Machine Learning Toolkit for System Log File Reduction and Detection of Malicious Behavior

RALPH P. RITCHEY DR. RICHARD PERRY

Outline

▶ Background

- Research Overview
- Research Goals
- Data Sources
- ► Toolkit Design

Background

Cybersecurity historically relied heavily on network-based detection.

- Signature-based detection uses deep packet inspection to examine payload content.
- Network traffic is increasingly using more encryption as time passes.
- Encryption blinds signature-based detection.

Research Overview

Alternative data sources are needed to offset the decrease in signature-based network detection.

- System logs generated on devices record a wide range of information from activity taking place on the device.
- These logs can be voluminous in size depending on the purpose of the device or the activity logged.
- Apply a machine learning based approach using truncated singular value decomposition chained with k-means.

Research Goals

Reduce log files for cybersecurity purposes:

- ▶ Remove routine entries
- ▶ Retain indicators of malicious activity
- ► Why reduce the size?
 - ► Transport off device
 - Centralize the reduced data for cybersecurity use

Limit resource utilization to ensure real-world applicability

Data Sources

Synthetically generated

- ▶ Publicly available
- Australian Institute of Technology (AIT)

- Labels provided
- Real-world
 - ► Not publicly available
 - Originated from publicly accessible servers
 - ► No labels

Data Sources – Synthetic Data (AIT)

HTTPD Log file format:

<srcip> - - [dd/mon/yyyy:hh:mm:ss] "<request>" <statuscode> <bytes> "<referrer>" "<useragent>"

Basic log file statistics:

		Malicious	Malicious/200				Unique Sro
Server	Log Lines	Lines	Status	% Malicious	File Size	Server	IPs
mail.cup.com	148,534	6,789	475	5%	36MB	mail.cup	.com
mail.insect.com	169,340	6,973	665	4%	43MB	mail.insed	ct.com
mail.onion.com	81,963	6,429	129	8%	22MB	mail.onio	n.com
mail.spiral.com	100,445	7,370	1,047	7%	24MB	mail.spirc	al.com

Data Sources – Real-World

HTTPD Log file format:

<srcip> - - [dd/mon/yyyy:hh:mm:ss] "<request>" <statuscode> <bytes>

Basic file statistics:

		Malicious		
Server	Log Lines	Lines	% Malicious	File Size
Alpha	180,782	18,990	11%	18MB
Beta	72,488	15,671	22%	15MB
Gamma	68,442	18,476	27%	13MB
Delta	438,208	57,505	13%	36MB

	Unique Src
Server	IPs
Alpha	3,817
Beta	5,725
Gamma	6,494
Delta	36,647

Data Sources – Extracted Features

- ► Source IP (client)
- ► Bytes Sent
- HTTP Status Code
- ► Referrer*
- Command
- Request (URL + Parameters)
- ► Useragent*

Toolkit Design

Results – Synthetic Data Experiment

URL and User-agent Splitting

Server	Detection Methodology	TP	FP	TN	FN	# 200 Status
	Kmeans + Cosine					
mail.cup.com	Similarity	6,691	80,296	61,449	98	0
mail.cup.com	Kmeans	6,691	80,296	61,449	98	383

	Detection	Possible File
Server	Methodology	Reduction %
	Kmeans + Cosine	
mail.cup.com	Similarity	41.44%
mail.cup.com	Kmeans	41.44%

Results – Synthetic Data Experiment

Results – Real-World Data Experiment

URL Splitting

Server	Detection Methodology	TP	FP	TN	FN
	Kmeans + Cosine				
alpha	Similarity	18,990	8,346	153,446	0
	Kmeans	18,990	978	160,814	0

	Detection	Possible File	
Server	Methodology	Reduction %	
	Kmeans + Cosine		
alpha	Similarity		84.88%
	Kmeans		88.95%

Results – Real-World Data Experiment

1
Centroid 0

Results – Resource Utilization (Time)

	File			Cosine	
Execution Run	Processing	tsvd	K-Means	Similarity	Total
1	49.504	1.359	0.796	0.718	52.377
2	47.169	1.227	0.782	0.690	49.869
3	8 46.418	1.238	0.785	0.684	49.125
Average Time:	47.697	1.275	0.788	0.697	50.457
				8685 Lin	es Per Second

	File			Cosine	
Execution Run	Processing	TSVD	K-Means	Similarity	Total
1	49.125	0.742	0.989	0.656	51.511
2	49.370	0.733	0.993	0.682	51.778
3	49.164	0.803	0.996	0.730	51.693
Average Time:	49.219	0.759	0.993	0.689	51.661

8482 Lines Per Second

Results – Resource Utilization (Memory)

Execution Run	Raw Data	DataFrame	Reduced DataFrame	
1	173	598	53	8
2	173	598	53	8
3	173	598	53	8
Average Memory:	173	598	53	8

Execution Run	Raw Data	DataFrame	Reduced DataFrame	
1	200	380		320
2	200	380		320
3	200	380		320
Average Memory:	200	380		320

Values are in MB

▶ The approach achieved:

Conclusions

High accuracy identifying log lines triggered by malicious activity

► Significant log file size reduction

Limited resource utilization during application of the approach

Quick execution even on older, modest desktop hardware

The approach transfers to real-world application