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Abstract 
 
 
 
Cybersecurity relies heavily on data for the detection of malicious behavior.  
Historically, intrusion detection systems (IDS) utilized sensors placed strategically 
within a network to monitor and capture network traffic.  Various tools then process 
the network traffic in real-time or batch mode, generating alerts security analysts 
review.  This methodology worked effectively until the use of encryption became 
prevalent for network traffic.  Encrypted network traffic prevents signature-based IDS 
tools from inspecting packet payload contents to detect signatures indicating 
malicious activity or intent.  As an alternative data source, system logs, and web 
server logs capture the indicators at the system level required by cybersecurity tools 
and analysts to detect possible malicious behavior.  Research into log file size 
reduction while retaining and indicating log entries containing malicious activity is 
necessary to prevent overwhelming cybersecurity systems, tools, and analysts with too 
much data.  
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Chapter 1 
Introduction 
   
Network-based intrusion detection historically formed the backbone for protecting an 
organization’s infrastructure.  Strategically placed IDS sensors, as shown in Figure 
1.1, monitored all network traffic flowing between the organization and the rest of the 
world.  IDS sensor software, such as Snort [1], examined each network packet, 
including performing deep packet inspection into the payload of each network packet.  
Examining the payload allowed the IDS software to detect malicious activity and 
output an alert for an analyst to review.  This sensing capability heavily relied on 
network traffic being unencrypted.  The lack of packet encryption was native to the 
Internet, which was “…never intended to be secure or open for commercial use.” [2] 
 

 
Figure 1.1:  IDS Sensor Network Placement. 

 
A study performed by Fortinet, Inc. in 2018 claims, “…encrypted traffic now 
represents over 72% of all network traffic…”. [3]  The study also indicates this 
represents an increase in encrypted traffic by 17% from the previous year.  As 
encryption usage continues to increase, an IDS sensor’s ability to perform deep packet 
inspection decreases, thereby reducing their effectiveness each year. Sensors are 
unable to inspect encrypted packet payloads unless the sensor has the necessary 
information to complete the decryption or dynamically break the encryption (“break 
and inspect”).  Dynamically breaking encryption is difficult and computationally 
expensive, making this an impractical option, especially for high bandwidth 
environments.  Cybersecurity must now look at alternative data sources to fulfill 
security monitoring. 
 
Alternative data sources are logs generated by an organization’s servers, desktops, and 
other computer-based devices.  System logs “…consist of the voluminous intermixing 
of messages from many software components…” [4] executing on a device.  These log 
files provide insight into the normal execution of software on the device.  Anomalies 
in log entries, while used by systems administrators as indicators of a hardware or 
software fault, may also indicate defects triggered by malicious activity.  For 
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example, Najafabadi et al. [5] used web server logs to train a machine learning 
algorithm to detect distributed denial of service (DDoS) attacks. 
 
The research project described in this paper proposes using log files, coupled with a 
machine learning algorithm, to reduce log file sizes and identify malicious log entries.  
The remainder of this paper contains sections covering a literature search and the 
planned approach for performing the research. 
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Chapter 2 
 

Literature Review  
 
Najafabadi et al. [5] used Principle Component Analysis (PCA) to detect DDoS 
attacks against a web server.  The researchers split logged HTTP requests contained in 
log files based upon non-overlapping time windows and then sub-grouped the HTTP 
requests based on client IP addresses.  The URLs accessed by the client during the 
time window processed populated the feature vector for that client record.  Only URLs 
accessed by a minimum of 5 clients formed the feature vector.  While successfully 
detecting DDoS attacks in web server log files, there are many other types of attacks 
requiring detection by cybersecurity analysts.  Additionally, there is a wide range of 
log files from systems available as potential data sources beyond web server HTTP 
logs. 
 
Xu’s paper [4] focused on detecting anomalies in server system logs using PCA.  In 
their use case, an anomaly is a change in behavior of a system indicated by log entries 
not conforming to prior learned behavior by a machine learning algorithm.  Although 
the researchers do not apply their technique to detecting reportable cybersecurity 
events, anomaly detection can be a useful approach for identifying potentially 
malicious activity.  To create feature vectors, the researchers statically analyzed the 
source code generating log entries, creating templates used to parse log files.  The 
researchers acknowledged static analysis of source code is critical to the “…accuracy 
of our approach…”  While feasible in small environments, access to source code 
generating log files across all devices deployed in an organization is highly unlikely.  
Additionally, new software or updates to software may break templates created from 
prior static analysis, requiring continual static analysis at a rate not sustainable in 
some environments.  In a follow-up paper, their source code static analysis revealed 
“…20,000 different possible message types…” [6], forcing them to “…heuristically 
choose the message variables that are likely to indicate problems.”  Cybersecurity 
requires accurate detection, using a technique “likely” determining problems will 
result in too many false positives and overwhelm analysts in large organizations. 
 
Juvonen et al. [7] applied random projection, PCA, and diffusion maps to HTTP log 
files for cybersecurity anomaly detection.  The URL requests contained in log entries 
were broken into 2-grams to form the feature vector, which, in the worst-case 
scenario, can result in a vector of 2562 dimensions.  However, in a “…real-world 
situation, the actual number is much lower.”  Their results, using a small initial data 
set, show diffusion mapping, although taking longer to execute, identifying more 
attacks than PCA and random projection.  After performing a similar experiment using 
more extensive data, the researchers only discussed performance speed.  The 
researchers concluded diffusion maps and random projection work best as part of an 
ensemble configuration for anomaly detection. 
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A paper by Lee et al. [8] applied two PCA variations for anomaly detection using the 
KDD Cup 1999 data set.  Although detailed data set transformation specifics did not 
appear in the paper, the authors claim 94-99.87% accuracy identifying four types of 
malicious activity.  Execution time, critical for application in the real world, was 
approximately 34 seconds for osPCA and around 3 seconds for Online osPCA using 
76,813 samples. 
 
Although not using system log files, Abdulhammed et al. [9] applied PCA to the 
CICIDS2017 intrusion detection data set as part of an ensemble method to detect and 
classify malicious network traffic.  After transforming the data, PCA reduced the 
number of features from 81 down to 10.  The reduced feature set then fed into several 
machine learning classifier algorithms (random forest, Bayesian network, linear 
discriminant analysis, and quadratic discriminant analysis) to perform detection and 
classification. 
 
Ritchey et al. [10] applied PCA to features extracted from a production Apache HTTP 
log file.  PCA reduced the feature set permitting generation of a 3d graph, as shown in 
Figure 2.1, indicating possible outliers.  The authors encountered difficulties 
attempting to map graph points back to specific log lines.  This challenge caused the 
authors to switch to a Naïve Bayes based approach where they mapped results back to 
particular log lines.  The Naïve Bayes algorithm trained using the same features used 
for PCA and generated a model.  The trained model was then used to identify unusual 
log lines in the same log file falling below a probability threshold.  Although useful 
for Apache HTTP logs, the approach was not as practical for outlier detection for 
Linux syslog files due to their highly repetitive nature. 
 

 
Figure 2.1 [10]:  PCA Identification of Outliers (Anomalies).  



5 
 

Chapter 3 
 
Proposed Research Approach 
 
Based on the literature search results, there are alternative approaches available for 
exploring the application of PCA to log files that may be more suitable for 
cybersecurity purposes.  This section provides the overarching goal of the proposed 
research, the proposed approach for performing the research, possible data sources, 
and the experimental procedure. 
 
3.1 Research Goals 
 
A research project should expand the body of knowledge and contribute to the 
scientific understanding of the research topic.  Research provides additional value 
when results are directly applicable to real-world implementation.  The goals listed 
below add to the scientific knowledge gained and increase the real-world applicability 
of the research project: 
 

• Deployable without significant manual tuning and maintenance:  A tool requiring 
substantial amounts of time to install, manually tune, and manually maintain is costly 
for an organization.  Organizations are more likely to install and utilize solutions 
providing reliable detection results without requiring constant manual labor.  The 
detection technique should self-tune as much as possible, requiring a minimum of 
manual intervention. 

 
• Scalable to support large enterprises and large log file sizes: Organizations range 

from small network environments with a few servers and desktops to enterprises with 
hundreds or thousands of systems deployed globally.  A tool resulting from the 
research should work effectively for small and large organizations. 

 
• Reasonable resource (CPU, memory, time, and disk I/O) utilization:  Systems capable 

of generating logs used by organizations vary from small, battery-powered portable 
devices to large, multi-CPU based servers and clusters installed in data centers.  A 
tool applying the research results should impact each device’s available resources as 
little as possible.  Systems administrators and users will delete or disable tools 
utilizing a significant amount of resources that affect the usability of a device.   

 
• Ability to reduce log file sizes while retaining lines with potential malicious behavior:  

System usage may result in log files becoming vast, complicating the ability to store 
or transport.  A tool developed based on the research should facilitate reducing a log 
file's size while still retaining log lines indicating malicious behavior. 
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3.2 Data Sources 
 
A challenge for cybersecurity-based research is the availability of suitable, publicly accessible 
data sets.  For example, researchers heavily use the KDD Cup 99 [11] dataset for network-based 
intrusion detection research. While publicly available and used in published papers, criticism 
varies from the data set being based on “…previous datasets, which had additional identified 
flaws…” [12] to the age of the dataset as it “…is not representative of the types, scale or 
complexity of modern network traffic.” [12]  Looking more broadly at sharing cybersecurity-
related data in general, privacy concerns come to the forefront as “…sharing could expose 
customer and employee personal data to increased privacy risk.” [13] 
 
A search using various tools such as Google revealed many possible data sets.  The following are 
potential data sources for use during the research project: 
 

• Apache HTTP logs from a publicly accessible website the researcher maintains for an iOS iPhone 
application.  Approximately five years of log files are available, with over 420,000 unlabeled 
lines.  There are no privacy concerns as the website is informational only and does not contain 
any privacy-related data. 

• The Cyber Research Center from the West Point Military Academy provides the CDX 2009 data 
set. [14]  This data set contains 6,100 web server log lines collected over 24 hours.  The data set 
is unlabeled; however, the majority of the traffic is malicious because collection occurred during 
an exercise. 

• The Austrian Institute of Technology (AIT) provides the 5.61GB AIT Log Data Set V1.0 [15] 
spanning six days.  The data is a synthetically generated set of log files, providing logs from mail 
servers, Apache, syslogs, and others from a Linux based environment.  Over half a million 
labeled Apache log lines are provided, along with just under half a million labeled syslog lines. 

• The President & Fellows of Harvard College’s Dataverse provides Farzin’s 3.3GB Nginx web 
server log [16] containing over 10 million unlabeled log lines for an online shopping store.  The 
authors do not provide information on how the data was generated. 

• The HTTP Dataset CSIC 2010 [17] provides 55MB of log files containing 1.3 million labeled 
lines.  The data was synthetically generated, mimicking an e-commerce web application, and 
includes normal and malicious access attempts. 

• LOGPAI Loghub [18] provides a wide range of systems logs.  The site offers operating systems 
logs from Windows, Linux, and macOS, as well as Apache, Hadoop, and others.  The log data 
“…are production data released from previous studies, while some others are collected form real 
systems in our lab environment.” 

 
3.3 Coding Approach 
 
Coding for the research project will use the Python [19] scripting language.  Python, 
an interpreted scripting-based programming language, facilitates making fast code 
changes without the need to recompile after each code change.  Although compiled 
languages such as C/C++ perform better under certain situations at runtime, the ability 
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to quickly adjust code is more important for the research-based use case.  (For real-
world implementation, parts of the Python code may be optimized using Cython [20], 
which statically compiles Python code into C/C++ compiled objects (libraries).) Using 
Python allows the focus to remain on experiments and results without the potential 
time required for lengthy code compilation. 
 
Python provides access to numerous libraries extending the base capabilities a default 
Python installation natively provides.  Machine learning and data manipulation 
libraries such as scikit-learn [21], Numpy [22], and pandas [23] provide pre-coded 
access to machine learning algorithms and highly efficient data manipulation and 
management capabilities.  The use of libraries such as these will allow additional time 
spent performing research to focus on feature extraction, feature engineering, machine 
learning tuning, and analysis of the results of code changes by significantly shortening 
the code development cycle. 
 
A lightweight plugin approach will be used for the data processing and feature 
generation code.  Having this code broken out into plugins permits numerous 
variations to exist and be quickly created to test new ideas.  Additionally, this aids in 
maintaining a historical plugin code set, allowing scripted, re-execution against new 
data sets.  Additional plugin types may be added if other code sections from the main 
script benefit from being implemented as plugins. 
 

 
Figure 3.1:  General Script Design 

 
3.4 Hardware 
 
The available systems for research experiment execution include: 
 
System 1: 

• Mac Pro (Late 2013) 
• 3.5GHz 6-Core Intel Xeon E5 
• 16GB 1866 MHz DDR3 memory 
• MacOS 10.15.5 (Catalina) 
• 4TB SSD 

 
System 2: 

• Home Built Server 
• 3.7GHz 6-Core Intel Core i7 8700 
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• 32GB 2666MHz DDR4 memory 
• Ubuntu 20.04 (Focal Fossa) 
• 1TB SSD 
• 11GB GDDR5 Nvidia GeForce RTX 2080 Ti 

 
System 3: 

• MacBook Pro (Late 2016) 
• 2.9GHz Quad-Core Intel Core i7 
• 16GB 2133MHz DDR3 memory 
• MacOS 10.15.5 (Catalina) 
• 2TB SSD 

 
System 4: 

• 12 node Villanova University College of Engineering High Performance Computing 
Cluster 

• 128GB memory (per node) 
• 20 2.4GHz cores (per node) 

 
For portability reasons, initial coding and testing will use System 3 (laptop).  Final 
experiment execution will use System 1 (Mac Pro) unless a machine learning 
algorithm benefits from the availability of a GPU, at which point experiment 
execution will use System 2 (Home Built Server).  If the need arises for more memory 
or will benefit from parallelized processing, the Villanova University College of 
Engineering High Performance Computing Cluster (System 4) will be used. 
 
3.5 Experimental Procedure 
 
Careful planning and execution of experiments include the incorporation of the 
following guidelines: 
 

• Reboot the system used for experiment execution just before executing the 
experiment.  Rebooting ensures all experiment executions begin with the system in 
the same state. 

• Capture and store all script experimentation output (logs, etc.) for future re-analysis 
and verification.  In addition to providing necessary data for the paper, this permits 
careful reviews to ensure no mistakes were made during experiment execution. 

• Ensure no extraneous processes or applications are running on the system before 
executing experiments.  Irrelevant processes or applications may impact memory, 
CPU, and disk utilization as they compete for resources. This may introduce 
misleading differences in resource utilization and execution performance, which 
affects the analysis of results. 

• Each experiment will be executed three times, gathering the same statistics and 
information generated from each run for inclusion in charts, graphs, and any 
calculations provided in the resulting research paper. 
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Experiments will focus on using PCA as the selected machine learning algorithm and 
variations on feature extraction from the data set.  One of the listed goals of the 
research is log file reduction and identification of potentially malicious behavior.  
This equates to anomaly detection, for which others have utilized PCA across a wide 
variety of data in other research projects.  As an unsupervised machine learning 
algorithm, this satisfies another goal where the implementation of the research is 
deployable with a minimum level of effort into pre-existing environments.  Based on 
the literature search results, the proposed research has not been exhausted by prior 
research. 
 
3.6 Machine Learning 
 
The research project will use PCA as the selected machine learning algorithm.  PCA is 
an unsupervised machine learning algorithm, making it an ideal candidate for the 
research project and potential real-world deployment.  Unsupervised machine learning 
algorithms do not require labeled data.  Data in the real-world is unlabeled and 
requires a significant investment in resources (people and time) for an organization to 
process, review, and generate labels for training.  Experiments, on the other hand, 
may use both labeled and unlabeled data sets depending on the experiment and data 
set(s) meeting the experiment requirements.  Labeled data allows verification of 
experiment results against expected results, whereas unlabeled data provides insights 
into how well PCA identifies potentially malicious log entries under a more realistic 
scenario. 
 
PCA transforms a given data set by reducing the data set’s dimensionality (number of 
features).  The premise is if features in a data set are highly correlated, it “…implies 
that the ‘true’ dimension of the dataset is less…” [24], therefore, removal of those 
highly correlated features (dimensionality reduction) will still “…convey virtually all 
of the information in the original…” [24] data set.  For example, Figure 3.2 [25] 
shows the graph of a 2-dimensional data set on the left.  By moving the axes as shown 
on the right, the “…potential for dimensionality reduction is in the fact that the y 
dimension does not now demonstrate much variability, and so it might be possible to 
ignore it…”. [25]  The reorientation of the axes in this example permits the reduction 
of the dimensionality of the feature set from 2-dimensions to 1-dimension.  
Elimination of dimensions reduces noise in the data, which “…can make the results 
better…”. [25] 
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Figure 3.2 [25]: Visual Example of PCA 

 
The first step in performing PCA calculates the mean-deviation form.  For a matrix X 
with m samples and n features (axes), calculate the mean for each axis by summing all 
the sample values and dividing by the number of samples: 
 

𝑀𝑀𝑗𝑗 =
1
𝑚𝑚
�𝑋𝑋1𝑗𝑗 + ⋯+ 𝑋𝑋𝑚𝑚𝑗𝑗� 

 
Create a new m x n matrix B with the normalized values: 
 

𝐵𝐵𝑖𝑖𝑗𝑗 =  𝑋𝑋𝑖𝑖𝑗𝑗 − 𝑀𝑀𝑗𝑗 
 
The next step calculates the singular-value decomposition (SVD) of B resulting in the 
m x n column-orthonormal matrix U, the n x n column-orthonormal matrix V, and the 
n x n diagonal matrix S containing the singular values of B (assuming m > n). 
 

𝐵𝐵 = 𝑈𝑈 𝑆𝑆 𝑉𝑉𝑇𝑇 
 
The columns of V are eigenvectors of the covariance matrix BTB and the 
corresponding eigenvalues are the squares of the singular values. 
 
After computing the singular-value decomposition, the t smallest singular-values can 
be ignored, and the remaining r = n – t columns of U and V form the reduced 
dimensional model. 
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