  Fig. 1 depicts a 
plot containing two K-means centroids centered within the two 
blue (non-malicious) clusters.  Red plot points indicate labeled 
malicious data.  The experiment splitting the URL and user-
agent correctly identified 98.56% of the labeled malicious log 
entries, including 80.63% of malicious log entries with 200 
status codes.  Including false positives incorrectly identified as 
potentially malicious, log file reduction is 41.44%.  

Fig. 2 depicts a similar experiment using real-world data 
from the alpha server.  The file processor plugin splitting the 
URL into features results in 100% correct classification of the 
labeled malicious log lines, and an 88.95% reduction in log file 
size with false positives included.  Without successful attacks 
included in the real-world log data, it is impossible to determine 
how well the approach correctly identifies malicious log entries 
with a non-error 200-status code. 

Additional experiments monitored resource utilization to 
determine the feasibility of the approach for implementation as 
a real-world application.  The real-world server named delta had 
the most extensive log file with 438,208 lines.  The URL 
splitting approach used a maximum of 771MB of memory and 
approximately 50 seconds to process.  These results indicate the 
method can be transferred from the laboratory environment to 
real-world application without undue resource requirements. 
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