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Abstract 
 
 
 
Cybersecurity relies heavily on data for the detection of malicious behavior.  
Historically, intrusion detection systems (IDS) utilized sensors placed strategically 
within a network to monitor and capture network traffic.  Various tools then process 
the network traffic in real-time or batch mode, generating alerts which security 
analysts review.  This methodology worked effectively until the use of encryption 
became prevalent for network traffic.  Encrypted network traffic prevents signature-
based IDS tools from inspecting packet payload contents to detect signatures 
indicating malicious activity or intent.  As an alternative data source, system logs and 
web server logs capture the indicators at the system level required by cybersecurity 
tools and analysts to detect possible malicious behavior.  The research presented here 
examines the viability of performing log file size reduction while retaining and 
indicating log entries containing malicious activity using truncated singular value 
decomposition (TSVD) and k-means clustering.  
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Chapter 1 
Introduction 
 
Network-based intrusion detection historically formed the backbone for protecting an 
organization’s infrastructure.  Strategically placed IDS sensors, as shown in Figure 
1.1, monitored all network traffic flowing between the organization and the rest of the 
world.  IDS sensor software, such as Snort [1], examined each network packet, 
including performing deep packet inspection into each network packet's payload.  
Examining the payload allowed the IDS software to detect malicious activity and 
output an alert for an analyst to review.  This sensing capability heavily relied on 
network traffic being unencrypted.  The lack of packet encryption was native to the 
Internet, which was “…never intended to be secure or open for commercial use.” [2] 
 

 
Figure 1.1:  IDS Sensor Network Placement. 

 
A study performed by Fortinet, Inc. in 2018 claims, “…encrypted traffic now 
represents over 72% of all network traffic…”. [3]  The study also indicates this 
represents an increase in encrypted traffic by 17% from the previous year.  As 
encryption usage continues to increase, an IDS sensor’s ability to perform deep packet 
inspection decreases, thereby reducing its effectiveness each year. Sensors cannot 
inspect encrypted packet payloads unless the sensor has the necessary information to 
complete the decryption or dynamically break the encryption (“break and inspect”).  
Dynamically breaking encryption is complex and computationally expensive, making 
this an impractical option, especially for high bandwidth environments.  Cybersecurity 
must now look at alternative data sources to fulfill security monitoring. 
 
Alternative data sources are logs generated by an organization’s servers, desktops, and 
other computer-based devices.  System logs “…consist of the voluminous intermixing 
of messages from many software components…” [4] executing on a device.  These log 
files provide insight into the normal execution of software on the device.  While used 
by systems administrators as indicators of a hardware or software fault, anomalies in 
log entries may also indicate defects triggered by malicious activity.  For example, 
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Najafabadi et al. [5] used web server logs to train a machine learning algorithm to 
detect distributed denial of service (DDoS) attacks. 
 
The research undertaken here and presented at the IEEE INFOCOM 2021 poster 
session [6] uses log files, coupled with chaining multiple machine learning 
algorithms, to reduce log file sizes and identify potentially malicious log entries.  The 
following sections discuss the background of the problem, the programming approach 
used, a description of the data sets, and the experiments performed. 
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Chapter 2 
Literature Review  
 
Najafabadi et al. [5] used Principle Component Analysis (PCA) to detect DDoS 
attacks against a web server.  The researchers split logged HTTP requests contained in 
log files based upon non-overlapping time windows and then sub-grouped the HTTP 
requests based on client IP addresses.  The URLs accessed by the client during the 
time window processed populated the feature vector for that client record.  Only URLs 
accessed by a minimum of 5 clients formed the feature vector.  While successfully 
detecting DDoS attacks in web server log files, there are many other types of attacks 
requiring detection by cybersecurity analysts.  Additionally, there is a wide range of 
log files from systems available as potential data sources beyond web server HTTP 
logs. 
 
Xu’s paper [4] focused on detecting anomalies in server system logs using PCA.  In 
their use case, an anomaly is a change in behavior of a system indicated by log entries 
not conforming to prior learned behavior by a machine learning algorithm.  Although 
the researchers do not apply their technique to detecting reportable cybersecurity 
events, anomaly detection can be a valuable approach for identifying potentially 
malicious activity.  To create feature vectors, the researchers statically analyzed the 
source code generating log entries, creating templates used to parse log files.  The 
researchers acknowledged static analysis of source code is critical to the “…accuracy 
of our approach…”  While feasible in small environments, access to source code 
generating log files across all devices deployed in an organization is highly unlikely.  
Additionally, new software or updates to software may break templates created from 
prior static analysis, requiring continual static analysis at a rate not sustainable in 
some environments.  In a follow-up paper, their source code static analysis revealed 
“…20,000 different possible message types…” [7], forcing them to “…heuristically 
choose the message variables that are likely to indicate problems.”  Cybersecurity 
requires accurate detection, using a technique “likely” determining problems will 
result in too many false positives and overwhelm analysts in large organizations. 
 
Juvonen et al. [8] applied random projection, PCA, and diffusion maps to HTTP log 
files for cybersecurity anomaly detection.  The authors broke URL requests contained 
in log entries into 2-grams to form the feature vector, which, in the worst-case 
scenario, can result in a vector of 2562 dimensions.  However, in a “…real-world 
situation, the actual number is much lower.”  Their results, using a small initial data 
set, show diffusion mapping, although taking longer to execute, identifying more 
attacks than PCA and random projection.  After performing a similar experiment using 
more extensive data, the researchers only discussed performance speed.  The 
researchers concluded diffusion maps and random projection work best as part of an 
ensemble configuration for anomaly detection. 
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A paper by Lee et al. [9] applied two PCA variations for anomaly detection using the 
KDD Cup 1999 data set.  Although detailed data set transformation specifics did not 
appear in the paper, the authors claim 94-99.87% accuracy in identifying four 
malicious activity types.  Execution time, critical for application in the real world, 
was approximately 34 seconds for osPCA and around 3 seconds for Online osPCA 
using 76,813 samples. 
 
Although not using system log files, Abdulhammed et al. [10] applied PCA to the 
CICIDS2017 intrusion detection data set as part of an ensemble method to detect and 
classify malicious network traffic.  After transforming the data, PCA reduced the 
number of features from 81 down to 10.  The reduced feature set then fed into several 
machine learning classifier algorithms (random forest, Bayesian network, linear 
discriminant analysis, and quadratic discriminant analysis) to perform detection and 
classification. 
 
Ritchey et al. [11] applied PCA to features extracted from a production Apache HTTP 
log file.  PCA reduced the feature set permitting generation of a 3d graph, as shown in 
Figure 2.1, indicating possible outliers.  The authors encountered difficulties 
attempting to map graph points back to specific log lines.  This challenge caused the 
authors to switch to a Naïve Bayes based approach where they mapped results back to 
particular log lines.  The Naïve Bayes algorithm trained using the same features used 
for PCA and generated a model.  The trained model was then used to identify unusual 
log lines in the same log file falling below a probability threshold.  Although useful 
for Apache HTTP logs, the approach was not as practical for outlier detection for 
Linux syslog files due to their highly repetitive nature. 
 

 
Figure 2.1 [11]:  PCA Identification of Outliers (Anomalies).  
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Chapter 3 
Research Overview 
 
Based on the literature search results, there are alternative approaches available for 
exploring the application of PCA to log files that may be more suitable for 
cybersecurity purposes.  Additionally, most published research focuses on identifying 
errors, faults, or variances, indicating a failure is imminent.  Cybersecurity presents a 
unique challenge as the malicious activity may generate log entries appearing to be 
perfectly normal, routine entries.  An approach used for cybersecurity purposes must 
identify malicious activity logged as regular log entries.  This section provides the 
overarching goals of the proposed research, the coding approach, the hardware used, 
and the general experimental procedures. 
 
3.1 Research Goals 
 
A research project should expand the body of knowledge and contribute to the 
scientific understanding of the research topic.  Research provides additional value 
when results are directly applicable to real-world implementation.  The goals listed 
below add to the scientific knowledge gained and increase the real-world applicability 
of the research project: 
 

• Deployable without significant manual tuning and maintenance:  A tool requiring 
substantial amounts of time to install, manually tune, and manually maintain increases 
costs for an organization.  Organizations are more likely to install and utilize 
solutions providing reliable detection results not requiring constant, manual labor.  
The detection technique should self-tune as much as possible, requiring a minimum of 
manual intervention. 

 
• Scalable to support large enterprises and large log file sizes:  Organizations range 

from small network environments with a few servers and desktops to enterprises with 
hundreds or thousands of systems deployed globally.  A tool resulting from the 
research should work effectively for small and large organizations. 

 
• Reasonable resource (CPU, memory, time, and disk I/O) utilization:  Systems capable 

of generating logs used by organizations vary from small, battery-powered portable 
devices to large, multi-CPU based servers and clusters installed in data centers.  A 
tool applying the approach presented in this paper should impact each device’s 
available resources as little as possible.  Systems administrators and users will 
immediately delete or disable tools utilizing a significant amount of resources 
affecting a device's usability.   

 
• Ability to reduce log file sizes while retaining lines with potential malicious behavior:  

System usage may result in log files becoming vast, complicating storage and 
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transport.  A tool developed based on the research should facilitate reducing a log 
file's size while still retaining log lines indicating malicious behavior. 

 
3.2 Coding Approach 
 
Coding for the research project used the Python [12] scripting language.  Python, an 
interpreted, scripting-based programming language, facilitated fast code changes 
without the need to recompile after every minor code change.  Although compiled 
languages such as C/C++ perform better for specific use cases, the ability to quickly 
adjust code was more important for quickly performing new experiments and testing 
minor code adjustments.  Using Python allowed the focus to remain on the 
experiments and results without spending valuable time on potentially lengthy and 
complicated code compilation.  Experiment execution times indicate the code is 
deployable into production environments with acceptable runtimes using the existing 
Python code. 
 
Python provided access to numerous libraries extending the language’s natively 
provided capabilities.  Libraries such as scikit-learn [13], numpy [14], and pandas 
[15] provided access to well-tested, performant, and publicly reviewed 
implementations of common machine learning algorithms and highly efficient data 
manipulation and management capabilities.  These libraries allowed the research to 
focus on feature extraction, feature engineering, machine learning tuning, and analysis 
of the results of code changes. 
 
The framework (Figure 3.1) developed while performing the research used a 
lightweight plugin approach [16] for the data extraction/transformation, machine 
learning, graphing (output), and anomaly identification/reduction workflow steps.  
The plugin architecture allowed numerous variations of the same plugin to exist and 
quick creation of new ones to test new ideas or slight permutations. 
 

 
 

Figure 3.1:  General Script Design 
 
The framework's main script (Appendix E) provides command-line options, allowing 
the user to dynamically specify which plugin to use for each step in the workflow 
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from the available pool of plugins.  General help information displays with the “-h” 
option, which includes a list of plugins for each workflow step. 
 
3.3 Hardware and Software 
 
The hardware used for the execution of the experiments consisted of an Apple desktop 
Mac Pro with the following configuration: 
 

• Mac Pro (Late 2013) 
• 3.5GHz 6-Core Intel Xeon E5 
• 16GB 1866 MHz DDR3 memory 
• MacOS 11.1 (Big Sur) 
• 4TB SSD 

 
Coding and testing also used an Apple MacBook Pro for portability reasons, with final 
experimental results generated using the desktop Mac Pro.  Both systems used the 
Homebrew [17] package manager to access Python's latest version (3.9.x).   
 
A small collection of libraries not natively included with Python provided the 
necessary functionality to efficiently perform data transformation, machine learning, 
and graphing.  The Python package management system pip provided access to these 
libraries.  The libraries used for the research project included:   
 

• scikit-learn 
• pandas 
• numpy 
• pympler 
• apachelogs 
• plotly 
• pyhash 

3.4 Experimental Procedure 
 
Careful planning and execution of experiments included the incorporation of the 
following guidelines: 
 

• Reboot the system used for experiment execution just before executing the 
experiment.  Rebooting ensures all experiment executions begin with the system in 
the same state. 

• Capture and store all script experimentation output (logs, etc.) for re-analysis and 
verification.  In addition to providing necessary data for the paper, this permitted a 
careful review of execution to ensure no mistakes were made during each experiment. 

• Ensure no extraneous processes or applications were running on the system before 
executing experiments.  Irrelevant processes or applications impact memory, CPU, 
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and disk utilization as they competed for resources. This would introduce misleading 
differences in resource utilization and execution performance, affecting the final 
analysis of results. 

• Each experiment was executed three times, gathering the same statistics and 
information generated from each run for inclusion in charts, graphs, and any 
calculations provided in this paper. 

 
Using different feature sets, experiments used truncated SVD (Appendix G) as the 
first machine learning algorithm in the chain followed by k-means.  Truncated SVD 
performed reduced dimensionality of the data down to two-dimensions.  The 
dimensionality reduction results then fed into k-means for anomaly identification/file 
reduction.  Another experiment using the same features and machine learning chain 
used cosine similarity to perform anomaly identification/file reduction for comparison 
to k-means built-in use of Euclidean distance.   
 
This approach for anomaly identification/file reduction satisfies several of the 
extended research goals for real-world implementation.  The method proposed uses 
unsupervised machine learning algorithms.  These algorithms eliminate the initial and 
periodic training required to generate deployable models, which may take 
considerable time and effort to create and deploy.  The final results, using k-means or 
cosine similarity, provides the information necessary to determine which log lines to 
retain or filter out, satisfying the primary research goal.  
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Chapter 4 
Machine Learning 
 
The application of machine learning proposed here uses a PCA variant (truncated 
SVD) as the selected machine learning algorithm.  PCA is an unsupervised machine 
learning algorithm, making it an ideal candidate and suitable for potential real-world 
deployment.  Unsupervised machine learning algorithms do not require labeled data.  
Data in the real-world is unlabeled and requires a significant investment in resources 
(people and time) for an organization to process, review, and generate labels for 
training.  Experiments, on the other hand, may use both labeled and unlabeled data 
sets depending on the experiment and data set(s) meeting the experiment 
requirements.  Labeled data allows verification of experiment results against expected 
results, whereas unlabeled data provides insights into how well SVD identifies 
potentially malicious log entries under a more realistic scenario. 
 
PCA transforms a given data set by reducing the data set’s dimensionality (number of 
features).  The premise is if features in a data set are highly correlated, it “…implies 
that the ‘true’ dimension of the dataset is less…” [18], therefore, removal of those 
highly correlated features (dimensionality reduction) will still “…convey virtually all 
of the information in the original…” [18] data set.  For example, Figure 4.1 [19] 
shows the graph of a 2-dimensional data set on the left.  By rotating the axes as shown 
on the right, the “…potential for dimensionality reduction is in the fact that the y 
dimension does not now demonstrate much variability, and so it might be possible to 
ignore it…”. [19]  The reorientation of the axes in this example permits the reduction 
of the dimensionality of the feature set from 2-dimensions to 1-dimension.  
Elimination of dimensions reduces noise in the data, which “…can make the results 
better…”. [19] 
 

 
Figure 4.1 [19]: Visual Example of PCA 
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The first step in performing PCA calculates the mean-deviation form.  For a matrix X 
with m samples and n features (axes), calculate the mean for each axis by summing all 
the sample values and dividing by the number of samples: 
 

𝑀! =
1
𝑚%𝑋"! +⋯+ 𝑋#!) 

 
Create a new m x n matrix B with the normalized values: 
 

𝐵$! =	𝑋$! −𝑀! 
 
The next step calculates the singular-value decomposition (SVD) of B, resulting in the 
m x n column-orthonormal matrix U, the n x n column-orthonormal matrix V, and the 
n x n diagonal matrix S containing the singular values of B (assuming m > n). 
 

𝐵 = 𝑈	𝑆	𝑉% 
 
The columns of V are eigenvectors of the covariance matrix BT B and the 
corresponding eigenvalues are the squares of the singular values. 
 
After computing the singular-value decomposition, the t smallest singular-values can 
be ignored, and the remaining r = n – t columns of U and V form the reduced 
dimensional model. 
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Chapter 5 
Data Sources 
 
A challenge for cybersecurity-based research is the availability of suitable, publicly accessible 
data sets.  For example, researchers heavily use the KDD Cup 99 [20] dataset for network-based 
intrusion detection research. While publicly available and used in published papers, criticism 
varies from the data set being derived from “…previous datasets, which had additional identified 
flaws…” [21] to the age of the dataset as it “…is not representative of the types, scale or 
complexity of modern network traffic.” [21]  Looking more broadly at sharing cybersecurity-
related data in general, privacy concerns come to the forefront as “…sharing could expose 
customer and employee personal data to increased privacy risk.” [22]  Synthetically generated 
data sets facilitate sharing and publishing, however, they present similar challenges, such as not 
realistically representing real-world environments or current attacks. 
 
To account for these challenges and limitations, the research used two types of log data for 
experiments.  The first data set is a publicly accessible, laboratory synthesized log set.  This data 
set permits other researchers to recreate and validate the results contained in this paper.  The 
synthesized data set includes labels, facilitating validation of the approach regarding accurately 
identifying malicious versus non-malicious log entries.  The second data set originates from real-
world, publicly accessible servers.  Use of real-world data in the experiments aided in validating 
that the approach effectively transitions to real-world application. 
 
5.1 AIT Synthetic Data Set 
 
The Austrian Institute of Technology (AIT) provided the publicly accessible, 5.61GB, AIT Log 
Data Set V1.0 [23] spanning six days.  The data, synthetically generated in a lab environment, 
provides logs from mail server daemons, Apache webserver daemons, system syslogs, and other 
types of logs from a Linux-based environment.  The data set includes over half a million labeled 
Apache log lines, along with just under half a million labeled syslog lines.  The experiments 
presented in this research project focused on Apache web server logs due to availability. 
 
Using the mail.cup.com directory as an example, the Apache access log file contained 
148,534 lines, with labels identifying specific malicious entries in a separate file.   The label file 
identified 6,789 log lines as indicators of malicious activity.  The remaining servers used in the 
laboratory environment each have identical directory structures containing their respective raw 
log and label data.  Table 5.1 provides basic statistics for each server’s Apache log files.  Similar 
to logs encountered in the real-world, the data set is highly imbalanced.  
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Server Log Lines 
Malicious 
Lines 

% 
Malicious File Size 

mail.cup.com 148,534 6,789 5% 36MB 
mail.insect.com 169,340 6,973 4% 43MB 
mail.onion.com 81,963 6,429 8% 22MB 
mail.spiral.com 100,445 7,370 7% 24MB 

Table 5.1:  AIT Apache Server Basic Log File Statistics. 
 
The AIT Apache log file used the Combined Log Format, which includes the referrer and user 
agent fields.  Figure 5.1 shows the format of the log file, broken into individual components.  
These components formed the initial, basic features extracted from the log file and transformed 
into data suitable for machine learning algorithm use. 
 
<srcip> - - [dd/mon/yyyy:hh:mm:ss] “<request>” <statuscode> <bytes> “<referrer>” “<useragent>” 

Figure 5.1:  AIT Apache log file format. 
 
A concern with synthetic data sets regards how closely the synthetic data compares to real-world 
data.  Table 5.2 shows the cardinality of unique source IP addresses extracted from the synthetic 
log files as a feature.  Compared to the cardinality of source IP addresses (Table 5.3) extracted 
from the private data sets, the synthetic data set contains significantly fewer unique source IP 
addresses.  This difference validates using a synthetic data set that permits the publishing of full 
details and a private, real-world data set where publishing cannot include full details but 
experiments validate that the approach transfers to real-world data. 
 

Server Unique Src IPs 
mail.cup.com 4 
mail.insect.com 3 
mail.onion.com 3 
mail.spiral.com 4 
Table 5.2:  AIT Unique Source IPs. 

 
Server Unique Src IPs 
alpha 3,817 
beta 5,725 
gamma 6,494 
delta 36,647 

Table 5.3:  Private Data Sets Unique Source IPs. 
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5.2 Real-World Private Data Sets 
 
Real-world Apache log files from several publicly accessible websites were provided 
for experimental use.  To protect the owners' identity and the websites, each data set 
is generically described and referenced using Greek alphabet letters as the server 
names.  The real-world log files used the Common Log Format and Combined Log 
Format depending on the server.  The Common Log Format (Figure 5.2), very similar 
to the format used by the AIT synthetic data logs, does not include the referrer or user 
agent fields.  Although the log data contained two fewer features, experimental results 
did not indicate this impacted identification of malicious log entries. 
 

<srcip> - - [dd/mon/yyyy:hh:mm:ss] “<request>” <statuscode> <bytes> 

Figure 5.2:  Real-world Apache log file format. 
 
Table 5.4 shows similar imbalanced data consistency seen in the synthetic log files.  Although 
the log files contain more lines, they are smaller in file size because they do not include the 
referrer and user agent fields. 
 

Server Log Lines Malicious Lines % Malicious File Size 
alpha 180,782 18,990 11% 18MB 
beta 72,488 15,671 22% 15MB 
gamma 68,442 18,476 27% 13MB 
delta 438,208 57,505 13% 36MB 

Table 5.4:  Real-world Apache Server Basic Log File Statistics. 
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Chapter 6 
Experiments 
 
The Python framework used for coding experiments allowed the execution of many experiments 
as new ideas, different approaches to feature extraction, and implementation of other code 
changes naturally occurred as part of the research process.  This chapter describes several of the 
experiments performed using the synthetic and private, real-world data sets.  Additionally, 
additional experiments captured the Python code's resource utilization to support the extended 
research goal of ensuring the approach transfers to real-world application. 
 
6.1 Feature Extraction and Machine Learning Chain 
 
This section describes the feature extraction, transformation, and application of the chained 
machine learning algorithms used for the experiments.  The machine learning chain is also 
described, as the same chain was used throughout all experiments. 
 
6.1.1 Feature Extraction 
 
All file processing plugins process log files using the same general steps (Figure 6.1).  The input 
file is read line by line, extracting individual features from the raw log file components.  These 
components are immediately added to the raw data dataframe.  At the completion of feature 
extraction from a log line, any necessary transformation occurs, adding a new line to the 
transformed dataframe.  After log file processing, processing of an optional label data file occurs 
if specified by the user on the command line, resulting in a third dataframe, the label dataframe. 

 
Figure 6.1:  Input File Processing. 

 
The apachelogs Python library provided a convenient parsing capability for Apache logs in 
both the common and combined formats.  The library provided direct access to most of the 
desired log components, however, a few (command, URL, parameters, and version) were 
extracted from the request_line data structure provided during line parsing.  The complete 
list of basic features from each log line included remote host, bytes returned by the server, status, 
command, URL, parameters, version, and user agent. 
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The category feature derives from the HTTP status code, immediately transformed during log 
parsing into the final value used for machine learning (Figure 6.2).  HTTP status codes form 
groups based on the meaning of the code – success, redirection, client errors, and server errors.  
These groups map to specific values from 0.1 to 0.5. 
 

 
Figure 6.2:  HTTP Status Code Transformation. 

 
During parsing of the log file additional, unused features are extracted, such as the timestamp.  
These features are removed when creating a new data frame used exclusively for machine 
learning.  By using discrete data frames, the raw data extracted from the log file and the machine 
learning ready dataframe are savable to disk as CSV files when using the -s command-line 
option.  This allows the user to verify log file parsing correctly extracts raw data from the log 
file, and properly transforms the data for machine learning.  
 
Transformation of the raw data occurs immediately after log file processing (Figure 6.3).  A 
Fowler-Noll-Vo hash algorithm implemented in the pyhash library (fnv1_64) generates a 64-
bit hash value for all string values.  Scaling occurs when generating the hash value by dividing 
the hash by 226, adjusting values to fall between zero and one. 
 

 

 
Figure 6.3:  Hash Transformation. 

 
6.1.2 Machine Learning Chain 
 
The machine learning chain (Figure 6.4) uses two algorithms, with an optional third step 
supplying an alternative calculation performing classification.  Using the transformed data 
dataframe generated during file processing, the first step applies truncated SVD reducing 
dimensionality down to two dimensions.  Once dimensionality reduction completes, k-means 
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performs classification by identifying two centroids based upon clustering of the data.  Data 
points closer to centroid zero are non-malicious, and data points closer to centroid one are 
considered malicious or interesting enough for retention during log reduction. 
 

 
Figure 6.4:  Machine Learning Processing. 

 
If the user specifies the command line option triggering the optional third step, the second step 
using k-means instead outputs the cluster centroids and does not perform classification.  A 
secondary experiment used cosine similarity as an alternative detection methodology to the 
default Euclidean distance used in the sklearn library’s implementation of k-means.  (While 
performing research, a plugin for the optional third step using Euclidean distance for 
classification matched the classification results when using k-means.  These results are not 
included here.) 
 
6.2 Synthetic Data Experiments 
 
AIT provided labels with the synthetic data set.  Accurately labeled data allowed comparison 
between experimental results and known ground truth.  Table 6.1 contains the basic label 
information statistics used to compare experiment results against when determining the accuracy 
of identifying potentially malicious log entries and potential log reduction.  The true-positive 
(TP) and true-negative (TN) columns contain the total number of log lines labeled as malicious 
and benign, respectively. 
 
Apache access log entries include a status code indicating the success or failure of the client’s 
request.  In addition to indicating a legitimate, routine error processing a client’s request, an error 
code may indicate a failed attack or probe against the server.   These types of log entries 
indicating malicious attacks are easy to extract using non-machine learning algorithms because 
of the error status code.  Of particular interest are the 200 status codes indicating success – a 
client-initiated a request, the server processed and returned results.  A successful attack against 
the server may not always trigger an error code but instead trigger a success code.  The synthetic 
data set includes maliciously labeled 200 status code log entries.  Successfully identifying these 
types of log entries would indicate the approach is not entirely relying on the status code and 
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able to identify successful malicious attacks not triggering an error status code.  Table 6.1 
includes how many of the labeled malicious log lines are of this type.   
 

AIT Data Set TP TN # Log Lines Malicious/200 Status 
mail.cup.com 6,789 141,745 148,534 475 
mail.insect.com 6,973 162,367 169,340 665 
mail.onion.com 6,429 75,534 81,963 129 
mail.spiral.com 7,370 93,075 100,445 1,047 

Table 6.1:  Synthetic Data Labeled Data Statistics. 
 
6.2.1 Experiment #1: URL Splitting 
 
The first experiment involved splitting the URL component into additional features.  During the 
processing of each log line, the URL split into a new feature at each occurrence of the forward-
slash (“/”) character.  A maximum number of splits limited the additional feature generation to 
eight splits, with the last feature containing any remainder of the unsplit URL.  The machine 
learning chain first applied truncated SVD to the transformed data, reducing the dimensionality 
of the transformed dataframe to two dimensions.  K-means, the next algorithm in the chain, then 
identified to which cluster centroid (named “0” or “1”) each log line belongs.  An extension of 
the basic machine learning chain incorporated a third set performing anomaly identification.  An 
anomaly identification plugin used the centroids calculated by the k-means plugin to calculate 
the cosine similarity between the centroids and each log line.  The cosine similarity value 
determined which cluster the log line belongs.  For all detection methodologies, assignment to 
centroid “1” indicated the line logged potentially malicious or anomalous behavior.  Assignment 
to centroid “0” indicated the logged line was not malicious or anomalous.  Log file reduction 
occurs by removing log lines belonging to centroid “0”. 
 
Table 6.2 and Table 6.3 contain results captured for experiment #1 using the mail.cup.com 
server using both detection methodology variants.  The experiment results show 48% maximum 
accuracy correctly predicting true positives using the k-means based detection method.  Out of 
the true positives, the experiment correctly identified 74% of the log lines with a “success” status 
code, indicating the approach does not rely on error-based status codes alone to identify 
malicious log lines.  The ability to identify success status code log lines as malicious is critical to 
identifying successful attacks that do not trigger an error status code.  Using cosine similarity 
with the k-means centroids resulted in 33% of the true positives correctly identified and 50% of 
the successful status code malicious log lines being identified. 
 

Server Detection Methodology TP FP TN FN 
# 200 
Status 

mail.cup.com Kmeans + Cosine Similarity 2,267 78,452 63,293 4,522 237 
mail.cup.com Kmeans 3,227 81,609 60,136 3,562 353 

Table 6.2:  Classification Performance. 
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Using the better performing k-means detection methodology results in a retention of 42.88% of 
the original log file (Table 6.3).  Although the experiment showed significant file reduction, the 
true positive rate coupled with the large number of false positives indicates this plugin 
combination is not sufficiently performant for cybersecurity use. 
 

Server Detection Methodology 
Possible File 
Reduction % 

mail.cup.com Kmeans + Cosine Similarity 45.66% 
mail.cup.com Kmeans 42.88% 

Table 6.3:  File Reduction Performance. 
 
Conducting the same experiment across the remaining servers included in the AIT data set 
showed similar results.  (Refer to Appendix A for experiment results collected for all servers in 
the AIT data set.)  In some cases, such as the mail.onion.com server, results were 
significantly poorer.  File reduction for this server equated to removing only 0.04% of the log 
lines from the file using k-means as the detection methodology.  Coupling k-means with cosine 
similarity for detection resulted in a retention of approximately 66% of the file, however, the true 
positive rate was 1%. 
 
Two-dimensionally graphing the detection results (Figure 6.5) shows a lack of distinct clusters 
and clear separation between non-malicious and malicious log lines.  Although this experiment's 
results improved upon a previous experiment where the URL was not split, the results and graph 
clearly indicate improvements are required before the approach could be utilized in a real-world 
application.  Based on the increased performance seen when incorporating URL splitting, 
another feature extracted from the log file was chosen for splitting in a follow-up experiment 
described in the next section. 
 

 
Figure 6.5:  URL splitting, K-Means Detection. 
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6.2.2 Experiment #2: URL and User-Agent Splitting 
 
The second experiment built on the first, performing the same feature extraction as the first 
experiment but adding user agent splitting (Appendix F) to create additional features.  Before 
splitting the user agent, semicolons (“;”) replaced all occurrences of open and close parenthesis 
(“(“, “)”) characters.  Splitting then occurs on all semicolons in the user agent string for a 
maximum of 10 splits.  If the user agent contains more than ten semicolons, the remaining 
portion of the user agent string forms the last new feature. 
 
Table 6.4 contains the performance results after incorporating user agent splitting using the 
mail.cup.com server data.  True positive identification increased to 99%, with a slight 
increase in false positives.  False negatives decreased significantly down to 98 from 3,562 as 
previously seen using URL splitting only.    Identification of malicious log lines triggering a 
success status code increased slightly from 353 to 383 (81%).  The results were identical using 
either detection methodology.  A slight improvement in file reduction occurred, resulting in only 
41.44% retention of the original log file (Table 6.5). 
 

Server Detection Methodology TP FP TN FN 
# 200 
Status 

mail.cup.com Kmeans + Cosine Similarity 6,691 80,296 61,449 98 383 
mail.cup.com Kmeans 6,691 80,296 61,449 98 383 

Table 6.4:  Classification Performance Incorporating User-Agent Splitting. 
 

Server Detection Methodology 
Possible File 
Reduction % 

mail.cup.com Kmeans + Cosine Similarity 41.44% 
mail.cup.com Kmeans 41.44% 
Table 6.5:  File Reduction Incorporating User-Agent Splitting. 

 
Splitting the user agent and the URL improved separation between non-malicious and malicious 
log entries, creating more distinct clusters (Figure 6.6).  These improvements contributed to the 
improved performance in true positive identification.  Similar improvements were seen with the 
remaining servers' log files in the synthetic data set (Appendix A and Appendix B). 
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Figure 6.6:  URL and User-Agent Splitting, K-Means Detection 

 
6.3 Private Data Experiments 
 
The next research phase applied the detection methodologies used with the synthetic data 
experiments to the real-world data.  Recreating the experiments using real-world data determines 
if the approach can potentially transfer to real-world application if similar or better performance 
occurs.  The real-world data does not include the user agent field, which required slight 
alterations to the synthetic log data experiments.  The first experiment does not perform any 
splitting of the components extracted from the log files as features.  The second experiment 
incorporates URL splitting, matching synthetic data experiment one. 
 
Table 6.6 contains basic statistics for the Apache log files for each of the servers in the real-
world data set.  The data set did not include labels; therefore, an automated labeling approach 
was developed to verify results.  Based on the servers' use case, log lines containing HTTP status 
codes of greater than and equal to 400 but less than 600 and not equal to 401 were considered to 
contain potential indicators of malicious attack.  A second log analysis phase used a manual 
review of the logs to identify malicious log entries not identified using the automated labeling 
script.  Careful, manual examination of the log files did not reveal successful attacks with HTTP 
success status codes as the servers are well maintained and updated.  Therefore, with this real-
world data set, the approach's performance in correctly identifying successful attacks resulting in 
success status codes cannot be determined. 
  



21 
 

Server TP TN # Log Lines 
alpha 18,990 161792 180,782 
beta 15,671 56817 72,488 
gamma 18,861 49581 68,442 
delta 57,505 380703 438,208 
Table 6.6:  Real-world Basic Log Statistics. 

 
Execution of experiments with the real-world data showed an additional check needed in the 
cosine similarity detection plugin.  Results using the synthetic data always resulted in centroid 
one identifying the cluster containing malicious log lines.  Using the real-world data, cluster one 
did not always correlate to the malicious cluster.  An additional check during anomaly detection 
determined which cluster contained the most error status code log lines.  If centroid one does not 
have the greater number, the check reverses the classifications (Figure 6.7).  In real-world 
environments, log lines are heavily imbalanced – malicious attacks occur far less frequently than 
routine, non-malicious client requests. 
 

 
Figure 6.7:  Cosine similarity classification results check. 

 
6.3.1 Experiment #1: No Splitting 
 
The first experiment using the real-word data did not perform splitting on any extracted 
components from the log file to create additional features.  Processing each log line simply 
extracted the essential components from the file, transformed them as needed, and performed 
detection of log entries indicating malicious behavior.    Table 6.7 contains the performance 
results using k-means alone or k-means combined with cosine similarity for detection.  Using k-
means combined with cosine similarity resulted in a true positive identification rate of 99.99%, 
with only one false negative.  Although the false positive rate increased significantly, for 
cybersecurity purposes, it is offset by the significant and vital reduction in false negatives. 
 

Server Detection Methodology TP FP TN FN 
alpha Kmeans + Cosine Similarity 18,989 7,938 153,854 1 

 Kmeans 17,543 1,705 160,087 1,447 
Table 6.7:  Classification Performance Without Splitting. 

 
As shown in Table 6.8, file reduction using either detection methodology is significant.  
Although a slight decrease of approximately 4% occurs using cosine similarity with k-means 
(due to increased false positives), a file reduction rate of 85% is still significant. 
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Server Detection Methodology Possible File Reduction % 
alpha Kmeans + Cosine Similarity 85.11% 

 Kmeans 89.35% 
Table 6.8:  File Reduction Without Splitting. 

 
Graphing the two-dimensional data results (Figure 6.8) shows a good separation between non-
malicious (blue) and malicious (red) log lines.  Although generally acceptable performance was 
obtained, real-world application requires as a low false-positivity rate as possible.  Decreased 
false positivity rates lead to improved log file reduction and less work later for other tools or 
cybersecurity analysts reviewing the results. 
 

 
Figure 6.8:  No Splitting, K-Means Detection. 

 
6.3.2 Experiment #2: URL Splitting 
 
The next experiment split the URL extracted from the real-world log data.  Like experiment #1 
using synthetic data, the URL split into a new feature at each occurrence of the forward-slash 
(“/”) character.  A maximum number of splits limited the additional feature generation to eight 
splits, with the last feature containing the remainder of the unsplit URL.  Table 6.9 shows the 
performance is similar to experiment #1, however a significant reduction in false positives and 
false negatives using k-means only as the detection methodology indicates significantly better 
performance for cybersecurity application. 
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Server Detection Methodology TP FP TN FN 
alpha Kmeans + Cosine Similarity 18,990 8,346 153,446 0 

 Kmeans 18,990 978 160,814 0 
Table 6.9:  Classification Performance with URL Splitting. 

 
Although file reduction is slightly decreased when compared to the experiment not using URL 
splitting (Table 6.10), this reduced file contains all true positives and minimal false positives.   
 

Server Detection Methodology Possible File Reduction % 
alpha Kmeans + Cosine Similarity 84.88% 

 Kmeans 88.95% 
Table 6.10:  Potential File Reduction using URL Splitting. 

 
The resulting two-dimensional graph (Figure 6.9) shows the improved orientation of the clusters, 
centroids, and grouping over the previous experiment.  This explains the improved performance 
URL splitting introduces over not splitting the URL in the previous experiment.  Similar 
improvement occurred when executing the same experiments for the remaining real-world server 
data (Appendix C and Appendix D). 
 

 
Figure 6.9:  URL Splitting and K-means Detection. 

 
6.4 Resource Utilization Experiments 
 
An important factor involved in the decision to transition research to real-world application is the 
consumption of available resources.  Resource consumption for software encompasses execution 
time, memory, CPU utilization, and data storage.  If resource utilization is too excessive, 
successful research may not successfully transition to real-world utilization due to the monetary 
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costs of the necessary resources.  For example, for cybersecurity applications, execution time is 
essential as delays in receiving notifications of malicious behavior may allow hackers the time 
needed to burrow deeper into a corporation’s network, making it significantly more complex, 
and therefore costly, to recover.  Delays in notification may also grant an attacker the time 
needed to exfiltrate business or government sensitive data and documents.  This section discusses 
the resource utilization of the approach implemented in this research project. 
 
Two experiments using one of the real-world Apache access log files and two of the file 
processing plugins were executed to examine resource utilization.  Experiments were performed 
three times, capturing execution time (in seconds) and memory utilization.  The average 
execution time for each workflow stage and total execution time was calculated to determine 
time resource utilization.  A similar process was followed for calculating memory utilization. 
 
Experiment one used the file processing plugin that only split the request URL.  The processed 
data then ran through the TSVD and k-means machine learning plugins before the cosine 
similarity plugin calculated which k-means centroid each row was most similar.  For each 
significant step in the workflow, the Python framework captured and displayed the execution 
time shown in Table 6.11 below. 
 
The average total execution time was 50.5 seconds for 438,208 log lines, equating to a 
throughput of 8,685 log lines per second.  The speed with which the experiment executed 
indicates the single-threaded Python implementation is suitable for actual use.  Execution time 
may be reduced slightly by optimizing some code sections, multi-threading file processing, or 
possibly re-implementing the code in a compiled language such as C. 
 

Execution Run File Processing TSVD K-Means Cosine Similarity Total 
1 49.504 1.359 0.796 0.718 52.377 
2 47.169 1.227 0.782 0.690 49.869 
3 46.418 1.238 0.785 0.684 49.125 

Average Time: 47.697 1.275 0.788 0.697 50.457 
 Table 6.11:  Experiment one execution times (in seconds). 

 
Memory utilization did not vary between each execution run (Table 6.12), indicating exact, 
consistent data processing for each run.  As currently implemented for research and 
experimentation, the total amount of memory used is 1,309MB.  A real-world implementation 
would not maintain all data structures throughout execution, resulting in the brief maximum 
usage of 771MB (raw data plus initial data frame) before dropping to consistent use of 538MB 
while the machine learning and anomaly identification steps are performed.  Memory utilization 
is not extensive, well below the maximum amount of memory typical installed in servers and 
even modern desktop systems.  Memory utilization would not be a consideration preventing the 
approach used in this research project from real-world use. 
 
The raw data column in Table 6.12 represents the amount of memory used in the data structure 
initially holding the log data read in from the log file and broken into features.  The data frame 
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column is the amount of memory used after transforming the raw data in the initial data structure 
into numerical values suitable for machine learning and stored in a Pandas data frame.  The last 
column, reduced data frame, shows the amount of memory used after dropping features (such as 
the date and time) from the Pandas data frame that were not used for the machine learning 
algorithms. 
 

Execution Run Raw Data Data Frame Reduced Data Frame 
1 173MB 598MB 538MB 
2 173MB 598MB 538MB 
3 173MB 598MB 538MB 

Average Memory: 173MB 598MB 538MB 
Table 6.12:  Experiment one memory usage (in MB). 

 
CPU utilization was consistently 100% throughout the experiments' execution, with a brief spike 
exceeding 100%.  This is unsurprising as the framework is single-threaded and should execute at 
the maximum speed of one CPU core until finished as there are no external, remote data 
dependencies or dependencies on user input, potentially causing pauses while executing.  The 
brief spike exceeding 100% occurs when the machine learning algorithms execute (TSVD and 
K-Means), indicating the scikit-learn implementations may be multithreaded.  Although using 
100% of a single core continuously throughout execution, this would not negatively affect a 
decision to implement a real-world version.  The implementation in Python executes in short 
enough time to not detrimentally impact other processes running simultaneously on the same 
system. 
 
6.5 Additional Log Files and Plugins 
 
Additional experiments applied the approach to alternative log files, such as imapd.log 
contained in the private log data.   Unlike httpd log files forming two clusters when graphed, 
imapd log files formed three.  K-means did not perform well positioning centroids (Figure 6.10), 
requiring exploration of alternative clustering machine learning plugins such as density-based 
spatial clustering of applications with noise (DBSCAN).  DBSCAN performed much better 
positioning centroids within the clusters (Figure 6.11), however execution time significantly 
increased.   
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Figure 6.10:  K-means and Three Clusters 

 

 
Figure 6.11:  DBSCAN and Three Clusters 
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Chapter 7 
Conclusion 
 
The approach presented in this paper applying an unsupervised, machine learning chain achieved 
true-positive, false-negative, and file reduction performance rates sufficient for real-world 
cybersecurity application.  Cybersecurity analysts require accurate tools, otherwise they risk 
putting their organizations at risk by missing identification of malicious activity.  Successfully 
retaining these types of log entries during log reduction now adds a new data source for 
cybersecurity analysts as encryption continues to impact network-based detection methods  

Additionally, low resource utilization (CPU, memory, and time) eliminates potential resistance to 
deployment because of increased production environment costs.  Tuning of the implementation 
presented here and available at the GitHub repository [24] may further reduce resource 
utilization. 

Unfortunately, other log file types were not available with log entries triggered by malicious 
actions.  This prevented the complete development and testing of file processing plugins.  Based 
upon the successful use of the approach with httpd log files from different real-world servers, the 
technique should transfer with proper feature extraction and transformation.  Rudimentary testing 
using imapd log files does show promise as distinct clusters formed using the same k-means 
plugin.  
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Chapter 8 
Future Work 
 
Although the application of TSVD coupled with k-means performed sufficiently for transfer to 
real-world use, there are additional opportunities to extend the research further.  The first 
exploration area examines the technique's ability to successfully identify attacks resulting in 
httpd 200 (“OK”) status codes using real-world web server log data.  Ensuring the detection of 
these log entries is critical to identifying and retaining the entries in the reduced log file for 
analysis by cybersecurity experts or other tools.  If not retained, compromises may go 
undetected. 
 
While important to retain log entries indicating malicious activity, cybersecurity analysts may 
benefit from related but non-malicious log entries.  A further refinement would identify and keep 
additional log entries allowing cybersecurity analysts to thoroughly analyze, deconflict, and 
report malicious activity without retrieving additional log entries from the originating device.  
This speeds the analysis process, and reduces requests to other personnel outside the security 
group.  
 
The approach requires testing with other system log file types.  Although part of the research and 
experiments tested the approach using real-world log files of various kinds, none contained 
compromises.  This prevented a precise determination if the technique applies as successfully to 
other log file types as it does to httpd access log files.  Log files containing entries indicating 
benign and malicious activity need to be synthesized or obtained in an appropriate quantity.  
Feature engineering, employing the splitting technique used with URLs and user agent fields, 
would be an extensive part of adapting the approach to new types of log files. 
 
While performing the research, experiment results occasionally reversed the k-means centroids, 
so centroid one indicated malicious log lines and centroid zero indicated non-malicious log lines.  
As documented in this paper, a methodology detected and reordered the centroids.  Additional 
research on centroid reversals would determine if more robust methods exist for detecting these 
reversals to ensure accuracy.  
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Appendix A 
Synthetic Data Experiment #1 URL Splitting 
Results 
 
Table A.1 contains experiment #1 results for all servers included in the AIT log data set.  The 
data presented covers the first portion of the experiment applying the two detection 
methodologies and splitting the URL into additional features. 

 
Server Detection Methodology TP FP TN FN 

# 200 
Status 

mail.cup.com Kmeans + Cosine Similarity 2,267 78,452 63,293 4,522 237 

 Kmeans 3,227 81,609 60,136 3,562 353 
              
mail.insect.com Kmeans + Cosine Similarity 3,987 69,175 93,192 2,986 216 

 Kmeans 3,380 63,729 98,638 3,593 204 
              
mail.onion.com Kmeans + Cosine Similarity 84 54,595 20,939 6,345 28 

 Kmeans 6,395 75,534 0 34 129 
              
mail.spiral.com Kmeans + Cosine Similarity 6,466 30,948 62,127 904 250 

 Kmeans 30 0 93,075 7,340 0 
Table A.1:  Splitting URL 
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The table below (Table A.2) shows the log file reduction possible and the percentage of correctly 
classified 200 status log lines for the first portion of the experiment, which only split the URL. 

 

Server Detection Methodology Possible File Reduction % 
% of 200 
Identified 

mail.cup.com Kmeans + Cosine Similarity 45.66% 49.89% 
  Kmeans 42.88% 74.32% 
        
mail.insect.com Kmeans + Cosine Similarity 56.80% 32.48% 
  Kmeans 60.37% 30.68% 
        
mail.onion.com Kmeans + Cosine Similarity 33.29% 21.71% 
  Kmeans 0.04% 100.00% 
        
mail.spiral.com Kmeans + Cosine Similarity 62.75% 23.88% 
  Kmeans 99.97% 0.00% 

Table A.2:  Splitting URL File Reduction and 200 Status 
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Appendix B 
Synthetic Data Experiment #2 URL and User-
Agent Splitting Results 
 
Table B.1 contains results from the second portion of the first experiment.  This portion of the 
experiment also applied the two detection methodologies but added splitting of the user agent 
information to create additional features. 

 

Server Detection Methodology TP FP TN FN 
# 200 
Status 

mail.cup.com Kmeans + Cosine Similarity 6,691 80,296 61,449 98 383 

 Kmeans 6,691 80,296 61,449 98 383 
              
mail.insect.com Kmeans + Cosine Similarity 442 91,578 70,789 6,531 416 

 Kmeans 443 91,601 70,766 6,530 417 
              
mail.onion.com Kmeans + Cosine Similarity 6,399 4,603 70,931 30 102 

 Kmeans 6,350 2 75,532 79 53 
              
mail.spiral.com Kmeans + Cosine Similarity 6,575 8,559 84,516 794 253 

 Kmeans 6,296 0 93,075 1,074 19 
Table B.1:  Splitting URL and User-Agent 

 
 
  



35 
 

The table below (Table B.2) shows the log file reduction possible and the percentage of correctly 
classified 200 status log lines for the second portion of the experiment splitting both the URL 
and user agent. 

 

Server Detection Methodology Possible File Reduction % 
% of 200 
Identified 

mail.cup.com Kmeans + Cosine Similarity 41.44% 0.00% 
  Kmeans 41.44% 80.63% 
        
mail.insect.com Kmeans + Cosine Similarity 45.66% 62.56% 
  Kmeans 45.65% 62.71% 
        
mail.onion.com Kmeans + Cosine Similarity 86.58% 79.07% 
  Kmeans 92.25% 41.09% 
        
mail.spiral.com Kmeans + Cosine Similarity 84.93% 24.16% 
  Kmeans 93.73% 1.81% 

Table B.2:  Splitting URL and User-Agent File Reduction and 200 Status 
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Appendix C 
Real-World Data Experiment #1 No Splitting  
 

Table C.1 contains results using two detection methodologies with the real-
world httpd log files.  The results do not include the identification performance of 200 
status malicious log entries.  The real-world data did not include successful attacks 
resulting in a malicious attack triggering the logging of a 200 status code line in the 
log files.  No additional features were created by splitting extracted fields from the 
log files during this experiment. 

 
Server Detection Methodology TP FP TN FN 
alpha Kmeans + Cosine Similarity 18,989 7,938 153,854 1 
  Kmeans 17,543 1,705 160,087 1,447 
            
beta Kmeans + Cosine Similarity 15,671 1,162 55,655 0 
  Kmeans 0 56,125 692 15,671 
            
gamma Kmeans + Cosine Similarity 18,476 807 49,159 0 
  Kmeans 18,476 385 49,581 0 
            
delta Kmeans + Cosine Similarity 57,505 7,326 373,377 0 
  Kmeans 57,505 3,707 376,996 0 

Table C.1:  No Splitting 
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The table below (Table C.2) contains performance results regarding file 
reduction accomplished for each detection methodology for each server.  No 
additional features were created by splitting extracted fields from the log files during 
this experiment. 

 
Server Detection Methodology Possible File Reduction % 
alpha Kmeans + Cosine Similarity 85.11% 
  Kmeans 89.35% 
      
beta Kmeans + Cosine Similarity 76.78% 
  Kmeans 22.57% 
      
delta Kmeans + Cosine Similarity 71.83% 
  Kmeans 72.44% 
      
gamma Kmeans + Cosine Similarity 85.21% 
  Kmeans 86.03% 

Table C.2:  No Splitting File Reduction 
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Appendix D 
Real-World Data Experiment #2 URL Splitting 

 
Table D.1 contains results using two detection methodologies with the real-

world httpd log files.  The results do not include the identification performance of 200 
status malicious log entries.  The real-world data did not contain successful attacks 
resulting in a malicious attack triggering the logging of a 200-status code line in the 
log files.  This experiment performed additional feature extraction by splitting the 
URL into additional features. 

 
Server Detection Methodology TP FP TN FN 
alpha Kmeans + Cosine Similarity 18,990 8,346 153,446 0 
  Kmeans 18,990 978 160,814 0 
            
beta Kmeans + Cosine Similarity 15,671 3,895 52,922 0 
  Kmeans 61 56,665 152 15,610 
            
gamma Kmeans + Cosine Similarity 18,476 807 49,159 0 
  Kmeans 18,861 0 49,581 0 
            
delta Kmeans + Cosine Similarity 56,965 136,488 244,215 540 
  Kmeans 643 284,244 96,459 56,862 

Table D.1:  Splitting URL 
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The table below (Table D.1) contains performance results regarding file 
reduction accomplished for each detection methodology for each server.  This 
experiment performed additional feature extraction by splitting the URL into additional 
features. 

 
Server Detection Methodology Possible File Reduction % 
alpha Kmeans + Cosine Similarity 84.88% 
  Kmeans 88.95% 
      
beta Kmeans + Cosine Similarity 73.01% 
  Kmeans 21.74% 
      
gamma Kmeans + Cosine Similarity 71.83% 
  Kmeans 72.44% 
      
delta Kmeans + Cosine Similarity 55.85% 
  Kmeans 34.99% 

Table D.2:  Splitting URL File Reduction 
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Appendix E 
log_anomaly_identifier.py 
 

The code below forms the main script file, log_anomaly_identifier.py,  
for the framework.  The researcher executes this script, passing command line 
parameters indicating which plugins to use and the log file for processing.  The public 
git code repository [24] contains all source code, including the code listing below, 
developed as part of the research project. 

 
import glob # Imported for file directory listing capabilities. 
import sys # Imported for access to command line parameters 
import os # Imported for file path manipulation capabilities. 
import argparse # Imported for handling command line arguments. 
import time # Imported so execution time can be captured 
import pandas # Imported to access built in ability to easily save data frames to 
files. 
import numpy as np # Imported to access numpy data types. 
from pathlib import Path # Imported to facilitate autocreation of path to save data 
into. 
 
# Dictionaries to store the various plugins 
file_processor = {} 
machine_learning = {} 
output = {} 
anomaly_reduction = {} 
 
plugin_parameters = {} 
 
label_data = pandas.DataFrame([]) 
ml_results = {} 
ml_results2 = {} 
anomaly_reduction_results = {} 
 
# Integers used to store execution time for various steps performed as 
# part of normal execution. 
file_processor_time = 0 
machine_learning_time = 0 
machine_learning_time2 = 0 
save_time = 0 
label_time = 0 
output_time = 0 
anomaly_reduction_time = 0 
 
def load_plugins(directory, whichDictionary): 
    """Load available plugins into separate dictionaries based upon their plugin type. 
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    Args: 
        directory (String): Path/directory containing the plugins to load for a 
particular type. 
        whichDictionary (Dictionary): Empty dictionary to load the plugins into. 
    """ 
    myPlugIns = sorted(glob.glob(directory + "/*.py")) 
    for file in myPlugIns: 
        # Extract just the first part of the .py file name. 
        name = file.split("/")[1].split(".")[0] 
        print ("Loading %s plugin: %s" % (directory, name)) 
 
        # Dynamically set the PYTHONPATH so the user doesn't have to. It assumes 
        # the plugins are contained in subdirectories where the main file lives. 
        path = os.path.dirname(sys.argv[0]) 
        if len(path) == 0: 
            path = "." 
        sys.path.append(path + "/" + directory) 
 
        # Import the plugin module temporarily long enough to instantiate an object 
        # which is stored in a globally accessible dictionary. 
        tempModule = __import__(name) 
        whichDictionary[name] = tempModule.simPlugin() 
 
def available_plugins(): 
    """When the user uses the help command line option, this builds a formatted text 
string describing 
    all of the different plugins and what they do. 
 
    Returns: 
        String: Formatted string containing all the help output from each plugin. 
    """ 
    text = "Available 'file processing' plug-ins:\n" 
    for i in file_processor: 
        text += file_processor[i].print_help() + "\n" 
 
    text += "\n\nAvailable 'machine learning' plug-ins:\n" 
    for i in machine_learning: 
        text += machine_learning[i].print_help() + "\n" 
 
    text += "\n\nAvailable 'output' plug-ins:\n" 
    for i in output: 
        text += output[i].print_help() + "\n" 
 
    text += "\n\nAvailable 'anomaly' plug-ins:\n" 
    for i in anomaly_reduction: 
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        text += anomaly_reduction[i].print_help() + "\n" 
    return text 
 
def save_data(save_path, save_data): 
    """Loops through the supplied dictionary of internal data and saves each to a CSV 
file. 
 
    Args: 
        save_path (String): Path where the data should be saved. 
        save_data (Dictionary): Dictionary containing all the Pandas DataFrames and 
dictionaries of internal data to be saved to disk.  
    """ 
    print("--Beginning:  Saving Machine Learning Data") 
    print("\tSaving data to path: %s" % save_path) 
    Path(save_path).mkdir(parents=True, exist_ok=True) 
    for i in save_data: 
        # Ignore the "graph" entry if present - it's used to indicate which matrix 
        # is used for graphing from the results returned by an ML plugin. 
        if i != "graph": 
            print("\tSaving Pandas data frame: %s" % i) 
            pandas.DataFrame(save_data[i]).to_csv(save_path + "/" + i + ".csv") 
 
    print("--Finished:  Saving Machine Learning Data") 
 
def get_labels(label_data_file): 
    """Extract label data from the file specified by the user on the command line.  
The assumed 
    format for the label file is a CSV file where several different patterns can 
trigger a "1" 
    label instead of a "0" label: 
 
    <string>,0 
    <string>,<string> 
    0,<string> 
 
    Where <string> can be any value other than a 0 (zero). 
 
    Args: 
        label_data_file (String): Path and name of the file containing label data. 
 
    Returns: 
        Pandas DataFrame: Vector containing the label data with 0's and 1's. 
    """ 
    label_data = [] 
    print("--Beginning:  Reading label data") 
    source_label_data = pandas.read_csv(label_data_file, header=None) 
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    print("--Finished:  Reading label data") 
 
    # There are two different label files being used: 
    # Type 1: 
    #   Uses purely numeric values in comma separated file.  A "1" 
    #   appears in the 2nd column to indicate malicious/interesting row. 
    # 
    # Type 2: 
    #   Provided by the AIT data set using two columns.  If both column entries 
    #   are "0", that row is benign.  If either column contains text, that 
    #   row is malicious/interesting. 
    # 
    # Handle both situations. 
    print("--Beginning:  Processing label data") 
    for i in source_label_data.index: 
        if (type(source_label_data.iloc[i,0]) is np.int64) and 
(type(source_label_data.iloc[i,0]) is np.int64): 
            # If both values are a 0, append 0 indicating non-malicious entry. 
            if (source_label_data.iloc[i,0] == 0) and (source_label_data.iloc[i,1] == 
0): 
                label_data.append(0) 
            else: 
                label_data.append(1) 
        else: 
            # We're processing AIT file because the datatype is not an np.int64. 
            # label data AND we found a malicious line. 
            if (source_label_data.iloc[i,0] == "0") and (source_label_data.iloc[i,1] 
== "0"): 
                label_data.append(0) 
            else: 
                label_data.append(1) 
    print("--Finished:  Processing label data") 
    return pandas.DataFrame(label_data) 
 
def process_arguments(): 
    """Setup and parse command line arguments using Python's built-in capability.  
This includes 
    command line help to aid the user in what options are available. 
 
    Returns: 
        Dictionary: Command line options and parameters as specified by the user on 
the command line. 
    """ 
    # Setup the command line arguments supported by the Python script. 
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    parser = 
argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter, 
epilog=available_plugins()) 
    parser.add_argument("-f", "--file_processor", help="The plugin to use for 
processing a log file.  Required command line option.", type=str, required=True) 
    parser.add_argument("-l", "--log_file", help="The log file (including directory 
path if needed) to process.  Required command line option.", type=str, required=True) 
    parser.add_argument("-m", "--machine_learning", help="The machine learning 
algorithm to use.  Required command line option.", type=str, required=True) 
    parser.add_argument("-n", "--next_machine_learning", help="The second machine 
learning algorithm to use, using the results from the first.", type=str, 
required=False) 
    parser.add_argument("-s", "--save_path", help="The path and directory to save data 
generated during execution.", type=str, required=False) 
    parser.add_argument("-o", "--output", help="The plugin to use for generating some 
type of output (graph, etc.).", type=str, required=False) 
    parser.add_argument("-a", "--anomaly_reduction", help="The plugin to use for 
identifying anomalies and reducing log file size.", type=str, required=False) 
    parser.add_argument("-d", "--data_labels", help="Labels for the data used in --
log_file.", type=str, required=False) 
    parser.add_argument("-p", "--plugin_options", help="Supply key=value pair options 
to a plugin.  See plugin help for supported options.", nargs="*") 
    return parser.parse_args() 
 
def save_internal_data(args, raw_data, df): 
    """If the command line option is specified by the user, saves internal data 
structures as CSV files 
    for late examination.  Useful for debugging and seeing what the algorithms are 
doing with the data  
    through various workflow steps. 
 
    Args: 
        args (dictionary): Command line options specified by the user 
        raw_data (Pandas DataFrame): Dataframe containing the original data as read 
from input file. 
        df (Pandas DataFrame): Dataframe containing the transformed, machine learning 
ready version of the data. 
    """ 
    global ml_results, ml_results2, save_time 
    # Grab the command line options used so they can be saved with the rest of the 
data. 
    v = vars(args) 
    if (bool(v['plugin_options'])): 
        v['plugin_options'] = " ".join(v['plugin_options']) # flatten plugin options 
array 
    ml_results["command_line_options"] = pandas.DataFrame(v,index=[0]) 
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    # If saving, we want to include the raw data as well as the ML ready data. 
    ml_results["raw_data"] = raw_data 
    ml_results["ml_ready_data"] = df 
 
    # If label data was provided, include that in the output. 
    if (args.data_labels): 
        ml_results["label_data"] = label_data 
     
    # Check to see if a second machine learning algorithm was applied, if so we need 
to grab 
    # that output for saving. 
    if (args.next_machine_learning): 
        ml_results = {**ml_results, **ml_results2} 
     
 
    # Be sure to capture the time taken to save data to disk as this can contribute to 
    # overall execution time. 
    start_time = time.time() 
    save_data(args.save_path, ml_results) 
    save_time = time.time() - start_time 
 
def generate_output(args): 
    """Depending on the output plugin specified by the user, generate output (graph, 
etc.) 
    as part of the workflow. 
 
    Args: 
        args (dictionary): Contains command line arguments specified by the user. 
    """ 
    global ml_results, label_data, output_time 
    if "graph" in ml_results: 
        start_time = time.time() 
        # Typecast the label data to a string.  This automatically triggers plotly to 
use 
        # discrete colors instead of gradient. 
        if args.data_labels: 
            label_data[0] = label_data[0].astype(str) 
 
        # If KMeans, DBSCAN, or OPTICS was used as the 2nd machine learning algorithm, 
        #  grab the centroids to plot them in the plot points colored by label. 
        centroids = None 
        if "KMeans_Centroids" in ml_results2: 
            centroids = ml_results2["KMeans_Centroids"] 
        elif "DBSCAN_Centroids" in ml_results2: 
            centroids = ml_results2["DBSCAN_Centroids"] 
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        elif "OPTICS_Centroids" in ml_results2: 
            centroids = ml_results2["OPTICS_Centroids"] 
        if centroids is not None: 
            if (len(label_data) == 0): 
                # we have no labels, but we have centroids, build a default label set. 
                label_data = 
pandas.DataFrame(np.full((len(ml_results[ml_results['graph']]),1),"0", dtype = 
np.str)) 
            # Loop through and append enough label values for the centroids as 
provided. 
            # pylint: disable=unused-variable 
            i = 0 
            for centroid in centroids: 
                label_data = label_data.append([("Centroid " + str(i))], 
ignore_index=True) 
                i+=1 
            # Append the centroids to the main data for plotting. 
            ml_results[ml_results['graph']] = 
np.append(ml_results[ml_results['graph']], centroids, axis=0) 
 
        output[args.output].output(ml_results[ml_results['graph']], label_data) 
        output_time = time.time() - start_time 
    else: 
        print("\n\nWARNING:  Machine learning algorithm does not include graphable 
results.") 
        print("WARNING:  Skipping graph generation.") 
 
def output_time_stats(): 
    """Prints basic execution statistics about major steps in the workflow. 
    """ 
    print("\n\n\n") 
    print("-------------------------------------") 
    print("\tGENERAL STATISTICS") 
    print("File Processing Time: %.4f seconds" % file_processor_time) 
    if (args.data_labels): 
        print("Data Label Processing Time: %.4f seconds" % label_time) 
    print("Machine Learning Time: %.4f seconds" % machine_learning_time) 
    if (args.next_machine_learning): 
        print("2nd Machine Learning Time: %.4f seconds" % machine_learning_time2) 
    if (args.save_path): 
        print("Save ML Data Time: %.4f seconds" % save_time) 
    if (args.anomaly_reduction): 
        print("Anomaly Identification/File Reduction Time: %.4f seconds" % 
anomaly_reduction_time) 
    if (args.output): 
        print("Output Generation Time: %.4f seconds" % output_time) 
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    print("\nTotal Execution Time: %.4f seconds" % (file_processor_time + label_time + 
machine_learning_time + machine_learning_time2 + save_time + anomaly_reduction_time + 
output_time)) 
    print("-------------------------------------\n") 
 
if __name__ == "__main__": 
    # Load plugins for reading and processing files 
    load_plugins("file_processor", file_processor) 
    load_plugins("machine_learning", machine_learning) 
    load_plugins("output", output) 
    load_plugins("anomaly_reduction", anomaly_reduction) 
 
    # Process command line arguments 
    args = process_arguments() 
 
    # Now handle any (optional) plugin command line parameters 
    if args.plugin_options: 
        for pair in args.plugin_options: 
            plugin_option, value = pair.split('=') 
            plugin_parameters[plugin_option] = value 
 
    # Based on the user selected plug-in, read the log file into a DataFrame. 
    if (args.file_processor) and (args.file_processor in file_processor): 
        # Capture start time. 
        start_time = time.time() 
        # update after changing file processors to take plugin_options argument: 
        # raw_data, df = 
file_processor[args.file_processor].process_file(args.log_file, plugin_parameters) 
        raw_data, df = file_processor[args.file_processor].process_file(args.log_file) 
 
        # Capture time taken to process the input file. 
        file_processor_time = time.time() - start_time 
    else: 
        print("\n\nERROR:  Unknown file processor specified: %s\n\n" % 
args.file_processor) 
        exit() 
 
    # See if the user is supplying labels for the data. 
    if (args.data_labels): 
        # Capture start time. 
        start_time = time.time() 
        label_data = get_labels(args.data_labels) 
        label_time = time.time() - start_time 
 
    if (args.machine_learning) and (args.machine_learning in machine_learning): 
        # Capture start time. 
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        start_time = time.time() 
        ml_results = machine_learning[args.machine_learning].machine_learning(df, 
plugin_parameters) 
 
        # Capture time taken to perform machine learning. 
        machine_learning_time = time.time() - start_time 
    else: 
        print("\n\nERROR:  Unknown machine learning algorithm specified: %s\n\n" % 
args.machine_learning) 
        exit() 
     
    # See if the user is chaining multiple machine learning algorithms together 
    # (ensemble).  If so, we will use the results from the previous machine learning 
    # algorithm as input to the second. 
    if (args.next_machine_learning): 
        if (args.next_machine_learning in machine_learning): 
            # Capture start time. 
            start_time = time.time() 
            # The first machine learning algorithm in the chain most likely set the 
"graph" entry to its final 
            # output, which identifies the matrix to use as the input for the second 
algorithm to use as input. 
            ml_results2 = 
machine_learning[args.next_machine_learning].machine_learning(ml_results[ml_results["g
raph"]], plugin_parameters) 
 
            # Capture time taken to perform machine learning. 
            machine_learning_time2 = time.time() - start_time 
        else: 
            print("\n\nERROR:  Unknown machine learning algorithm specified for second 
algorithm: %s\n\n" % args.next_machine_learning) 
            exit() 
    else: 
        # User did not specify a 2nd ML algorithm to use, provide empty results. 
        ml_results2 = {} 
 
    # See if the user wants to perform anomaly identification/file reduction 
    # (not updated for DBSCAN or OPTICS Centroids) 
    if (args.anomaly_reduction): 
        if (args.anomaly_reduction in anomaly_reduction): 
            # Capture start time. 
            start_time = time.time() 
            if "KMeans_Centroids" in ml_results2: 
                if "status" in raw_data: 
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                    results, anomalies = 
anomaly_reduction[args.anomaly_reduction].anomaly_reduction(ml_results[ml_results['gra
ph']], ml_results2["KMeans_Centroids"], raw_data["status"]) 
                else: 
                    results, anomalies = 
anomaly_reduction[args.anomaly_reduction].anomaly_reduction(ml_results[ml_results['gra
ph']], ml_results2["KMeans_Centroids"]) 
 
            # Capture time taken to perform machine learning. 
            anomaly_reduction_time = time.time() - start_time 
 
            ml_results["anomaly_reduction_results"] = results 
            ml_results["identified_anomalies"] = anomalies 
        else: 
            print("\n\nERROR:  Unknown anomaly/reduction plugin specified: %s\n\n" % 
args.anomaly_reduction) 
            exit() 
 
    # Check to see if the user wants to save data generated during the machine 
learning 
    # part of the workflow. 
    if (args.save_path): 
        save_internal_data(args, raw_data, df) 
 
    # Check to see if the user wants some type of output generated during execution. 
    if (args.output): 
        # If so (because it's optional), make sure the output plugin exists. 
        if (args.output in output): 
            generate_output(args) 
        else: 
            print("\n\nERROR:  Unknown output plugin specified: %s\n\n" % args.output) 
            exit() 
 
    # Output basic execution stats. 
    output_time_stats() 
 

Figure E.1:  log_anomaly_identifier.py Source Code 
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Appendix F 
fp_apache_access_log_split_request_url_useragent
.py 

 
Figure F.1 below contains the file processor plugin code 

fp_apache_access_log_split_request_url_useragent.py.  The plugin 
reads an Apache httpd access log, splitting both the URL and user-agent components.  
The public git code repository [24] contains all source code, including the code listing 
below, developed as part of the research project. 

 
import apachelogs # Provides a nice parser for the Apache access log files. 
import time # Imported so execution time can be captured. 
import pyhash # pyhash used for access to FNV hash algorithm. 
import numpy as np # Imported to access Numpy data types which underly Pandas. 
import pandas as pd # Using Pandas dataframes for performance and code clarity. 
from pympler.asizeof import asizeof # Used to get more accurate memory utilization. 
from sklearn.preprocessing import MinMaxScaler # Used to scale values so they fall 
between 0 and 1. 
 
class simPlugin(object): 
    state = "" 
 
    # The following are used to capture features formed by splitting features 
contained in 
    # the log file.  The matrices will eventually be appended to main matrix, the 
column name 
    # list is dynamically built to match the number of split features extracted and 
will be 
    # used to provide meaningful names when the matrix is typecast to a Pandas data 
frame. 
    max_url_splits = 8 
    max_user_agent_splits = 10 
    dynamic_column_names=[] 
 
    # Defines the Apache log file format we want to read. 
    # See here:  https://apachelogs.readthedocs.io/en/stable/utils.html 
    # And here:  http://httpd.apache.org/docs/current/mod/mod_log_config.html 
    parse_format = apachelogs.COMBINED #  "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" 
\"%{User-Agent}i\"" 
 
    raw_data = [] 
    df = [] 
 
    url_splits = [] 
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    user_agent_splits = [] 
 
    def __init__(self): 
        self.state = "Initialized" 
 
    def print_help(self): 
        """Builds a formatted help text string for the plugin that's displayed when 
the user specifies the help command line option. 
 
        Returns: 
            String: Formatted text string containing the plugin's help information. 
        """ 
        text = "\tName: fp_apache_access_log_split_request_url\n" 
        text += "\t\tThis file parser processes Apache access log files.  After 
splitting the request into base\n" 
        text += "\t\tcomponents (command (GET, PUT, ...), URL, and HTTP protocol 
version), the URL portion is\n" 
        text += "\t\tsplit on the '/' character into additional features.\n" 
        return text 
 
    def build_Column_Names(self, stock_names): 
        """Dynamically build the list of column names for the Pandas DataFrames.  This 
must be done due to dynamic splitting 
        of some values extracted from the log file, and to provide meaningful columns 
names in the CSV file if the user 
        opts to save internal data structures for review. 
 
        Args: 
            stock_names (Array): Array containing the default, base (static) column 
names that dynamically generated names will 
            be appended to. 
        """ 
        # Build our initial feature column names from the base set as extracted from 
        # the log file which are not dynamically generated. 
        self.dynamic_column_names = stock_names 
 
        # To get the proper count of features, go ahead and typecast the Python matrix 
to 
        # a Pandas data frame.  (We'll need this later for concatenation anyhow.) 
        self.url_splits = pd.DataFrame(self.url_splits) 
        for i in range(self.url_splits.shape[1]): 
            self.dynamic_column_names.append("url_split_" + str(i)) 
 
        # Now do the same for the split user agent string. 
        self.user_agent_splits = pd.DataFrame(self.user_agent_splits) 
        for i in range(self.user_agent_splits.shape[1]): 
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            self.dynamic_column_names.append("user_agent_split_" + str(i)) 
 
    def split_string(self, split_on, the_string, max_splits): 
        """Perform deeper splitting on the URL using a specified character, but 
limiting the number of splits 
        to a maximum. 
 
        Args: 
            split_on (String): Character to split on. 
            the_string (String): String to be split. 
            max_splits (Integer): Maximum number of splits to perform 
 
        Returns: 
            Array: Array containing the values obtained by splitting the string. 
        """ 
        # First, remove trailing split character if present so we don't end up with a 
blank 
        # split result at the end. 
        the_string = the_string.lstrip(split_on).rstrip(split_on) 
 
        # Now split the string the specified maximum number of times with the 
remainder contained 
        # in the final value if it exceeds the maximum number of splits. 
        return the_string.split(split_on, max_splits) 
 
    def url_splitter(self, url): 
        """Split a given URL into pieces based on the locations of '/'. 
 
        Args: 
            url (String): String containing the requested URL from the Apache log 
file. 
        """ 
        self.url_splits.append(self.split_string("/", url, self.max_url_splits)) 
 
    def user_agent_splitter(self, user_agent): 
        """ 
        user_agent: The user agent string from the request to be split apart. 
        """ 
        # Make sure we have a user agent - if we don't, set it to a default value. 
        if type(user_agent) != str: 
            user_agent = "No_User_Agent" 
        self.user_agent_splits.append(self.split_string(";", user_agent.replace("(", 
";").replace(")", ";"), self.max_user_agent_splits)) 
 
    def transform(self): 
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        """Transform the data contained in the raw data Pandas DataFrame into 
something a machine learning algorithm can use. 
        """ 
        print("\t--Beginning:  Pandas dataframe transformation") 
 
        # Capture start time. 
        start_time = time.time() 
 
        print("\nPre-transformation:\n") 
        print(self.df.describe(include='all')) 
 
        # Use FVN hash to transform string values into a numerical representation. 
        print("\n\tBeginning:  Hashing and scaling string values.") 
        hash_alg = pyhash.fnv1_64() 
 
        # Examine the Pandas data frame column by column and hash/scale only 
        # columns detected as strings. 
        for i in self.df.columns: 
            if self.df.dtypes[i] == np.object: 
                print("\t\tHashing and scaling column: %s" % i) 
                self.df[i] = self.df[i].map(lambda a: (hash_alg(str(a).encode('utf-
8'))) / 2**64) 
 
        print("\tFinishd:  Hashing and scaling string values.") 
 
        print("\n\nPost-transformation:") 
        print(self.df.describe(include='all')) 
 
        print("\t\tTransformation Time: %.4f seconds" % (time.time() - start_time)) 
        print("\t--Finished:  Pandas dataframe transformation") 
     
    def process_line(self, entry): 
        """Perform additional processing on a single Apache log line than apachelogs 
natively provides. 
 
        Args: 
            entry (Dictionary): apachelogs dictionary structure containing the parsed 
log line. 
        """ 
        # Split the request, taking care as there are three different structures for 
the request in the current 
        # data set. 
        command = (str(entry.request_line).split(" "))[0].strip() 
        if command == "OPTIONS": 
            url = "None" 
            version = (str(entry.request_line).split(" "))[2] 
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            parameters = "None" 
        elif command == "None": 
            url = "None" 
            version = "None" 
            parameters = "None" 
        else: 
            temp = (str(entry.request_line)).split(" ")[1] 
            version = (str(entry.request_line)).split(" ")[2] 
            parameters = "None" 
            # Check to see if there are parameters, if so we need to perform another 
split... 
            if "?" in temp: 
                # There are requests where a parameter contains a URL and parameter 
itself.  This 
                # technique maintains the integrity of the original 
request/parameters. 
                url = temp[:temp.find("?")] 
                parameters = temp[temp.find("?") + 1:] 
            else: 
                # No parameters were included in the request. 
                url = temp 
 
        # Analyze the status code and translate to a numeric version used as a 
        # new feature in the dataset. 
        # https://ci.apache.org/projects/httpd/trunk/doxygen/group__HTTP__Status.html 
        category = 0.0 
        if entry.final_status >= 100 and entry.final_status < 200: 
            category = 0.1 # Informational 
        elif entry.final_status >= 200 and entry.final_status < 300: 
            category = 0.2 # Success 
        elif entry.final_status >= 300 and entry.final_status < 400: 
            category = 0.3 # Redirection 
        elif entry.final_status >= 400 and entry.final_status < 500: 
            category = 0.4 # Client Error 
        elif entry.final_status >= 500 and entry.final_status < 600: 
            category = 0.5 # Server Error 
 
        # Extract the raw values out of the parsed Apache log file line. 
        # See here for documentation on extractable values:  
https://apachelogs.readthedocs.io/en/stable/directives.html 
        temp = [entry.request_time.year, entry.request_time.month, 
entry.request_time.day, entry.request_time.hour, 
        entry.request_time.minute, entry.request_time.second, entry.remote_host, 
entry.bytes_sent, category,  
        entry.headers_in["Referer"], command, parameters, version] 
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        # Split the URL into smaller components which will be appended later to the 
raw_data feature matrix. 
        self.url_splitter(url) 
 
        # Split the user agent into smaller components which will be appended later to 
the raw_data feature matrix. 
        self.user_agent_splitter(entry.headers_in["User-Agent"]) 
 
        # Append the new row to the current raw data matrix. 
        self.raw_data.append(temp) 
         
    def process_file(self, fileName): 
        """Read the specified file and create a raw data Pandas DataFrame, and a 
DataFrame with the transformed data ready for use 
        in a machine learning algorithm. 
 
        Args: 
            fileName (String): Path and name of the file to be processed. 
 
        Returns: 
            Pandas DataFrames: A DataFrame containing the raw data as read from the 
file and parsed.  Another DataFrame containing the 
            transformed data ready for use in a machine learning algorithm.  
        """ 
        print("\n") 
        print("--Beginning:  File Processing") 
        print("\tFile being processed: %s" % fileName) 
 
        # Instantiate the apachelog parser object - this parses the log file 
automatically 
        # for us.  No need to write our own code. 
        parser = apachelogs.LogParser(self.parse_format) 
 
        # Make sure we can open the log file - if we can't let the user know and exit 
immediately. 
        try: 
            fp = open(fileName) 
        except Exception as e: 
            print("\n\nERROR:  Unable to open log file -  %s\n\n" % str(e)) 
            exit() 
 
        # Capture start time. 
        start_time = time.time() 
        print("\tBeginning to read file...") 
        for entry in parser.parse_lines(fp): 
            self.process_line(entry) 
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        print("\tFinished reading file...") 
 
        print("\tFile Reading Time: %.4f seconds" % (time.time() - start_time)) 
 
        print("\tBeginning Creating Pandas dataframe...") 
 
        # Before constructing the final data frame, build out the feature (column) 
names.  Part of 
        # this is static, part of it is dynamic based on splitting features contained 
in the log file 
        # which can vary. 
        self.build_Column_Names(["year", "month", "day", "hour", "minute", "second", 
"remote_host", "bytes_sent", "status", "referer", "command", "parameters", "version"]) 
 
        # Take the raw data, contained in a native Python data structure and typecast 
to data frame. 
        self.df = pd.DataFrame(self.raw_data) 
 
        print("\t\tConcatenating dynamically split features to data frame...") 
        self.df = pd.concat([self.df, self.url_splits, self.user_agent_splits], 
axis=1, ignore_index=True) 
 
        # Apply column names - both the static "as taken from the log file" and 
dynamically generated from 
        # splitting feature(s) into additional features. 
        self.df.columns = self.dynamic_column_names 
 
        # Now that the complete matrix containing raw data has been created, save it 
for later reference. 
        self.raw_data = self.df.copy() 
        print("\tFinished Creating Pandas dataframe...") 
 
        print("\tSample Entry: \n----------\n%s\n---------\n" % self.df.iloc[0]) 
 
        # Remove the date/time features.  Unfortunately we do it now because Python 
list does not support multi-dimensional slicing. 
        print("\tPre-feature reduction data frame dimensions: %i x %i" % 
(self.df.shape[1], self.df.shape[0])) 
        print("\tPre-feature reduction data frame memory: %iMB" % (asizeof(self.df) / 
1024 / 1024)) 
        self.df = self.df.iloc[:, 6:] 
 
        print("\tPost-feature reduction data frame dimensions: %i x %i" % 
(self.df.shape[1], self.df.shape[0])) 
        print("\tPost-feature reduction data frame memory: %iMB" % (asizeof(self.df) / 
1024 / 1024)) 
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        # Transform the data contained in the Pandas dataframe into something usable 
by a 
        # machine learning algorithm. 
        self.transform() 
        print("\tTransformed data frame memory: %iMB" % (asizeof(self.df) / 1024 / 
1024)) 
 
        return self.raw_data, self.df 

Figure F.1:  fp_apache_access_log_split_request_url_useragent.py Source Code 
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Appendix G 
ml_scikit_tsvd.py 
 

Figure F.1 below contains the file processor plugin code 
ml_scikit_tsvd.py.  plugin performs dimensionality reduction on a dataframe 
using truncated singular value decomposition.  The public git code repository [24] 
contains all source code, including the code listing below, developed as part of the 
research project. 
import time # Imported so execution time can be captured 
from pympler.asizeof import asizeof # Used to get more accurate memory utilization 
from pandas import DataFrame # Using Pandas dataframes for performance and code 
clarity 
from sklearn.decomposition import TruncatedSVD 
from sklearn.pipeline import make_pipeline 
from sklearn.preprocessing import StandardScaler 
import numpy as np 
 
class simPlugin(object): 
    state = "" 
    random_state = 12345 
    n_iter = 5 
    n_components = 2 
    with_mean = True 
 
    fitting_time = 0 
 
    def __init__(self): 
        self.state = "Initialized" 
 
    def print_help(self): 
        """Builds a formatted help text string for the plugin that's displayed when 
the user specifies the help command line option. 
 
        Returns: 
            String: Formatted text string containing the plugin's help information. 
        """ 
        text = "\tName: ml_scikit_tsvd" 
        text += "\n\t\tThis machine learning plugin uses scikit-learn's truncated SVD 
algorithm.\n" 
        text += "\n\t\tOptional Parameters:" 
        text += "\n\t\t\ttsvd_skip_normalization:  Do NOT perform normalization 
(scaling) of data, skip this step." 
        text += "\n\t\t\ttsvd_number_of_components:  Specify the number of components 
to retain (default is 2)." 
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        return text 
 
    def machine_learning(self, df, plugin_options): 
        """Apply the scikit-learn truncated singular value decomposition (TSVD) 
machine learning algorithm to the supplied data set. 
 
        Args: 
            df (Pandas DataFrame): DataFrame containing the machine learning ready 
version of the dataset to be processed. 
            plugin_options (dictionary):  Dictionary containing any optional 
parameters for plugins being used. 
 
        Returns: 
            Dictionary: Dictionary containing final machine learning results and other 
internal data that user may want to save for review. 
        """ 
        print("\n") 
        print("--Beginning:  Machine Learning") 
        print("\tMachine learning algorithm:  scikit-learn TSVD") 
 
        if ("tsvd_number_of_components" in plugin_options): 
            self.n_components = int(plugin_options["tsvd_number_of_components"]) 
            print("\tOverriding default number of components, it is set to: %i" % 
self.n_components) 
        else: 
            print("\tUsing default setting for number of components: %i" % 
self.n_components) 
 
        #---------BEGIN TEMPORARY CODE--------- 
        # In order to save the full US matrix as calculated by TruncatedSVD, we need 
to add 
        # a column of zeros due to an API limitation that prevents us from retaining 
all columns. 
        # This is temporary to allow review of the calculated outputs. This code 
should be remove 
        # prior to executing final experiments. 
        if self.n_components == df.shape[1]: 
            print("\tUsing fix to retain all columns due to number of components 
setting...") 
            df["Zero"] = 0 
            #self.n_components = df.shape[1] -1 
        #-----------END TEMPORARY CODE---------- 
 
        # Capture start time. 
        start_time = time.time() 
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        # Create an instance of the Truncated SVD, a normalizer, and create a pipeline 
for 
        # automatic execution of both. 
        svd = 
TruncatedSVD(self.n_components,random_state=self.random_state,n_iter=self.n_iter) 
        normalizer = StandardScaler(copy=False,with_mean=self.with_mean,with_std=True) 
 
        # Build out the pipeline depending if the user opted to bypass normalization 
        if "tsvd_skip_normalization" not in plugin_options: 
            lsa = make_pipeline(normalizer, svd) 
        else: 
            print("\t\tNOT normalizing data as requested by user...") 
            lsa = make_pipeline(svd) 
 
        print("\tBeginning:  fitting") 
        start_time_fitting = time.time() 
        # In order to perform a diff for sanity checking, we must typecast the  
        # Pandas dataframe to a Numpy array even though "copy=false" is set for the 
        # normalizer.  The results will otherwise be incorrect. 
        df_np = df.to_numpy() 
        US = lsa.fit_transform(df_np) 
        self.fitting_time = time.time() - start_time_fitting 
        print("\tFinished:  fitting") 
 
        S = svd.singular_values_ 
        VT = svd.components_ 
        variance = svd.explained_variance_ratio_ 
         
        print("\nU*S =\n", US) 
        print("\nS =\n", S) 
        print("\nVT =\n", VT) 
         
        AA = US @ VT # np.matmul(US,VT) # reconstruct A 
        print("\nAA =\n", AA) 
        print("\ndiff =", np.linalg.norm(AA-df_np)) 
 
        T = S/S[0] 
        T *= T 
        T = np.cumsum(T) / sum(T) 
        print("\nT =\n", T) 
 
        print("\n\tFitting Time: %.4f seconds" % self.fitting_time) 
        print("\tMachine Learning Total Time: %.4f seconds" % (time.time() - 
start_time)) 
 
        print("--Finished:  Machine Learning") 
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        # Return a dictionary containing specific components created or calculated 
        # as part of the machine learning process.  These may be used to perform 
        # additional tasks (saving data to files, graphing, etc.). 
        return {"US": US, "S": S, "VT": VT, "T": T, "graph": "US", "Variance_Ratios": 
variance} 

Figure G.1:  ml_scikit_tsvd.py Source Code 
 


