
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Machine Learning Toolkit for System Log File
Reduction and Detection of Malicious Behavior

Ralph P. Ritchey
Department of Electrical and Computer Engineering

Villanova University
Villanova, PA, USA

rritche1@villanova.edu

Dr. Richard Perry
Department of Electrical and Computer Engineering

Villanova University
Villanova, PA, USA

richard.perry@villanova.edu

Abstract—The increasing use of encryption blinds traditional
network-based intrusion detection systems (IDS) from performing
deep packet inspection. An alternative data source for detecting
malicious activity is necessary. Log files found on servers and
desktop systems provide an alternative data source containing
information about activity occurring on the device and over the
network. The log files can be sizeable, making the transport,
storage, and analysis difficult. Malicious behavior may appear as
normal events in logs, not triggering an error or another obvious
indicator, making automated detection challenging. The research
described here utilizes a Python-based toolkit approach with
unsupervised machine learning to reduce log file sizes and detect
malicious behavior.

Keywords—singular value decomposition, SVD, k-means,
cybersecurity, log files, reduction, malicious behavior

I. INTRODUCTION
To reliably detect malicious activity, signature-based IDSs

perform deep packet inspection on unencrypted network traffic.
In a 2018 study conducted by Fortinet, Inc., “…encrypted traffic
now represents over 72% of all network traffic…” [1], an
increase of 17% from the previous year. The ability for
signature-based IDSs to perform effectively decreases with each
passing year as encryption use increases. The increasing use of
encrypted network traffic impacting IDSs highlights the need for
alternative data sources to perform routine, automated
cybersecurity monitoring and analysis. Without the ability to
monitor activity, cybersecurity analysts cannot perform their
work, ensuring an organization is secure or detecting
compromised systems in their environment.

Server and desktop log files are rich sources of information
“…consist[ing] of the voluminous intermixing of messages
from many software components...”[2] Transporting,
analyzing, and storing the log files, even for a single system, can
be challenging due to the large number of log lines some may
contain. Logged cybersecurity events can appear as expected,
non-error/fault entries, making detection challenging, an aspect
not covered by other research papers. We propose a plugin-
based Python toolkit[3] to effectively identify log lines
indicating malicious behavior and reduce the log size down to
more manageable sizes. The toolkit successfully chained
truncated SVD with K-means to identify malicious log entries
and significantly reduce log files. Plugins [4] for each workflow

step allowed multiple variations to exist while improvements
were made and tested.

II. DATA SETS
Two different data sets were used, a publicly available set of

log files and a private set. The public data set includes labels
and allows other researchers to recreate the results presented
here. While not releasable to the public, the private data
confirms the research approach transfers to real-world data.

A. Public Data Set - Synthetic
Experiments used the Apache access log files from the AIT

Log Data Set [5] provided by the Austrian Institute of
Technology. The data set included labels, aiding the
development, testing, and tuning of the approach in applying
machine learning to log files. Table I contains the basic statistics
of the number of log lines in each Apache access log file and the
total number of log lines labeled as malicious. A successful
attack against a web server results in the corresponding log line
having a status code of 200, or “OK,” indicating the server
received, processed, and returned results without encountering a
problem. A successful application of machine learning must
correctly detect and classify malicious log entries with a non-
error 200-status code.

TABLE I. AIT DATA SET BASIC STATISTICS

Server
Log
Lines

Malicious
Lines

Malicious/200
Status

mail.cup.com 148,534 6,789 475
mail.insect.com 169,340 6,973 665
mail.onion.com 81,963 6,429 129
mail.spiral.com 100,445 7,370 1,047

B. Private Data Set – Real-world
The real-world, private data set contained unlabeled, Apache

access log files. The same data transformations and machine
learning algorithms were used with a slight adjustment to the file
processing plugin due to a difference in the logging format. This
data set verified the approach worked when applied to real-
world log files and not just a synthetic generated set.
Classification accuracy was based on labels developed for this
data set, however this data set did not contain 200-status log
lines indicating successful, malicious behavior.

TABLE II. PRIVATE DATA SET BASIC STATISTICS

Server Log Lines Malicious Lines
Alpha 180,782 18,990
Beta 72,488 15,671
Gamma 68,442 18,476
Delta 438,208 57,505

Fig. 1. AIT cups server results

C. Feature Extraction
Initial processing of each log line extracted the basic

features, including client IP, the number of bytes returned from
the server, referrer, client user-agent, request type, parameters,
HTTP protocol version, URL, and HTTP status code.
Conversion of the status code translated it into a decimal value
depending on the range the code belonged. For example, status
codes from 200 to 299 inclusive translated to 0.2.

The request feature extraction had two variations. The first
performed a simple split, breaking each request into the
requested URL and parameter portion creating two features.
The second variation extended the first by splitting the URL
where the forward-slash occurred, generating a variable number
of features. A maximum number of eight splits, starting from
the left side of the URL and proceeding right, were performed.

An additional experiment built on the URL and parameter
splitting by splitting the user-agent. Splitting the user-agent
occurred where any semicolons appeared, after replacing any
parenthesis with semicolons. Like spitting the URLs, this
generated a variable number of features per log line up to a
maximum of ten.

III. MACHINE LEARNING
Before applying the first machine learning algorithm in the

chain, a new, machine learning ready matrix is created from the
raw data matrix by hashing and scaling non-numerical values.
Numerical values migrate into the new matrix without additional
changes.

The first machine learning plugin used in the workflow,
Truncated SVD, reduces the matrix's dimensionality to two
dimensions. K-means, the second machine learning plugin,
performs clustering, identifies the two centroids and performs
classification using the reduced matrix.

The resulting output is a zero or a one, where one indicates
the corresponding log line is malicious and retained for further

Fig. 2. Alpha Server Results

analysis. Lines corresponding to a zero should be removed,
resulting in a log file size reduction.

IV. RESULTS
Experiments used several variants of the file processing

plugin for extracting features from the log files. Fig. 1 depicts a
plot containing two K-means centroids centered within the two
blue (non-malicious) clusters. Red plot points indicate labeled
malicious data. The experiment splitting the URL and user-
agent correctly identified 98.56% of the labeled malicious log
entries, including 80.63% of malicious log entries with 200
status codes. Including false positives incorrectly identified as
potentially malicious, log file reduction is 41.44%.

Fig. 2 depicts a similar experiment using real-world data
from the alpha server. The file processor plugin splitting the
URL into features results in 100% correct classification of the
labeled malicious log lines, and an 88.95% reduction in log file
size with false positives included. Without successful attacks
included in the real-world log data, it is impossible to determine
how well the approach correctly identifies malicious log entries
with a non-error 200-status code.

Additional experiments monitored resource utilization to
determine the feasibility of the approach for implementation as
a real-world application. The real-world server named delta had
the most extensive log file with 438,208 lines. The URL
splitting approach used a maximum of 771MB of memory and
approximately 50 seconds to process. These results indicate the
method can be transferred from the laboratory environment to
real-world application without undue resource requirements.
[1] Fortinet, Inc., “As the holiday season draws near, mobile malware attacks

are prevalent,” 14 November 2018. [Online]. Available:
https://www.fortinet.com/blog/industry-trends/as-the-holiday-season-
draws-near--mobile-malware-attacks-are-pre. [Accessed 26 June 2020].

[2] W.Xu, L. Huang, A.Fox, D.Patterson and M. I. Jordan, “Detecting large-
scale system problems by mining console logs,” in Proceedings of the
ACM SIGOPS 22nd Symposium on Operating System Principles, Big Sky,
MT 2009.

[3] R. P. Ritchey and R. Perrry, “MLTK-Log-Reduction-Detection”, 17
February 2021. [Online]. Available: https://github.com/pritchey/MLTK-
Log-Reduction-Detection. [Accessed 17 February 2021]

[4] R. P. Ritchey and T. W. Parker, “Simple plugin methodology in python,”
U.S. Army Research Laboratory, Adelphi, MD 2014.

[5] L. Max, S. Florian, W.Markus, H. Wolfgang and R. Andreas, “AIT Log
Data Set v1.0 | Zenodo,” 21 March 2020. [Online]. Available:
https://zenodo.org/record/3723083#.Xv4HVy2z3UK. [Accessed 2 July
2020]

https://www.fortinet.com/blog/industry-trends/as-the-holiday-season-draws-near--mobile-malware-attacks-are-pre
https://www.fortinet.com/blog/industry-trends/as-the-holiday-season-draws-near--mobile-malware-attacks-are-pre
https://github.com/pritchey/MLTK-Log-Reduction-Detection
https://github.com/pritchey/MLTK-Log-Reduction-Detection
https://zenodo.org/record/3723083#.Xv4HVy2z3UK

