
Flexile Middleware: A Proposed New

Class of Adaptive Middleware and its

Utility for Time-Critical Applications

A Thesis

Presented to

the Department of Electrical and Computer Engineering

Villanova University

In Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy (PhD)

Thomas A. DuBois

May 2012

http://www.ece.villanova.edu/
http://www.ece.villanova.edu/
http://www.ece.villanova.edu/
http://www.villanova.edu/
mailto:tduboi02@villanova.edu

Copyright c©2012 by Thomas A. DuBois

All Rights Reserved

ii

Declaration

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at the Villanova University and is deposited in the University

Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission,

provided that accurate acknowledgment of source is made. Requests for permis-

sion for extended quotation from or reproduction of this manuscript in whole or

in part may be granted by the head of the major department or the Associate

Dean for Graduate Studies and Research of the College of Engineering when in

his or her judgment the proposed use of the material is in the interests of schol-

arship. In all other instances, however, permission must be obtained from the

author.

iv

Acknowledgements

I would like to acknowledge my team of advisors led by Dr. Richard Perry (Vil-

lanova University), and including Dr. Sarvesh Kulkarni (Villanova University),

Dr. David Russell (The Pennsylvania State University), and Dr. Oleg Sokol-

sky (University of Pennsylvania). These individuals kept me focused on the most

fruitful aspects of the research and gave me the confidence to complete this work.

Praises are due to the many other researchers who presented their results and

ideas in the study of adaptive middleware. This dissertation builds upon their

accomplishments. Thanks also to colleagues from The Boeing Company, who

helped me with scenario and modeling work, including Brendan Blanton, and

Zachary Prindle. Finally, I would like to thank Gustavo Luiz Bastos Baptista,

a research colleague at Pontif́ıcia Universidade Católica do Rio de Janeiro, who

helped with the middleware trade study contained in an appendix to this thesis.

v

DEDICATION

This dissertation is dedicated to my parents, Thomas and Barbara, and my

children, Michele and Thomas, Jr.

vi

Contents

List of Figures x

List of Tables xi

Glossary xii

1 Introduction 1

2 Aims of the Research 7

2.1 Principal Aim of the Research . 7

2.2 Advancing the State-Of-The-Art in Middleware 8

2.3 Measuring the Operational Value of Middleware 8

3 Middleware Discussion 10

3.1 Description and Perceptions of Middleware 10

3.2 Middleware History, Products, and Standards 11

3.2.1 History . 11

3.2.2 The Data Distribution Service Standard 12

3.3 Relationship Between Middleware and Cloud Computing 15

3.4 Classifying Middleware . 16

3.4.1 Static Middleware . 17

3.4.2 Adaptive Middleware . 20

4 Flexile Middleware 24

4.1 Network Processing Parameters . 28

4.2 Application Library . 30

vii

CONTENTS

4.3 Domain Rules . 31

4.4 Service List . 32

4.5 Executable Applications and Middleware . 32

4.6 Performance Monitor . 33

4.7 Usage Statistics . 33

4.8 Learning Rules . 33

4.9 Reconfigurator . 34

5 Metrics and Measurements 38

5.1 Measurement Methods . 38

5.2 Introduction to the Selected Measurement Method 40

5.3 Example Setup . 42

5.4 Calculations . 46

5.5 Rationale for Assumptions . 49

5.6 Sensitivity Analysis . 53

5.7 Discussion of Metric Results . 56

6 Operational Environment and Requirements 58

6.1 Net-Ready Requirements . 59

6.1.1 The Acquisition Process . 59

6.1.2 Net-Ready Key Performance Parameter (NR-KPP) 61

6.1.2.1 Solution Architectures . 61

6.1.2.2 Net-Centric Data and Services Strategy 62

6.1.2.3 Global Information Grid Technical Guidance 62

6.1.2.4 Information Assurance and Critical Information Protection . 62

6.1.2.5 DoD Supportability . 63

6.2 Modeling Requirements . 63

6.3 Critical Mission Examples . 64

6.3.1 Evaluation Scenarios . 66

6.3.1.1 Humanitarian Mission with Radiological Complications . . . 67

6.3.1.2 Mountainous Search And Rescue 68

6.4 Future Wideband Communications . 69

6.5 Net-Ready Applications . 70

6.6 Network Processing Architectures and Systems 72

viii

CONTENTS

7 Summary 73

8 Trademarks 76

A DDS Middleware Trade Study 77

A.0.1 Comparison of Attributes . 78

A.0.2 Architectural and Performance Analysis 95

A.0.2.1 OpenSplice R© DDS Architecture 96

A.0.2.2 RTI DDS Architecture . 96

A.0.2.3 Performance Evaluations . 98

References 100

ix

List of Figures

3.1 DDS Software Architecture . 13

3.2 DDS Shared Queue Space[24] . 14

3.3 Sadjadi[34] Taxonomy of Adaptive Middleware 17

3.4 Software Architecture for SOSCOE . 18

3.5 SOSCOE Interoperability Services . 21

4.1 Functional Block Diagram of Flexile Middleware 25

4.2 Sequence Diagram of Flexile Middleware 28

4.3 Reconfigurator Flow Chart . 35

5.1 Sensitivity of Improvement Relative to Time 54

5.2 Sensitivity of Improvement Relative to Probability of Contamination 55

6.1 Net-Ready Requirements Flow Diagram 60

A.1 OpenSplice R© DDS Networking Service Functionality 97

x

List of Tables

5.1 Mission Segment Statistical Parameters 45

5.2 Decision Point p1 Probabilities . 46

5.3 Decision Point p2 Probabilities . 47

5.4 Means, Variances, and Standard Deviations for the Four Cases . . . 48

5.5 Metric Calculations . 49

5.6 Time Sensitivity Values . 53

5.7 Contamination Sensitivity Values . 55

A.1 OpenSplice R© DDS Evaluation . 81

A.2 RTI DDS Evaluation . 89

A.3 DDS Evaluation Summary . 95

xi

Glossary

API Application Program Interface. 11, 76

ATNS Advanced Tactical Network System. 65

AWACS Airborne Warning And Control System. 10

BLOS Beyond Line Of Sight. 62

CLIP Common Link Integration Processing. 10

CONOPS Concept Of Operations. 62

CORBA Common Object Request Broker Architecture. 8

CORE Common Open Research Emulator. 55, 58

DBE DDS Benchmarking Environment. 89

DBMA Data Base Management System. 78

DCOM Distributed Component Object Model. 8

DCPS Data Centric Publish-Subscribe. 69, 87

DDS Data Distribution Service. 3, 7, 8, 26, 68, 70, 73, 78

DIACAP Defense Information Assurance Certification Accreditation Process. 53

DISR Defense Industry Standards Registry. 53

DLRL Data Local Reconstruction Layer. 72

xii

Glossary

DoDAF Department of Defense Architecture Framework. 51

ESB Electronic Service Bus. 83

FBCB2 Force Battle Command Brigade and Below. 9

GESP GIG Enterprise Service Profile. 53

GIG Global Information Grid. 53

HTTP Hypertext Transfer Protocol. 11

IA Information Assurance. 53

IaaS Infrastructure as a Service. 14

IDE Integrated Design Environment. 72

IDL Interface Description Language. 69

IOC Initial Operating Capability. 50

IP Internet Protocol. 11, 65

ISP Information Support Plan. 48

JBC Joint Battle Command. 9

JCIDS Joint Capabilities Integration and Development System. 48, 51

JEFX-10 Joint Effects Forces Experiment 2010. 62

JITC Joint Interoperability Test Certificate. 48

JMS Java Messaging Service. 11

JTRS Joint Tactical Radio System. 64

JVM Java Virtual Machine. 8

xiii

Glossary

LCS Littoral Combat Ship. 9

LPD Landing Platform Dock. 9

MANET Mobile Ad hoc Network. 70, 93

MoCA Mobile Collaboration Architecture. 20

NIST National Institute of Standards and Technology. 13

NR-KPP Net-Ready Key Performance Parameter. 48

OMG Object Management Group. 8, 69, 73

OpenMP Open Multi-Processing. 33

ORB Object Request Broker. 16

OSI Open System Interconnect. 11

PaaS Platform as a Service. 14

QoS Quality of Service. 67, 70, 74, 87

RMI Remote Method Invocation. 16

RTI Real Time Innovations. 10, 79

RTOS Real-Time Operating System. 78

RTPS Real-Time Publish-Subscribe. 70

SaaS Software as a Service. 14

SAR Search-And-Rescue. 28

SATCOM Satellite Communications. 62

SCADA Supervisory Control And Data Acquisition. 73

xiv

Glossary

SCTP Stream Control Transmission Protocol. 11

SOAP Simple Object Access Protocol. 11, 71

SOSCOE System of Systems Common Operating Environment. 16

SQL Software Query Language. 69

STK Satellite Toolkit. 36, 41, 55, 58

SysML System Modeling Language. 51

TRL Technical Readiness Level. 80

UAV Unmanned Air Vehicle. 27, 55, 56, 58, 62

UDP User Datagram Protocol. 11

UML Unified Modeling Language. 51

WAN Wide Area Network. 83

xv

1

Introduction

As is most often the case, necessity is the cause for invention, and the same is true in the

case of Flexile Middleware. The need arises from missions that have real-time constraints

and using an ad hoc, heterogeneous network. The dynamic nature of these missions and

the network itself make defining the processing requirements most difficult. Fortunately,

the emergence of net-based applications provides the ability to deploy useful functionality

without a detailed understanding of both predictable and unpredictable events that may

occur during the mission. The challenge is loading the best applications on the various

system processors that are collaborating to accomplish a mission while using an ad hoc

wireless network. Clearly, there is a technical gap that needs to be filled.

Middleware provides a programming layer that sits between the operating system and the

applications on the software architecture of networked systems, and as such would be most

suitable for defining the functionality needed to address this technical gap. Middleware is

composed of services used by applications to interact with other applications and the network,

and additionally it includes programming executive functions that can provide the means to

achieve application-level adaptability. Towards the goal of addressing the processing gap just

introduced, research began with a survey of middleware, which is contained in Appendix A.

There are various forms of middleware, including different ways of classifying middleware.

There is also much literature on adaptive middleware (e.g. [1], [2], [3], [4]). It would be

desirable to employ a middleware that is adaptive and dynamic to domain rules, and both

host processing and network limitations. Since critical missions can change significantly while

in progress, the domain rules themselves may change. Current middleware implementations

do not contain all the functionality needed to address this technical gap. Flexile Middleware

1

is a form of adaptive middleware that does not fit existing taxonomies either, and variations

on its implementation gives rise to a new class of adaptive middleware. In this thesis,

the term Flexile Middleware is used to describe both an implementation and the class of

middleware defined by the characteristics assigned to Flexile Middleware.

Flexile Middleware can be defined as middleware that adapts in several different ways.

It is this multi-dimensional adaptability and the fact that it can be generalized that gives

rise to its existence as a class of middleware unto itself. Similar to other forms of adap-

tive middleware, Flexile Middleware uses a priori information to set an operational context

which can vary from mission to mission, and it also contains the ability to change the be-

havior of applications that are using its services. Middleware that have these characteristics

are referred to as both static and adaptive middleware. Flexile Middleware has both of

these features. However, Flexile Middleware extends adaptability by taking processing and

networking resources into consideration to determine an informed recommendation of ap-

plications that should be operating on processing systems collaborating to accomplish a

mission. Flexile Middleware can dynamically change the subset of applications to adapt to

changes in missions constrained by available resources. Domain specific rules are defined

for this purpose, and Flexile Middleware also includes a learning feature where the rules

themselves can change. Flexile Middleware recognizes that applications use services which

are part of the middleware, and as the set of active applications changes, so does the set

of active middleware services. Some core services in Flexile Middleware will always be run-

ning to ensure it behaves as defined, but it can mutate from mission to mission or during

a mission. All this adaptability is why the word ’flexile’ was chosen to describe this type

of middleware. Chapter 4 is dedicated to describing the details of how Flexile Middleware

works.

Since there are many different ways to implement Flexile Middleware, the functionality

described in Chapter 4 actually defines a class of middleware. In fact, one would expect

very different adaptation rules depending on the missions for its intended use. Intended

use is a very important concept in the design of Flexile Middleware. When, how, and how

often Flexile Middleware can adapt may vary from application to application as well. All

this adaptability introduces processing overhead. The benefits have to be worth the added

overhead. In applications where memory, processing, and network bandwidth are not issues,

Flexile Middleware would probably not be beneficial, so the use of Flexile Middleware is

confined to missions that have these constraints. Sometimes, these constraints may not be

2

realistic, but contrived for utility. For example, it may be possible to run numerous appli-

cations, but outputs from these applications could introduce too much cognitive workload,

which could reduce the probability of mission success. One way to address this concern is to

artificially limit the memory available for net-based applications, and let Flexile Middleware

attempt to figure out how to select the applications to fill that memory.

To illustrate the value of Flexile Middleware, this thesis contains the description of a

representative critical mission suitable for generalization. Chapter 5 describes the exam-

ple mission, rationale for selected parameters, estimates of expected mission effectiveness

improvements from Flexile Middleware, a sensitivity analysis, and a discussion on general

mission value extrapolated from the example mission and the sensitivity analyses.

A common characteristic of critical missions discussed in this thesis is the use of wide-

band Mobile Ad hoc Networks (MANETs). These missions are highly mobile and involve the

use of two or more of the following: rotorcraft, fixed wing aircraft, Unmanned Air Vehicles

(UAVs), ground vehicles (manned and unmanned), and ground personnel. These missions

will often be in areas where network connectivity is complicated by line-of-sight considera-

tions between entities involved in the operation. An assumption put forth is that operational

video can provide improved situational awareness, which increases operational effectiveness.

Video drives the bandwidth, which impacts line-of-sight [5]. It is possible to mitigate line-of-

sight by using digital VHF/UHF radios, but radios of this type that are suitable for use on

rotorcraft and UAVs can achieve at most 64 kbps, which is insufficient to support video com-

munications. Data rates of at least 250 kbps (preferably 500 kbps) per video source would

be necessary to achieve the situational awareness value attributable to video. Networked

communication systems (i.e. radios, amplifiers, and antennas) to support these higher band-

width requirements need to be either directional for ranges up to 100 nautical miles, or

omnidirectional for ranges up to about 15 nautical miles. In either case, the frequencies used

by radios to support these rates depend on line-of-sight between connected nodes. Another

way to attempt to mitigate line-of-sight issues is to use Beyond-Line-Of-Sight (BLOS) con-

nections (e.g. Satellite Communications). This consideration was also address by DuBois,

et al. [5], where the conclusion is that it is more effective to use line-of-sight connections

instead of attempting to solve the difficult problem of wideband BLOS on rotorcraft, which

is complicated principally by modulation from rotor blade interference. There are additional

integration concerns associated with space, weight, and power constraints cause by BLOS

antennas and electromechanical processing.

3

The value of Flexile Middleware is assessed by comparing it to other methods and then

calculating the probability of mission success for all methods. Four methods, including

Flexile Middleware, were used for the analysis. Characteristics for each of the methods

was used to define operational parameters and probabilities. A mission-based mathematical

model was prepared to calculate probability of success. Parameters used in the model were

defined as a result of running numerous mission profiles using a commercially available

constructive simulation tool. The critical mission is a search-and-rescue operation with

complications from a radiation cloud resulting from a nuclear accident. This mission was

inspired from the tsunami that devastated Japan in March of 2011. Time is critical for this

mission as is often the case for search-and-rescue operations. There are two major decision

points based on how quickly information reaches the helicopter pilot charged with the rescue.

A first decision can be made if the pilot receives predictive information about the movement

of the radiation cloud, and then chooses to modify the flight route based on that information.

The second decision can be made only if there is no decision at the first decision point. This

represents receipt of more firm information about the radiation cloud, which would be much

closer to the helicopter at this point requiring a recovery route to avoid a high probability

of contamination.

The example base mission case is generalizable. Time is a parameter common to most

missions. Though probability of contamination will be used to calculate the probability of

mission success, other major events, such as an accident, or in the case of a military oper-

ation, detection from an enemy necessitating abortion of the mission can be alternatively

considered. It is basically a major event impacting mission success. Time represents a more

fluid parameter. The example contains two major decision points, but it is reasonable to

assume that results can be extrapolated for more major decisions that might occur during

a mission. This will be discussed further in Chapter 5. A sensitivity analysis was used

to assess impact on probability of mission success using different values for mission time

and probability of contamination. The conclusions are that: (1) Flexile Middleware offers

significant improvement over voice-only communications, simple data link connectivity, and

marginal improvement over current state-of-the-art network communications; (2) The im-

proved value of Flexile Middleware is most significant when there is not much margin time

for accomplishing the mission; and (3) The probability of a mission-ending event does not

significantly change the improvement offered by Flexile Middleware, because decisions to

4

avoid that event are much more important. Chapter 5 contains more details showing the

derivation of these conclusions.

In summary, the thesis is organized into the following chapters:

• Chapter 2 – Aims of the Research: This chapter describes operational environ-

ments where Flexile Middleware is most useful, and introduces a modeling approach to

show the value of Flexile Middleware. It also presents key net-ready applications that

middleware needs to support and the processing architectures in which it will operate.

Motivation for the research is discussed with an outline describing how this research

intends to advance the state-of-the-art in middleware.

• Chapter 3 – Middleware Discussion: This chapter defines middleware, discusses

its history, and summarizes the various classes of middleware. The latest research in

adaptive middleware is presented. The Data Distribution Service (DDSTM) standard

is described along with references to a trade study of commercial tools to support its

use. The trade study itself is included as an appendix.

• Chapter 4 – Flexile Middleware: This section introduces and defines Flexile Mid-

dleware. A functional block diagram of Flexile Middleware is presented along with de-

tailed descriptions of the nine modules contained in the diagram. Many of the unique

features of Flexile Middleware are contained in a special reconfiguration module. This

module makes use of rule-based inferencing, prioritized scheduling, and proposes an

implementation to exploit the characteristics of multi-core processing architectures.

• Chapter 5 – Metrics and Measurements: This section will describe details on the

models used to measure the value of Flexile Middleware, including experimentation

results.

• Chapter 6 – Motivation and Background: This chapter provides more details on

the operational environment in which Flexile Middleware is expected to show utility.

The background discussion shows how advancements in this area of science can be tran-

sitioned for production use. Detailed mission descriptions are presented to illustrate

how Flexile Middleware can support activities that are necessary for these missions.

5

• Chapter 7 – Summary: This chapter summarizes the key ideas in the thesis and

suggests areas for future research.

6

2

Aims of the Research

This thesis intends to show that when computer-based intelligence is applied to middleware

that it will result in improved network operations and computational efficiency. In accom-

plishing this aim, the state-of-the-art in adaptive middleware will be advanced and new ways

to measure the operational value of middleware will be presented and calculated.

2.1 Principal Aim of the Research

The principal aim of this research is to perform critical missions better through advance-

ments in middleware assuming network connectivity among participants. The approach is

to employ networked systems, and then improve functions and decisions by implementing

applications and middleware to assist in accomplishing the missions. This dissertation fo-

cuses on ensuring that the subset of available middleware services is best suited to support

networked applications used for critical missions, and especially for those missions that are

time-critical. The research led to the definition of a new class of adaptive middleware, which

will be defined and measured in representative critical operations. Not only does this mid-

dleware adapt to mission context and roles, but it also adapts to processing and network

capabilities and constraints. The adaptive nature of this new middleware offers the potential

to provide a higher level of control over network-based services and applications.

7

2.2 Advancing the State-Of-The-Art in Middleware

2.2 Advancing the State-Of-The-Art in Middleware

A new form of adaptive middleware is presented in this dissertation as a means of addressing

the desire to perform critical missions better. It is called Flexile Middleware. The definition

and characteristics of Flexile Middleware will be defined in detail later in this thesis (Chapters

3 and 4). It represents a unique hybrid form with both static and dynamic features that are

salient during configuration and runtime. This thesis contains a taxonomy that partitions

the various forms of middleware and illustrates how Flexile Middleware has a classification

of its own.

The advancement of the state-of-the-art in middleware is accomplished by setting up a

framework and methodology that allows middleware to adapt in terms of domain-specific

rules with due consideration of available processing and network resources. The concept of

Flexile Middleware emerged based on the observation that, in critical missions, there were

both “disadvantaged” computing devices that could not host all the applications that may be

needed, and others with sufficient computing resources were performing too many functions

that caused distractions during attempts to accomplish a mission. There is an operational

need to have the best set of applications running on networked systems collaborating to

accomplish a mission.

Recognizing that adaptation may be difficult to predict if defined too generally (and this

is not acceptable for some critical missions), a proposed new class of middleware emerged that

seeks to balance adaptation with predictable, yet dynamic, behavior. This is the genesis of

Flexile Middleware. It was originally designed with critical applications in mind, but after

reviewing its characteristics, it appeared to define its own class of adaptive middleware.

Details about this assessment are contained in Chapter 3. Achieving balanced adaptation is

the challenge. To address that challenge demands the means to evaluate performance, and a

proposed methodology is proposed and applied in Chapter 5. Results from Chapter 5 show

that an implementation of Flexile Middleware can improve performance in critical missions,

hence advancing the state-of-the-art in middleware.

2.3 Measuring the Operational Value of Middleware

Another aim of this research is to define and present more operationally relevant measures of

middleware performance. Parameters, such as bandwidth and throughput, are contributing

8

2.3 Measuring the Operational Value of Middleware

measures, but this research seeks to quantify performance in terms of mission success. In

the context of critical operations, a more useful measure would be probability of survival,

or probability of winning a battle. For measures of this form, it is necessary to model

missions with network connectivity. Embedded in these models are rules associated with

how the middleware performs. Mission decisions based on information provided by network

middleware services are contained in the models, so when simulations are run, the behavior

of the middleware can be recognized and measured.

Many critical operations are performed in a collaborative manner. Those who perform

these operations are beginning to recognize the value of networking to improve how their

operations are accomplished. Much has been published on the topic of middleware and its

various forms (e.g. [1, 6, 7]). However, the metrics used to measure the performance of

middleware appear more directly related to computer-based parameters, such as bandwidth,

latency, and other Quality of Service measures. These are useful, but they are not directly

related to operational goals or objectives. Admittedly, higher bandwidth and throughput

can lead to more timely situational awareness information. A more direct measure of utility

is how that timely information is used to accomplish mission-related goals and objectives.

By modeling networked operations with an understanding of the behavior of middleware,

it is possible to more directly connect the functionality of middleware to mission-related

goals and objectives. General purpose network use is too broad to derive any conclusions,

but critical operations (e.g. military, disaster relief) have goals defined well enough where

there is a more direct connection between middleware functionality and the ability to accom-

plish missions. These domain-specific applications give rise to the creation of rules related

to mission constraints and contingencies, and these rules can be used to improve the perfor-

mance of the middleware itself for the applications. Example rules are presented in Chapter

4. The rules are used to determine which applications should be running, and by extension,

which middleware services are needed. Middleware is designed to be independent of the

underlying applications, but applications use middleware services. It is this connection that

provides an opportunity to improve the state-of-the-art in middleware that leads to improved

performance in network-enabled, time-critical missions.

9

3

Middleware Discussion

This chapter summarizes the latest research in the field of middleware. The first section

contains a description of middleware, including its most common perceptions. Next, there

is a section briefly describing the history of middleware, leading up to current products and

standards. One particularly relevant standard is the Data Distribution Service[8], DDSTM

which will be described in detail, and that section includes a list of applications. The

next section discusses the connection between middleware and Cloud Computing. The last

section of this chapter discusses the various ways to classify middleware. One particular

classification is chosen, mainly due to the high degree of independence between each of the

classification categories. This last section serves as an introduction to the following chapter

on Flexile Middleware, because Flexile Middleware is presented as a new class of middleware

with characteristics not adequately described by current classifications.

3.1 Description and Perceptions of Middleware

In the software architecture of a networked system, middleware is software that resides

between the applications and operating system services[9]. It is software that consists of a

set of services that allow multiple processes running on one or more machines to interact

across a network. It provides publish-subscribe capabilities for networked users to share

information, discovery, message translation, information assurance, and other basic services

needed by network-based applications, i.e. net-ready applications. The best middleware

conforms to open standards, such as the Data Distribution Service (DDS)[8] standard.

10

3.2 Middleware History, Products, and Standards

Adaptive middleware has emerged as a topic of considerable interest motivated by the

understanding that most ad hoc distributed systems have limited resources, intermittent con-

nectivity, and network heterogeneous systems. When middleware can adapt to the context of

the distributed system, efficiencies can be realized. Context-aware adaptive middleware can

address quality of service requirements, improve the perception of quality, and enhance the

ability to deliver service. According to Loyall, et al.[7], automatically determining user intent

is a hard problem, but if successful it could be used effectively in the context of adaptive

middleware.

3.2 Middleware History, Products, and Standards

This section briefly describes the history of middleware, and the latest middleware trend to-

wards compliance with the Object Management Group’s (OMG R©) Data Distribution Service

(DDS) standard.

3.2.1 History

Viewing middleware as an intermediate layer in a software architecture means that its imple-

mentation from a programming perspective is in the form of library calls (subroutines) from

a programming language. Its application to facilitate interoperability across collaborating

systems provides a context for the subroutines contained in the middleware library while in-

troducing an architecture for communication (e.g. publish-subscribe, message-passing, etc.).

Middleware essentially evolved from object-oriented programming with services taking the

form of interoperable objects. If a programmer wants to share information among multiple

distributed programs, objects can be used to free the programmer from needing to know

details about the variables and structures in all of the other programs. It also represents a

development improvement by avoiding the complexities of socket-level programming. This

approach to programming and middleware emerged in the 1980s.

In the 1990s, Microsoft R© developed their own form of middleware called Distributed

Component Object Model (DCOM)[10, 11], and JavaBeans from Sun Microsystems imple-

ments similar functionality. In the case of DCOM, interoperability was limited to software

running on Windows platforms. JavaBeans was not restricted to a particular operating sys-

tem, but it would only run on Java Virtual Machines (JVMs) using the Remote Method

11

3.2 Middleware History, Products, and Standards

Invocation for interfacing between different Java code running on different JVMs. The first

widely accepted middleware standard with these characteristics implemented the Common

Object Request Broker Architecture (CORBA)[12, 13]. These approaches have matured

to the present with improvements, such as COM+[14], Enterprise JavaBeans[15], and re-

vised versions of the CORBA specification[16, 17]. These options are still available today

each with their own strengths and weaknesses depending on the application and operating

environment[6].

3.2.2 The Data Distribution Service Standard

Middleware has emerged as a topic of considerable interest, and the Data Distribution Ser-

vice (DDS) standard has been proposed to allow one form of middleware to interoperate

with others. There are many details associated with the DDS specification[8], but the key

interoperability aspect of DDS is the definition of an object structure that all middleware can

use to share information. The DoD Unmanned Air System (UAS) Control Segment (UCS)

provides an executive summary on DDS: DDS is widely deployed in some of the nation’s

most mission-critical systems. DDS is the backbone of the Navy’s Open Architecture initia-

tive, integrating shipboard subsystems and weapons on most all new ships. It powers major

Army programs under development like JBC-P (Blue Force Tracker/FBCB2 upgrade). It

also forms the advanced architectures for many new air systems, manned and unmanned. All

major US prime system integrators and most US defense research laboratories are users. It

also has a growing footprint in commercial telecommunications, train, automotive, medical,

science and financial applications. There are over 300,000 commercial licenses running on or

designed into well over $500 billion in equipment[18]. The UCS report[18] also describes how

DDS is used for the many military and commercial applications, such as Littoral Combat

System (LCS), DDG 1000 Destroyer, General Atomics Ground Control Station, Airborne

Warning And Control System (AWACS), Air Force Common Link Integration Processing

(CLIP), UK MoD Generic Vehicle Architecture, Wind River Real-Time Operating Systems,

CAE Flight Simulator, Air Traffic Control, Grand Coulee Dam, Medical Imaging, and Cancer

Treatment.

These applications show that DDS is the standard to use for middleware when real-

time processing requirements need to be addressed. There are several commercial prod-

ucts that can be used to create DDS-based middleware, for example RTI[19], PrismTech

12

3.2 Middleware History, Products, and Standards

Figure 3.1: DDS Software Architecture

OpenSplice R©[20], Twin Oaks Computing[21], and IBM JMS API[22].

Numerous tutorials on DDS are available[23, 24, 25], and the current specification[8] can

be referenced as well. In summary, DDS can be used for interoperability by designing three

software models: Communications Model, Object Model, and Architecture Model. As an

implementation, these models conform with other protocol standards at Levels 3, 4, and 5 of

the Open System Interconnect (OSI) communication model (e.g. IP, UDP, SCTP, SOAP,

HTTP). Figure 3.1 is a software architecture illustrating DDS organization and functionality.

The DDS Communication Model operates within a publish-subscribe architecture. It

contains a Shared Queue Space and a Global Data Space that are accessible to all application

subscribers and publishers. This architecture can be implemented within the same computer

or across a network. The Shared Queue Space contains cached message queues, and exchange

modules to pass messages to the right queues. Every message has a key that is used to

determine the proper queue. Subscribers are organized to receive messages from only one

13

3.2 Middleware History, Products, and Standards

Figure 3.2: DDS Shared Queue Space[24]

queue. This interaction is illustrated in Figure 3.2. The Global Data Space contains objects

for data, where the objects are organized by domain, topic, and key. Quality of Service is

managed in the Global Data Space, and it is used for automatic discovery and configuration.

Publishers and subscribers are organized into domains, and interact by either publishing to

or subscribing from a topic.

The DDS Object Model defines the structure for data content and other attributes that

are needed for information sharing using this standard. In DDS, a publisher is a data writer

to a defined topic. The publisher can also offer Quality of Service associated with that

data. A subscriber is a data reader for a topic, and can request a particular Quality of

Service for the data. By conforming to the DDS object structure, data type complications

are removed, while creating the means for data discovery. Organizing the data into domains

and topics contains the discovery algorithm to only those applications that have an interest

in the data. This algorithmic efficiency, in addition to brokered Quality of Service gives

DDS its performance strengths, and preference as a middleware for real-time networking

applications. Pardo-Castellote contains a chart in his tutorial [24] comparing the latency

performance of DDS, JMS, and Notification Service. This comparison shows that latency

with DDS is much better than JMS and Notification Service.

The DDS Architecture Model is unbrokered peer-to-peer publish-subscribe, which is im-

plemented by commercial commercial DDS development products listed earlier in this sec-

tion.

14

3.3 Relationship Between Middleware and Cloud Computing

3.3 Relationship Between Middleware and Cloud Com-

puting

There are two current, widely accepted definitions of Cloud Computing. The first from the

National Institute of Standards and Technologies (NIST)[26] states that Cloud Computing is,

“a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort or service

provider interaction”. A second definition from Gartner[27] states that Cloud Computing

is, “a style of computing where massively scalable IT-enabled capabilities are delivered ’as

a service’ to external customers using Internet technologies.” The key point from these

definitions is that Cloud Computing presents a model of interacting with a network. It is a

style of networked computing. Middleware is a set of services used by network applications

for the sharing of data and information. Middleware would be used to implement a Cloud

Computing environment.

Within Cloud Computing, there are three different service models referred to as Software

as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) [26].

With SaaS, users (or clients) do not have the applications on their machines, but they make

a request for information from the “cloud”. This request is accomplished by sending data

across a network to a server that is hosting the application needed to perform the processing.

Processing is done on the server and the requested information is returned to the client. In

this case, middleware would be used to format the client information request, send it to

the cloud server while enforcing quality of service requirements, and return the data to the

requesting client. Commercial examples of SaaS include Salesforce.com[28], Google Apps[29],

and IBM Smart Cloud[30]. With PaaS, the clients have the applications on their systems

and the cloud is used as a distributed database to ensure that collaborations across the

network are using consistent and timely information. A network of nodes all implementing

DDS middleware is an implementation of a PaaS Cloud Computing model. Commercial

examples of PaaS include Microsoft R©Azure[31], Google App Engine[29], and Rackspace R©
Cloud Sites[32]. With IaaS, the clients have control over infrastructure resources, such as

server storage, processors, and deployed applications. In this case, not only does the client

request information, but also requests applications and infrastructure components to perform

enduring processing functions. The “cloud” would manage and allocate all such requests.

15

3.4 Classifying Middleware

IaaS middleware would be the implementation of the client requests from infrastructure

resources. Commercial examples of IaaS include Amazon EC2[33] and Rackspace R© Cloud

Servers[32].

NIST also discusses four different deployment models, referred to as Private Cloud, Com-

munity Cloud, Public Cloud, and Hybrid Cloud. This aspect of Cloud Computing refers to

scope of interaction across a network, and does not have any added relationships with mid-

dleware beyond what was discussed in the previous two paragraphs.

3.4 Classifying Middleware

Sadjadi and McKinley[34] performed a survey of adaptive middleware referencing three pub-

lished taxonomies, two of which are introduced by the author, and a third proposed by

Schmidt[35]. Schmidt categorizes adaptive middleware into four layers: host-infrastructure,

distribution, common-services, and domain-services. Since the value of middleware depends

on its use, this taxonomy would be unwieldy for purposes of this thesis, because Flexile Mid-

dleware is adaptive across multiple layers. One of Sadjadi’s taxonomies suggests partitioning

by the application domain. Initially, this appears like a useful approach, but the application

partitions do not uniquely represent operational applications. For this partitioning, Sadjadi

suggests QoS-oriented systems, dependable systems, and embedded systems. The criti-

cal missions most usefully serviced by Flexile Middleware contain all of these applications.

Sadjadi’s other categorization partitions adaptive middleware into four types: configurable,

customizable, tunable, and mutable. The definitions of these terms create exclusive parti-

tions. With these types of adaptive middleware, the services are determined a priori, but

service functionality is adaptive. Mutable middleware allows for the most significant changes

in middleware behavior that can occur while it is executing. Schmidt[35] developed a form

of mutable middleware, called ADAPTIVE Service eXecutive (ASX), which was developed

for use in distributed computing applications. Using the ASX framework, the services in

the applications may be updated and extended without modifying, recompiling, relinking,

or restarting the applications at run-time. Flexile Middleware is proposed as a fifth type of

adaptive middleware referencing this one of Sadjadi’s taxonomies as shown in Figure 3.3.

16

3.4 Classifying Middleware

Figure 3.3: Sadjadi[34] Taxonomy of Adaptive Middleware

3.4.1 Static Middleware

There are five types of traditional static middleware: (1) Message-Oriented Middleware;

(2) Transaction Processing Monitors; (3) Remote Procedure Calls; (4) Distributed Comput-

ing Environment; and (5) Object-Oriented Middleware[36]. Message-Oriented Middleware is

characterized by point-to-point connections, asynchronous communications, message queues,

and notifications. Messages have priority, sequencing, and expiration. Quality of service can

be integrated using these characteristics. Transaction Processing Monitors are most com-

monly associated with banking and financial applications. Transactions implement business

logic and are most commonly associated with distributed data bases. Remote Procedure

Calls can be considered middleware because of their middle position in the software ar-

chitecture of distributed systems. Remote Procedure Calls simply implement client-server

functionality by allowing a client application to request processing and data on a server

system, where the two are connected with a network. The programmer does not need to

know too much of the networking details, but application details force a high degree of co-

ordination between client and server programming. Distributed Computing Environments

are similar to Remote Procedure Calls, but additional abstractions are included for interac-

tion threads, file structures, and security. Object-oriented technologies provide the means

to add a higher degree of abstraction to networked interoperability. This relationship gave

rise to the creation of Object-Request Brokers (ORBs), and through standardization efforts

DCOM, RMI, and CORBA emerged as implementations of ORBs as middleware.

The most significant static middleware development for critical applications was done by

the U.S. Army for the Future Combat System (also known as Brigade Combat Team Mod-

ernization) program. Known as the System Of Systems Common Operating Environment

17

3.4 Classifying Middleware

Figure 3.4: Software Architecture for SOSCOE

(SOSCOE)[37], it is an object-oriented middleware designed to support applications needed

for new Army operational concepts that take advantage of networked connectivity. There

are multiple editions of SOSCOE depending on user needs[38]:

• Standard Edition: used by applications similar to desktop and larger systems.

• Real-Time Edition: provides services similar to the standard edition but executes

on a real-time OS and has more demanding real-time processing requirements.

• Micro Edition: used by applications that will execute on small platforms such as

digital signal processors and handheld devices.

Figure 3.4 shows how SOSCOE is a set of services that architecturally sits between the

operating system and the applications.

The services that comprise SOSCOE include the following:

• Administrative Services: Manages basic operations of the computer host, including

logon, logoff, power management, and zeroize.

• Knowledge Services: Services and tools that enable domain applications and services

to represent, manage, query, search, and interpret domain knowledge, and provide

common representations across domains.

• Information Services: Services for the storage, retrieval and maintenance of geo-

graphic, environmental, track, symbology, entity characteristics, and mission informa-

tion.

18

3.4 Classifying Middleware

• Communication Services: Services that allow applications to communicate the right

information at the right level of detail at the right time, based on the context of each

user node, available bandwidth, information assurance constraints, quality-of-service,

and current user policies. Includes discovery, naming, and dissemination services (e.g.

publish/subscribe), and delivery mechanisms.

• Data Store Services: Services that support the creation and maintenance of virtual

persistent data environment whereby any node (e.g. unit, vehicle, or footprint) has

access to both local and remote data objects or links to those objects.

• Information Assurance: Provide services to protect, secure, and assure informa-

tion used by applications and services within/between nodes (e.g. unit, vehicle, or

footprint). Includes identification, authorization, authentication, encryption, intrusion

detection and prevention, and anti-virus services.

• Interoperability: Facilitates information dissemination in the right format and over

the right communications path. Includes parsers for message format translations.

• System Management Services: Supports management of middleware and applica-

tions. Enables the ability to automatically update to new versions.

• Analysis Services: Provide services for automatic text processing of very large vol-

umes of formatted and free-text messages. Also includes data mining services.

• System Services: Includes basic operational services, such as recording, playback,

time distribution, and event handling.

• Configuration and Control: Provide services for application configuration and sys-

tem configuration. Includes services to monitor, control, and manage system resources

(e.g. health and usage monitoring) and processes as allowed by policy.

• I/O Services: Services for higher level control of device drivers.

• Web Services: Abstraction of services to enable and use data from internet web-based

sources.

19

3.4 Classifying Middleware

• User Profile and Policy Services: Services that allow for the management of user

profiles and system policy information based upon preference and role. As the role

or preferences are modified, the user profile is updated to coordinate the information

received by the user.

• OS Abstraction: Provide an operating system (OS) abstraction that encapsulates OS

services used by services and applications. Abstraction includes inter-process commu-

nication (IPC), process/thread, concurrency mechanisms, memory management, and

graphical interfaces.

This list shows that there is a broad range of service functionality applicable to middle-

ware for critical applications. One example of the computational complexity of middleware

services is SOSCOE Interoperability Services. These services must be able to interpret

many different messaging standards from legacy systems that are needed to conduct opera-

tions effectively. Figure 3.5 shows the various systems for which SOSCOE needs to provide

interoperability.

3.4.2 Adaptive Middleware

One form of adaptive middleware adjusts to the context of the operational situation. Accord-

ing to da Rocha, et al.[4], middleware needs to satisfy 12 requirements to support ubiquitous

context-awareness. They are:

1. Distributed context management

2. Support for context evolution

3. Dynamic context discovery

4. Scope of context perception

5. Multiple mechanisms and policies for accessing context

6. Extensible abstractions for accessing and using context

7. Management of application dynamic loading

8. Abstract handling of context interest

20

3.4 Classifying Middleware

Figure 3.5: SOSCOE Interoperability Services

21

3.4 Classifying Middleware

9. Architectural independence

10. Decoupling between context management and inference mechanisms

11. Easy incremental deployment, distributed administration and standardization

12. Suitable programming tools for context discovery

Sacramento, et al.[39, 40], describe Mobile Collaboration Architecture (MoCA), which is a

middleware for developing and deploying context-aware collaborative applications for mobile

users. It addresses the 12 requirements and contains adaptive services to optimize application

performance based on context information, for example geographic proximity. It comprises

client and server Application Program Interfaces (APIs), core services for monitoring and

inferring the mobile devices context, and an object-oriented framework for instantiating

customized application proxies. It contains several adaptive middleware services that change

their behaviors based on inferred user intent. Those services are: Context Information

Service (CIS), Discover Service (DS), Configuration Service (CS), and Location Inference

Service (LIS).

Some middleware are considered adaptive because they adjust their performance to the

form of the network. Yu, et al.[3] describe an adaptive middleware that is used by a dis-

tributed sensor application. The sensors are placed randomly and need to communicate

with each other. The adaptive middleware contains a set of eight components with func-

tionality that can adapt to the environment and configuration of the network to optimize

performance. One of the components is a prediction model. By focusing on quality of ser-

vice with user preferences, another related form of adaptive middleware has been described.

The application in this case is a distributed visual tracking system. Li, et al.[1] present an

adaptive middleware architecture as a way of providing quality of service where it is not an

integral part of the networking. The architecture consists of middleware modules that take

user preferences and monitors the network to create an adaptive behavior for the application

to optimize performance. This form of adaptability uses information about the application

domain to determine how to adapt to changes in the network structure itself. Flexile Middle-

ware has a performance monitoring module to provide a similar form of adaptability based

on changes in network characteristics. This will be discussed more in the following chapter.

22

3.4 Classifying Middleware

Other adaptive middleware adjust performance to the characteristics of the users. One

example of this is online virtual-reality style gaming. Balan, et al.[41] developed four mid-

dleware components that can be used by game developers which comprise a system called,

Matrix. These components adapt to the configuration and usage profiles of the gamers

playing against each other during a session. Flexile Middleware also contains the ability to

provide some adaptation to user characteristics through the inclusion of a module on usage

statistics. This will be discussed more in the following chapter.

Another form of adaptive middleware uses quality of service to determine how to modify

network services. Othman, et al.[2] discuss this type of adaptive middleware which uses

load balancing across a network as the quality of service objective function for adapta-

tion. Othman describes the use of this adaptive middleware for general distributed appli-

cations, such as server transparency, decentralized load balancing, stateful replicas, diverse

load monitoring granularity, fault tolerant load balancing, extensible load balancing, and on-

demand replica activation. In this case, these functions are being designed into commercial

CORBA[16] products with stated application to other middleware systems. An application

of this CORBA-based adaptive middleware has been tested in a program called Cygnus[42],

which has been shown to reduce network overhead when scaling up applications.

23

4

Flexile Middleware

Flexile describes something that is able to flex or bend easily[43]. Synonyms would be

malleable, flexible, and elastic. This thesis introduces a new class of autonomic middleware

called Flexile Middleware. It has both static and dynamic features. Flexile Middleware is

static by containing a set of core services that must be present in all processors across the

network. It is dynamic in multiple ways. First, knowledge of the operating environment

and mission objectives will be used to set parameters used by the middleware. The services

themselves would not change, but they would have adaptive qualities resulting from domain

knowledge embodied in parameters used by the middleware. A second level of adaptive

behavior occurs when the services themselves need to change based on user intent and the

ability to fit applications with associated services within the hosts’ processing capabilities.

It is this second type of adaptive behavior, which is the inspiration for the term, Flexile

Middleware. Middleware that is flexile has the following characteristics:

1. Adaptive in both performance and size of executable module;

2. Service content determined by prioritized net-ready applications;

3. Domain-specific rules that determine application priorities;

4. A performance monitor that runs periodically to assess performance versus accom-

plishment of mission objectives;

5. Ability to reconfigure the mix of middleware services based on usage statistics, learning

rules, inferred user intent, and/or explicit user requests.

24

Figure 4.1: Functional Block Diagram of Flexile Middleware

25

A functional block diagram of Flexile Middleware is shown in Figure 4.1. The blocks in

this figure are the outline for the rest of this section. Summarized below is a brief description

of each of the components of Flexile Middleware:

• Network Processing Parameters – These parameters are specific to the allocation

of resources on host hardware to support network functions. They are used by Domain

Rules to determine the applications to install on the host hardware.

• Application Library – This is a database containing the complete set of available

net-ready applications. It may reside in secondary storage on the host hardware, or it

may reside on a server reachable across the network.

• Domain Rules – This is a knowledge base designed to determine which applications

are the best ones to install on the host hardware. The rules themselves may change

based on how the user intends to use the network. This information may be explicitly

provided by the user or inferred based on usage and heuristically determined user

intent.

• Service List – This is a database containing the complete set of middleware services

available to all of the net-ready applications.

• Executable Applications and Middleware – This is an executable image of the

net-ready applications and middleware services. The Domain Rules use a priori infor-

mation about the applications and middleware to ensure that, when the executable is

created, it will fit in the available memory, execute within real-time requirements, and

incur allowable bandwidth utilization.

• Performance Monitor – This module monitors system usage and occasionally calls

the Reconfigurator. The call to the Reconfigurator can be done periodically, or it can

be triggered based on certain events.

• Usage Statistics – This is a database created by the Performance Monitor. It is

used to determine how the system is being used and to ascertain automatically user

intent for network usage.

• Learning Rules – This is a knowledge base governing the extent to which the Domain

Rules can change, and specifically how to change those rules.

26

• Reconfigurator – This module uses Network Processing Parameters and executes the

Domain Rules to define a new set of applications for the device. It is triggered by the

Performance Monitor, and can operate periodically or by events. The Reconfigurator

maintains a list of the currently running applications and middleware services, and

executes the code needed to change the active software. It also references a database

called the Service List, which contains a mapping the services need for each of the

applications. This module implements much of the functionality that gives Flexile

Middleware its unique capabilities.

With reference back to Section 3.4 and Figure 3.3, this more detailed understanding of

Flexile Middleware provides the basis for the assertion that it deserves its own classification

of adaptive middleware. Within Sadjadi’s taxonomy, Flexile Middleware would be a new

subclass of Dynamic Middleware. Flexile Middleware has both static and dynamic features,

which is common among all dynamic middleware. The other two subclasses of Dynamic

Middleware are Tunable and Mutable. Tunable Middleware dynamically changes in multi-

ple stages with administrator fine tuning. As such, its dynamic features are not automatic

like Flexile Middleware and would require administrative review which is not practical for

real-time applications. Furthermore, with Tunable Middleware, there is no built-in under-

standing of an operational context. If this type of information were used, it would need

to come from the administrator, which is very different from Flexile Middleware. Mutable

Middleware relies on “meta models”, which are pre-defined. Events, or a logical combination

of events, can cause Mutable Middleware to change states according to one of the meta mod-

els. In contrast, Flexile Middleware does not use pre-defined meta models. Furthermore, the

dynamic nature of Mutable Middleware is deterministic. Flexile Middleware has a learning

component that provides more variability to how it dynamically changes. If the learning

element of Flexile Middleware is not used, it is still not limited to a specific set of predefined

meta models to change states. These fundamental differences justify Flexile Middleware as

its own class of Adaptive Middleware. Relative to Sadjadi’s taxonomy, it would be a third

subclass of Dynamic Middleware.

Flexile Middleware flow of control is shown in Figure 4.2. The Performance Monitor

monitors data collected by applications running on the System. When events are matched,

then data is provided to the Usage Statistics module. This module calculates statistics and

27

4.1 Network Processing Parameters

Figure 4.2: Sequence Diagram of Flexile Middleware

provides that data to the Learning Rules module, and acknowledges completion back to the

Performance Monitor. The Performance Monitor knows whether Learning Rules can be run

during operations, and provides a command to either create new rules and send them to the

Domain Rules module or simple call Domain Rules without any updates. Either way, the

Domain Rules module calls the Reconfigurator module which executes the instructions to

implement updates to the mix of applications and middleware running on the System, and

then acknowledges completion to the Performance Monitor, so it can be ready to continue

monitoring the System. If the Reconfigurator changes the mix of applications, the System

is notified. If it is a user-based System, that notification could be in the form of a display

change.

4.1 Network Processing Parameters

Network Processing Parameters are used by the Reconfigurator to determine the set of ap-

plications that can be run on the host system. This would be the application load. Example

network processing parameters are:

• Host Memory – These parameters contain the maximum amount of memory that

can be allocated to network processing, and how much is currently allocated.

28

4.1 Network Processing Parameters

• Latency – This parameter relates average response time to applications. It is im-

plemented as a two-dimensional matrix of application versus latency. Other Flexile

Middleware applications can change the values of this matrix dynamically during op-

eration. In cases where latency is unacceptable, application priorities would need to

be reassessed.

• Bandwidth – Each application is expected to have an impact on bandwidth. These

parameters define the amount of average bandwidth that can be expected to be used

by the current load of applications, and what is available for the possible addition of

other applications.

• Network Role – In an ad hoc network, it is possible for nodes to be both intermediate

and end nodes in the resulting topology. If the network is mobile, this role can change

dynamically. However, depending on other parameters, it may be necessary to assign

a node to be predominantly intermediate or an end node.

• Video Support – Streaming video across a network is a major concern, and it should

be treated specially. Video support parameters would state how many video streams

the host can handle simultaneously for display without degraded performance, and if

acting as an intermediate node, it would define how many simultaneous streams can be

routed through it. Degraded video performance is a subjective measure itself, which

can also be a parameter. For uses when high quality video is required, degraded video

performance can be defined to be less than 500 kbps for nodes displaying that video.

Many of these parameters can be implemented as DDSTM Quality of Service features. For

modeling purposes, the effect of Network Processing Parameters is embedded in assumptions

about which applications are running on which nodes. To differentiate Flexile Middleware

from other forms of adaptive middleware, this will be seen in the inability of adaptive mid-

dleware nodes to add in new and desirable applications dynamically, which are critical to

mission accomplishment because of resource limitations. Flexile Middleware would not have

an effect on resources, but could use Network Processing Parameters to prioritize applica-

tions leading to the most useful set of applications to maximize the probability of mission

success.

29

4.2 Application Library

4.2 Application Library

The Application Library is a database of network applications with associated parameters.

Four applications were discussed in Section 3.5: Video Dissemination, Networked Weather,

Tactical White-Boarding with Chat, and Common Operating Picture. Other potential ap-

plications are as follows:

• Uncharted Objects – For critical missions, it is reasonable to assume that there

will be new objects constructed or destroyed within the operational area. Sensors

on some vehicles have the ability to sense objects with geographic precision, but such

sensing capability is not available with all assets collaborating to accomplish a mission.

The ability to share uncharted objects across a network could improve operational

effectiveness.

• Logistics Management – Critical missions often depend on supplies. Knowing which

supplies are where will have an impact on operational effectiveness. This real-time

tracking is best done through networks, and it would include people in addition to

cargo.

• 9-Liners – This term refers to specially formatted messages traditionally sent using

9 lines. As an application, it is intended to address surprises that could occur during

critical missions, such as an unforeseen search-and-rescue or injury. information in the

9-liner contains the type of event, where it happened, and other details associated with

the type of event that occurred.

• Connectivity Optimizer – This application is intended for UAVs or other assets

whose primary mission is to provide connectivity among the nodes collaborating to

accomplish a mission. This application knows the changing network topology and cre-

ates flight paths for the host to maximize connectivity between any two nodes on the

network. It is a dynamic algorithm. Connectivity can be accomplished through mul-

tiple hops, and this application would be periodically updated with network topology

information towards the goal of maximizing the number of possible pairwise connec-

tions. This application is particularly useful with line-of-sight communications in an

operational environment with obstructions impeding line-of-sight. For this application

to work properly, real-time networking information is necessary.

30

4.3 Domain Rules

• Event-Driven Imagery Dissemination – In cases where video is not practical due

to host resource limitations or the desire to not significantly impact human workload

watching the video, this application can provide utility. Users of this application can

set predetermined points where the onboard system will take a snapshot and post the

result to the network for others to see. Other users can subscribe to these postings. In

addition to predetermined locations, imagery can be posted by user selection or from

some other event germane to accomplishing the mission. Captured imagery can be

automatically disseminated or stored on the host awaiting human “mark ups” prior to

dissemination.

• Networked Fires – Some critical missions require the use of lethal and non-lethal

weapons. This application can use information collected from multiple sources to

provide a more precise firing solution or allow greater standoff ranges between the

targeting asset and the firing asset.

In addition to containing the executable code for the networking applications, the Appli-

cation Library also contains parameters that the Network Processing Parameters database

needs for dynamically updating the networking state on the host. Each application also

references middleware services it needs to operate properly. These references are used to

create the Service List. From a modeling perspective, these applications will cause discrete

decisions to be made relative to how the mission is performed. Branch points in the models

will be used to represent the effects of these applications running on the host.

4.3 Domain Rules

Domain Rules indirectly impact the middleware by controlling which applications are in

memory. When Domain Rules are triggered by events, the list of running applications could

change. When this happens, Flexile Middleware will access the Applications Library to

determine which middleware services need to be available. This information is passed to the

Reconfigurator, which will implement the change. Example Domain Rules inspired by the

evaluation scenarios described in this thesis are as follows:

• If (Radiological Sensor exceeds a Safe Level) then (Load Flight Re-Planner Application)

and (Publish Message)

31

4.4 Service List

• If (User Commands State Change to Relay) then (Load Communications Relay Appli-

cation)

• if (On-Board Sensors Detect Environmental Changes) then (Load Network Weather

Application)

• if (Search-And-Rescue Message Received) then (Load SAR 9-Liner Application) and

(Load Flight Re-Planner Application)

• if (User Commands Person or Cargo Pick-Up) then (Load Logistics Application)

Notice that the results of the Domain Rules are all load actions. The Reconfigurator has

the job of actually loading the applications. It is done this way because the Reconfigurator

has knowledge of the processing capabilities of the host and maintains a priority listing of

the applications. Results from the Domain Rules are used by the Reconfigurator to adjust

the application priorities, and perform the reconfiguration.

4.4 Service List

All middleware-based networking applications require services. The services provide needed

isolation between the applications and network stack on the host. Services implement pub-

lish, subscribe, broadcast, quality of service, and other capabilities listed in Chapter 3 for

middleware. The Service List is constructed from a mapping contained in the Application

Library. There is no direct modeling of the Service List, but its functionality is essentially

modeled as part of the Reconfigurator.

4.5 Executable Applications and Middleware

Executable Applications and Middleware is the code and memory that is run to obtain de-

sired network performance and functionality. With Flexile Middleware, this will change

during missions as determined by Domain Rules, Learning Rules, and the Reconfigurator

using information provided by the other Flexile Middleware modules. Multiple processing

cores can be used to maintain both an active operational system and one that represents a

different operational system designed for better performance. This is discussed more in the

Reconfigurator section.

32

4.6 Performance Monitor

4.6 Performance Monitor

The Performance Monitor normally runs periodically, but can also run asynchronously based

on critical events. Those events could be matched to some set of monitored mission parame-

ters or direct user input. Monitoring data is collected in the Usage Statistics, and information

is also passed from the Performance Monitor to the Learning Rules. The Performance Mon-

itor triggers the Reconfigurator, which in turn could cause the Flexile Middleware to change

operational states. It is important that the cycle time for the Performance Monitor is always

greater than the cycle time for executing the sequence of Learning Rules, Domain Rules, and

Reconfigurator.

4.7 Usage Statistics

Usage Statistics are collected each cycle by the Performance Monitor. This information

is used by the Learning Rules to improve the performance of Flexile Middleware. Perfor-

mance is associated with the parameters of Flexile Middleware itself, not with the domain

application or rules.

4.8 Learning Rules

Learning Rules are defined to improve the performance of Flexile Middleware over time.

Time in this case could be dynamically changing during operation or between operations.

Example conditions for learning rules are as follows:

• Reconfigurator changes states too often or not often enough.

• Applications in memory not used enough or at all for a given operational state.

• A non-core application functions more like a core application for the same type of

mission.

• Reconfigurator frequently alternates between two different operational states before

settling on a sustained state.

33

4.9 Reconfigurator

If a learning rule triggers during operation, its impact on other modules is a change to a

Flexile Middleware operational parameter, such as Performance Monitor or Reconfigurator

frequency. Since Learning Rules use information that is collected over multiple missions, its

data must be loaded and saved from a non-volatile source. This information can be reviewed

by human operators to make direct changes to Flexile Middleware parameters, such as the

Application Library, Service List, and the Learning Rules themselves. It is possible, but

not desirable, for Learning Rules to cause changes in the logic of Domain Rules. If such

an adaptation is desired, it will be necessary to recompile the Domain Rules, including a

topological sort of the rule base. The result of this compilation would be used to recalculate

the cycle time for the Performance Monitor. This is necessary to ensure that the cycle time

of the Performance Monitor is always more than the cycle time for executing the sequence

of Learning Rules, Domain Rules, and Reconfigurator.

4.9 Reconfigurator

At the core of Flexile Middleware is the Reconfigurator module. This module executes the

Domain Rules, and if the result demands a change in operational state, it sets the Executable

Middleware and Applications to the set defined for that state. Information about which

middleware services and applications are needed for each operational state is calculated by

the Reconfigurator using information contained in the Application Library and Service List.

The Reconfigurator knows which applications and middleware are currently executing, and

how to make the transition to a new memory state. A flowchart illustrating the logic of the

Reconfigurator is shown in Figure 4.3.

The Reconfigurator contains a rule-based inference engine to execute the Domain Rules.

Since the goal is to minimize processing latency, the best implementation for this inference

engine is to compile it directly into executable code. The rules can be sorted topologically

so that only needed rules are executed each time there is a change to a rule condition. The

topological sort on the rules also determines a maximum rule chain length, which can be

used to determine the latency for execution of the Domain Rules. This value is necessary

because it contributes to the cycle time for the Performance Monitor.

A prioritized list of applications is the result of executing the Domain Rules. The Recon-

figurator first compares the new list to the list of currently executing applications. Order is

not important for this check. If the new list is different, then the Reconfigurator calculates

34

4.9 Reconfigurator

Figure 4.3: Reconfigurator Flow Chart

35

4.9 Reconfigurator

a new list of applications in priority order while ensuring that the cumulative impact of

each application does not exceed parameters defined in the Network Processing Parameters

database. If the addition of an application causes a parameter to exceed its limit, then the

rest of the applications are checked in order to see if any others could fit. Special decision

rules can be implemented for the last stage of building a new application list. These special

decision rules will be used to determine if it is better to add one higher priority application

compared to multiple lower priority applications. These are best implemented with an un-

derstanding of the mission, and could also be dynamically changed as a result of executing

the Learning Rules.

By using certain Domain Rules, the Reconfigurator can be used to provide additional

redundancy for networked systems. For example, suppose several nodes in a network do

not have the resources to run a complicated application and these nodes rely on one other

node that can run the complicated application and provide the results that the other nodes

need. If the complicated application is critical to accomplishing the mission and the node

running that application becomes disconnected, a rule for reconfiguration could be used to

load the critical application on another node that is connected to the network. It may also be

desirable to ensure that at least two nodes on a network can run mission-critical applications,

so there is less of a chance that a reconfiguration is needed to bring a critical application

back into the network.

The Reconfigurator uses a variable called the Application Load, which is the list of

applications currently running on the network host. This list changes dynamically with a

Flexile Middleware implementation. From a modeling perspective, the models will reference

this list and select predetermined branch points depending on whether the application is

running or not, or if it is running, whether it has the right information to perform its

expected functionality. The Reconfigurator also maintains a variable which is the list of

currently loaded middleware services called the Service Load. It is the subset of services from

the Service List that needs to run on the host to support the Application Load. The Service

Load will impact Network Processing Parameters, because they effect memory, latency, and

bandwidth, as well as other quality of service features. Similar to the Service List, there is

no direct modeling of the Service Load, but its functionality is essentially modeled as part

of the Application Load.

Real-time performance is a requirement for critical applications. Accordingly, it is not

practical to cause a processing delay by swapping all the applications and middleware in

36

4.9 Reconfigurator

memory. Reconfigurator takes advantage of multi-core architectures where one core contains

the active code (Active Core) and the other contains the code for the transition state (Backup

Core). This provides a seamless transition to a new state without interrupting the processing.

When the state transition is made, the two cores simply swap roles and the previous active

core is reloaded with the applications and middleware services common to all operational

states. The Active Core interacts with users and the network. The Backup Core is running

in the background, but it does not have direct access to users and the network. However, the

Backup Core can also process user and network data, if it is the same information needed

by the Active Core. This methodology minimizes the latency when Active and Backup

Cores swap roles. The OpenMP R© organization has an Application Program Interface [44]

that supports this type of parallel processing in multi-core architectures. The Reconfigurator

determines the content for each core and determines which core is the active one. Numerous

compiler vendors and communities support the OpenMP R© API, such as Gnu, IBM, Oracle,

Intel, Microsoft R©, and Cray. Supported languages include C, C++, and Fortran.

37

5

Metrics and Measurements

This thesis presents a new class of middleware intended to improve operational performance

in critical missions. Operational performance is measured by probability of successfully

accomplishing the mission. The challenge is to identify and measure parameters directly

associated with accomplishing a critical mission. An obvious choice is time. For example, it

is reasonable to assume that if a person who is stranded and injured is not provided initial

medical care within an hour, then a search-and-rescue mission can be declared unsuccessful.

Also, there is a probability that some mission-ending event may take place, which is not

associated with the actual time of the mission. This chapter will show how these parameters

will be measured to show the operational value of Flexile Middleware.

5.1 Measurement Methods

The most important contributor to operational performance is situational awareness. The

cognitive processing of information creates individual situational awareness. Endsley [45]

defines a term called Team Situational Awareness which represents the collective situational

awareness of a group collaborating to accomplish a mission. Since there are differences in how

information is communicated during networked operations, there is variation in situational

awareness, ultimately leading to differences in operational performance applicable to both

individuals and teams. Therefore, methods to measure situational awareness are useful to

measure operational performance.

Endsley et al. [46] summarizes and compares numerous methods of situational aware-

ness. A subjective evaluation was used to compare methods using questionnaires. Other

38

5.1 Measurement Methods

approaches have attempted to use more objective measures, such as those connected to im-

age quality (“blobby shading” and Delaunay triangulation) [47]. These methods have been

proposed to measure individual situational awareness, but others, e.g. [48], have extended

situational awareness measurement to entire theaters of operation involving numerous mili-

tary units.

An individual approach is used to measure the operational value of Flexile Middleware

compared to other methods of networked communication, because if one individual shows

improvement in operational performance based on the type of networking then all others

collaborating to accomplish the mission will show improvement. Purely objective meth-

ods may be applicable to a small segment of situational awareness, but the involvement

of cognitive processes makes objective measures unreliable and inconclusive for measuring

mission-level situational awareness. Otherwise, there would be a generally accepted measure

of mission-related situational awareness, which there is not.

Conducting numerous missions with multiple different networking methods and then

interviewing users afterwards may provide a reasonable subjective measure of situational

awareness but not practical. Simulations with subsequent questionnaires similar to how

Endsley [45] measured subjective situational awareness may also be possible but also im-

practical for lack of operational experts. Overby et al. [49] suggest a new approach to

measuring situational awareness based on temporal and spatial metrics. Their metrics use

subjective assessments to complement temporal and spatial calculations. This approach

shows promise for the purpose of measuring the operational value of Flexile Middleware

compared to other methods of networking however, the calculation of spatial and temporal

metrics require multiple “peers” within a distance threshold and a measure of perceived

position to actual position. There may not be enough peers to calculate a reasonable metric

and positional measurements depend on many random factors, such as GPS and elevation

data accuracies.

A combination of subjective and objective measurements appears to be a good approach,

but unlike Overby et al. [49], the approach used here employs subjective assessments of

mission routes, decisions, and expected information content of the various comparative net-

working methods. Subjectivity is used only during mission simulations. The different ways to

accomplish a simulated mission were analyzed in terms of time and occurrence of a mission-

ending event. This data was sufficient to collect statistics about probability of accomplishing

the mission within a certain period of time and the probability that a mission-ending event

39

5.2 Introduction to the Selected Measurement Method

could occur. The availability and quality of information was used to distinguish each of

the networking methods based on reasonable assumptions related to the particular method.

These assumptions will be described in the sections that follow. Essentially, the selected

measurement methodology consists of: (a) mission modeling, (b) assumptions about infor-

mation availability and quality, (c) conducting the same mission multiple times for each

networking type, (d) grouping route segments by similarity, (e) building a statistical model

of mission time and problematic events, and then (f) calculating an expected probability of

mission success. The situational awareness aspect of operational performance is contained

in information assumptions and expert decisions based on those assumptions.

5.2 Introduction to the Selected Measurement Method

The first step of this modeling is to define cases to show successive improvement by adding

features leading up to capabilities associated with the use of Flexile Middleware. The initial

baseline case would be communications using voice alone. This is the most common form

in use today. The next increasing level of communication capability involves simple data

connectivity in addition to voice. This could be through accessing a data link or other point-

to-point connection between collaborating assets. The next increasing level of capability is

a network. For this case, a network would be wireless and ad hoc, including a middleware

implementation that could be adaptive in the classical sense as described in Chapter 3.

Flexile Middleware is the fourth case, and it would have more context-sensitive capabilities

compared to conventional middleware. This approach was first presented by DuBois, et

al. [50]. Relative to that paper, Flexile Middleware represents an example of Advanced

Networking.

The next step of modeling involves the assignment of assumptions relative to each of

the four cases. Fundamentally, the methodology seeks to calculate the probability of mak-

ing a decision based on information times the probability of receiving that information.

Simulations and expert judgment are used to estimate these values relative to each of the

communication methods. These assumptions need to be reasonable given the mission, and

are described generally as follows:

(A) Voice-Only – In this case, most communications are associated with updating progress

according to an original plan. If something significant happens during the mission, there

40

5.2 Introduction to the Selected Measurement Method

is a low probability that the information will be used quickly enough to make the changes

necessary to deal with that event. Voice messages are subject to misinterpretation and

errors, more so than the other three cases. For this case, the expectation is that there

is a lower probability of receiving information compared to the others , and also a lower

probability of acting on that information.

(B) Simple-Connectivity – In this case, information is mainly limited to simple com-

munication between pre-configured nodes on a point-to-point basis. Useful mission

information that is known by other than these connected nodes are subject to the same

deficiencies as the Voice Only case. In contrast to Voice Only, there is a reasonable

chance of getting useful information in time to do something about it, and a low prob-

ability of misinterpretations or errors. For this case, the expectation is that there may

be a slightly higher probability of receiving useful information compared to Voice-Only,

and a slightly higher probability of acting on that information because it would be in a

more actionable format.

(C) Network-Connectivity – In this case, data can pass from any sender to any receiver

provided that a path of connections between them exists. It is reasonable to assume

that with the right applications and middleware that some domain-aware processing is

possible to help make better choices. However, there is some risk that unpredictable

events in the operating environment will create the situation where the best applications

may not be available to certain network entities that would use them. For this case,

the expectation is that network connectivity makes the probability of receiving new

information relatively high, and the digital format would make it useful for making

decisions. However, there is still a possibility that the right applications may not be

present to convert that information into something actionable.

(D) Flexile-Middleware – This case is similar to standard Network Connectivity, but with

a higher probability that the right software applications are running on the network

entities that need them. It would exhibit more context-aware processing compared

to standard Network Connectivity based on the premise that processing and network

capabilities are limited. For this case, the expectation is that the probability of receiving

information would be the same as Network-Connectivity, but it would have a higher

comparative probability of acting on that information, because of a higher probability

41

5.3 Example Setup

that the right applications were available to process that information into an actionable

form.

The third step is to construct an example to test the measurement methodology and

then extrapolate that example to a more generic situation to make predictions about the

operational performance improvements offered by Flexile Middleware.

5.3 Example Setup

An example is used to construct a measurement methodology. Consider a search-and-rescue

mission with potential complications associated with a spreading radiation cloud from a

nuclear accident. A helicopter needs to transport injured people from a position near the

accident area to a hospital. There are unmanned air vehicles carrying radiological sensors

that are available to participate. The team on the helicopter is equipped with medical

staff capable of stabilizing the injuries for transport from the pick-up location to a hospital.

Based on history, the helicopter team knows that their best chance for success is to meet the

injured people within 60 minutes from the start of the mission. To obtain a reasonable set of

assumptions to be used in calculations, this mission was tested using the STK R© constructive

modeling software.

Several observations were evident from running the STK R© mission model. Approxi-

mately 20 minutes from the start of the mission, information about the spreading radiation

cloud might be available to establish a better route to the injured people. For Case A, it is

doubtful that this information would be available to the helicopter crew. For Case B, this

information may be available about half the time, but the capability of preparing an optimal

re-plan is probably not possible. The indication would be only that there is risk of approach-

ing too close to the cloud. For Case C, there is a very good chance of getting the information,

but video data showing the progression of the cloud may not be available, because processing

this data has a significant impact on computing and network resources. Case D has a high

probability of figuring out a best re-plan to avoid the cloud and make the pick-up in time.

A second decision point occurs if the first opportunity to re-plan is missed. As an event,

this is motivated by receipt of a warning message from an on-board radiological sensor or

another message from a different off-board source. This decision typically occurs about 10

minutes after the first decision point. At the second decision point, four different recovery

42

5.3 Example Setup

re-plans are plausible, each taking a different amount of time, where the longer routes may

contain additional re-plans based upon more detailed updates. Each of the four cases have

different probabilities of taking different recovery routes. Some routes are at higher risk of

contamination from the radiation cloud. The decision criteria for mission success is that the

mission time took less than or equal to 60 minutes and the helicopter was not contaminated.

STK R© model analysis and observations used to establish a metric methodology are

defined by the following steps:

• Step 1: Generate initial travel time of approximately 20 minutes using a normal

distribution (µ = 20, σ = 2) to the first decision point. Approximately 68% of the

time that decision point will occur anywhere from 18 to 22 minutes, and 95% of the

time it will occur from 16 to 24 minutes into the mission.

• Step 2: This the first decision point with 3 possible alternatives: No Decision; Re-

plan to OK-Route; and Re-Plan to Best-Route. This decision is determined by the

following rules relative to the four cases: (A) 75% Continue-Original, 20% Re-Plan to

OK-Route, 5% Re-Plan to Best-Route; (B) 25% Continue-Original, 50% Re-Plan to

OK-Route, 25% Re-Plan to Best-Route; (C) 10% Continue-Original, 30% Re-Plan to

OK-Route, 60% Re-Plan to Best Route; and (D) 5% Continue-Original, 10% Re-Plan

to OK-Route, 85% Re-Plan to Best-Route. Then go to Step 3a for Best-Route, Step

3b for OK-Route, or Step 3c for Continue-Original.

• Step 3a (Best-Route): Generate additional travel time of approximately 30 minutes

using a normal distribution (µ = 30, σ = 2). Set probability of contamination to 0%.

Go to Step 5.

• Step 3b (OK-Route): Generate additional travel time of approximately 45 minutes

using a normal distribution (µ = 45, σ = 5). Set probability of contamination to 0%.

Go to Step 5.

• Step 3c (Continue-Original): Generate additional travel time of approximately 10

minutes using a normal distribution (µ = 10, σ = 1), and then make a decision based

on the following rules relative to the four cases: (A) 20% OK-Recovery, 45% Marginal-

Recovery, 30% Difficult-Recovery, 5% Best-Recovery; (B) 10% Best-Recovery, 50% OK-

Recovery, 25% Marginal-Recovery, 15% Difficult-Recovery; (C) 50% Best-Recovery,

43

5.3 Example Setup

25% OK-Recovery, 20% Marginal-Recovery, 5% Difficult-Recovery; and (D) 70% Best-

Recovery, 15% OK-Recovery, 10% Marginal-Recovery, 5% Difficult-Recovery. Then go

to Step 4a for Best-Recovery, Step 4b for OK-Recovery, Step 4c for Marginal-Recovery,

or Step 4d for Difficult-Recovery.

• Step 4a (Best-Recovery): Generate additional travel time of approximately 25

minutes using a normal distribution (µ = 25, σ = 3). Set probability of contamination

to 1% (PCBest). Go to Step 5.

• Step 4b (OK-Recovery): Generate additional travel time of approximately 30 min-

utes using a normal distribution (µ = 30, σ = 5). Set probability of contamination to

5% (PCOK). Go to Step 5.

• Step 4c (Marginal-Recovery): Generate additional travel time of approximately 40

minutes using a normal distribution (µ = 40, σ = 10). Set probability of contamination

to 15% (PCMarginal). Go to Step 5.

• Step 4d (Difficult-Recovery): Generate additional travel time of approximately 60

minutes using a normal distribution (µ = 60, σ = 15). Set probability of contamination

to 50% (PCDifficult). Go to Step 5

• Step 5: Show timing results. For each case (A, B, C, D), show the probability

of mission success, which is defined to be No Contamination and Cumulative Mission

Time is less than or equal to 60 minutes.

A summary of the statistical parameters used for the mission segments is shown in Table

5.1.

The numerical values discussed in steps 1 through 5 and shown in Figure 5.1 agree with

the expectations discussed in Section 5.2. Those expectations refer to the probability of

making a decision based on receiving new information times the probability of receiving that

information. With agreement between expectations and simulated values, there is confidence

that subsequent calculations will yield reasonable estimates of operation performance for

comparative purposes.

44

5.3 Example Setup

Table 5.1: Mission Segment Statistical Parameters

45

5.4 Calculations

Table 5.2: Decision Point p1 Probabilities

5.4 Calculations

As shown in this one example, it is possible to derive a metric methodology to predict the

operational value of networking for a critical mission example. It relies on assumptions de-

rived from running numerous models in a constructive simulation tool (in this case, STK R©)

to understand the choices that can be made as the mission unfolds. Operational performance

is measured in comparison to conducting the mission without the benefit of networking, and

the improved decision-making that comes with it. Using the search-and-rescue mission ex-

ample, we can define a set of statistical equations for each of the four cases. The methodology

defined in Steps 1 through 5 can be used to derive equations for each case of this example

as follows.

Let random variable T0 represent the time it takes to reach the first decision point. In all

four cases, T0 = N(20,2), where N is a normal probability density function. Three choices

occur at the first decision point, so define the numerical variable p1X,y to represent the

probability that for case X, choice y is taken. In this example, X can range from A to D,

and y can range from 1 to 3. The values of p1 are shown in Table 5.2.

If y = 1 or 2, then the remaining time to complete the mission is defined by normal

distribution functions for Best-Route and OK-Route, respectively. Step 3a defines Best-

Route as N(30,2), and Step 3b defines OK-Route as N(45,5). The probability of choosing

Best-Route is p1X,1, and the probability of choosing OK-Route is p1X,2. So, we can define

the random variable T1 to represent the time it takes to complete the mission after a choice

is made at the first decision point. In this case, T1 = p1X,1N(30,2) + p1X,2N(45,5). Since

46

5.4 Calculations

Table 5.3: Decision Point p2 Probabilities

the routes are independent, T1 is a normal distribution with mean µ = 30p1X,1 + 45p1X,2,

and variance σ2 = 22p1X,1 + 52p1X,2.

If y = 3, which means Continue-Original, or do not make a decision at the first decision

point, then additional time is incurred before the second decision point. As stated in Step

3c, this additional time is given by N(10,2), which may be represented by random variable

T2. Similar to the first decision point, a numerical variable p2X,y is defined to represent the

probability that for case X, choice y is taken at the second decision point. X ranges from

A to D, and y ranges from 1 to 4 associated with Best-Recovery, OK-Recovery, Marginal-

Recovery, and Difficult-Recovery routes, respectively.

Define the random variable T3 to represent the time to complete the mission after the

second decision point. Using the same logic as the first decision, T3 = p2X,1N(25,3) +

p2X,2N(30,5) + p2X,3N(40,10) + p2X,4N(60,15). This covers all the possibilities, so we can

define random variable TX to represent the time to accomplish the mission for case X as,

TX = T 0 + T 1 + p1X,3 ∗ (T 2 + T 3).

Since all time segments are independent, this expands as a normal distribution with mean,

µX = 20+30p1X,1+45p1X,2+10p1X,3+25p1X,3p2X,1+30p1X,3p2X,2+40p1X,3p2X,3+60p1X,3p2X,4,

and variance,

σ2
X = 22+22p1X,1+52p1X,2+p1X,3+32p1X,3p2X,1+52p1X,3p2X,2+102p1X,3p2X,3+152p1X,3p2X,4.

47

5.4 Calculations

Table 5.4: Means, Variances, and Standard Deviations for the Four Cases

Using the data contained in Tables 5.2 and 5.3 generates means, variances, and standard

deviations for the four cases as shown in Table 5.4.

The Normal probability density functions defined by these means and standard deviations

can be used to calculate the probability that the mission time will take 60 minutes or less.

This is done by calculating the integral under the Normal curve from negative infinity to

60. Microsoft R© Excel has a formula for this calculation called NORMDIST. Let PTX be

the probability that for Case X the mission time takes 60 minutes or less. In Excel, PTX =

NORMDIST(60,µX,σX,TRUE). Specific Excel-calculated values are PTA = 14.64%, PTB =

39.3%, PTC = 84.88%, PTD = 99.12%.

All routes following the situation when a decision is not made at the first decision point

have some risk of contamination. Let PCX represent the probability of contamination for

Case X. This is calculated as the weighted sum of probability of contamination for each of

the four routes multiplied by the probability of not making a decision at the first decision

point. So,

PCX = p1X,3 ∗ (p2X,1 ∗ PCBest + p2X,2 ∗ PCOK + p2X,3 ∗ PCMarginal + p2X,4 ∗ PCDifficult)

Using data contained in Tables a and b results in the following probabilities of contamination:

PCA = 17.1%, PCB = 3.46%, PCC = 0.73%, and PCD = 0.27%.

We now have enough information to calculate probability of mission success for all four

cases. Let PSX be the probability of mission success for Case X. PSX = PTX ∗ (1 − PCX).

Calculated values are PSA = 12.13%, PSB = 37.93%, PSC = 84.27%, and PSD = 98.85%.

Table 5.5 summarizes the calculations.

48

5.5 Rationale for Assumptions

Table 5.5: Metric Calculations

5.5 Rationale for Assumptions

The mathematical results presented here are based on a series of experiments combining

expert opinion with statistics resulting from simulations. When expert judgments were

made, conservative assumptions were used so as not to overestimate the value of Flexile

Middleware. Many trials of the same scenario were run using the STK R© software to derive

the starting estimates, which are contained in the p1 and p2 parameters, as well as mean

and standard deviation values associated with route times. Since these numbers determine

the end results, each one will be discussed with its rationale:

Time to First Decision Point (p1)

After studying the mission in STK R©, experimentations showed that it would be possible

to receive an indication about a spreading radiation cloud approximately 20 minutes after

the start of the mission, with times as low as 16 and as high as 22, so the time to the first

decision point is represented as a normal distribution with a mean of 20 and a standard

deviation of 2.

Best-Route

Assuming that a decision is made at p1, STK R© runs showed how it was possible to find

alternate routes to the pick-up area, which on average is about 30 minutes after that decision

is made. Operationally, this appears reasonable, because the goal is to make a pick-up within

60 minutes of receiving the distress call. A good, representative mission may have around

49

5.5 Rationale for Assumptions

10 minutes of margin, which could be exploited en route with the right information. Those

STK R© runs showed how Best-Routes could be done in as few as 26 minutes, so Best-Route

is represented as a normal distribution of mean 30 and a standard deviation of 2.

OK-Route

Several STK R© routes had timelines that averaged about 45 minutes after the p1 decision.

This was because those routes got too close to a dynamic radiation cloud from changing wind

directions. These routes required ad hoc changes causing additional mission time compared

to the Best-Routes. These groupings of routes showed times as low as 35 minutes, but rarely

lower given the added re-planning time requirements. This defines a normal distribution

with a mean of 45 and standard deviation of 5.

Time to Second Decision Point (p2)

The assumption is that the original mission route would intersect with a radiation cloud.

If an early indication does not cause a decision at p1, then there would surely be a warning

about 10 minutes later about the risk of getting too close to the cloud. This is modeled as

a normal distribution with a mean of 10 and standard deviation of 1.

Best-Recovery

STK R© runs showed that if a decision was not made at p1, then it was still possible to

accomplish the mission within 60 minutes using a well-selected recovery route. These routes

effectively avoid the radiation cloud while minimizing time to the pick-up area. Times as low

as 19 minutes for the recovery route were possible, but averages were closer to 25 minutes.

This is modeled as a normal distribution with a mean of 25 and a standard deviation of 3.

Most times, these routes had no risk of radiation cloud contamination, but with a big change

in wind speed it was possible. Accordingly, this risk was set to 1%.

OK-Recovery

STK R© showed another set of route re-plans that averaged 30 minutes. These routes had

one or two changes of path due to straying too close to the changing radiation cloud, but

times as low as 20 minutes were possible. This is modeled as a normal distribution with

a mean of 30 and a standard deviation of 5. Risk of contamination was still very low, but

more than the Best-Recovery routes. Based on STK R© runs, this risk is estimated at 5%.

Marginal-Recovery

STK R© showed some routes that required a few en route changes to avoid the radiation

cloud. These changes increased the average time to 40 minutes, but as low as 20 minutes was

still possible. This is modeled as a normal distribution with a mean of 40 and a standard

50

5.5 Rationale for Assumptions

deviation of 10. In STK R©, these routes showed risk of contamination about 3 times more

likely than the OK-Recovery routes, so it is estimated at 15%.

Difficult-Recovery

Many of the recovery routes shown in STK R© involved significant changes to the path

or many small changes due to surprise information about the progression of the radiation

cloud. These routes averaged about 60 minutes with a low close to 30. So, if average time was

expended to the second decision point (30 minutes), then it is still possible to have a lucky

Difficult-Recovery route that arrives at the pick-up location within 60 minutes. Difficult-

Recovery routes are modeled as a normal distribution with a mean of 60 and a standard

deviation of 15. These routes showed twice the risk of contamination as the Marginal-

Recovery routes, so it is estimated at 30%.

Case A (Voice Only)

For the first decision point, the values are 75% of the time no decision, 20% OK-Route,

and 5% Best-Route. The scenario assumes that the earliest time to get an indication of a

radiation cloud is about 20 minutes from the start of the mission. For Voice-Only, this would

require foresight on the part of those monitoring radiation levels as to the position of the

helicopter en route for the search-and-rescue mission. With voice-only communications, the

probability of the right information getting to the helicopter at the right time is very low. If

it does (25% of the time), then it is reasonable to assume that there is a one in five chance

of choosing the best route to accomplish the rest of the mission.

For the second major decision point, the values are 5% Best-Recovery, 20% OK-Recovery,

45% Marginal-Recovery, and 30% Difficult-Recovery. The difference between each of these

recovery missions is expected mean of time to complete the mission with a corresponding

standard deviation. With voice-only communications, there is very little information about

all the options for choosing a recovery route, so this decision would be more reactive to

the developing situation. There is still a chance (5%) of choosing a best recovery route

accidentally, but without any real-time data on the spreading radiation cloud, it will be a

hit-or-miss situation. The STK R© model showed many routes from which to choose, and of

course, changes can be made on the fly as well. Pilot intelligence can be considered, so there

is only a 30% chance of choosing a route that has the lowest chance of meeting the time

limit to accomplish the mission. Marginal-Recovery is more probable than OK-Recovery

given very little information about the radiation cloud.

51

5.5 Rationale for Assumptions

Case B (Simple Digital Connectivity)

For the first major decision point, the values are 25% of the time no decision, 50% OK-

Route, and 25% Best-Route. 25% was selected for the No-Decision case at p1, because it

is doubtful that a specific connection between the remote sensing device for the radiation

cloud and the helicopter would be in place. It would rely on human relays. It is still better

than the 5% for Case A, because there may be a digital feed from the sensing device to the

helicopter or from a command-and-control connection to the helicopter which had access to

the relevant information. If a decision is made, and lacking any event-specific applications,

the chances of selecting Best-Route (25%) is much lower than selecting OK-Route (50%).

For second major decision point, the values are 10% Best-Recovery, 50% OK-Recovery,

25% Marginal-Recovery, and 15% Difficult-Recovery. Since there is a connection between

the helicopter and the command-and-control station, there would still be a better than 50/50

chance of recovering from not making a good decision at the first decision point. However,

lacking detailed real-time information about the propagation of the radiation, cloud it is

much more probably that the selected route would be more OK than Best, but 10% of the

time a luck best route may be selected. With limited information in communications, there

is still a reasonable probability that riskier routes may be selected.

Case C (Basic Network Connectivity)

For the first major decision point, the values are 10% of the time no decision, 30% OK-

Route, and 60% Best-Route. Basic networking includes a full functioning ad hoc wireless

network running applications that may have adaptive features loaded before the mission

began. Since video-based applications have major impacts on processing and bandwidth,

only pre-defined video connections are assumed for Case C, and there is no way for the

applications to reconfigure themselves based on the mission context. These features would

be unique to Flexile Middleware, which is represented by Case D. Therefore, there is a very

high probability of making a decision at p1 (90% of the time), and a good chance that

the selected route would be the best option (60%). However, without the advantage of

video feeds that were not pre-established or to load additional video-based applications, the

chances of coming up with best route at p1 are not as high as in Case D.

For the second major decision point, the values are 50% Best-Recovery, 25% OK-Recovery,

20% Marginal-Recovery, and 5% Difficult-Recovery. If the decision is not made at p1, the

52

5.6 Sensitivity Analysis

Table 5.6: Time Sensitivity Values

capability of making a good recovery is still possible, but the closer proximity to the radia-

tion cloud makes information from video-based applications more important for the recovery

route selection.

Case D (Networking with Flexile Middleware)

For the first major decision point, the values are 5% of the time no decision, 10%

OK-Route, and 85% Best-Route, and for p2, the values are 70% Best-Recovery, 15% OK-

Recovery, 20% Marginal-Recovery, and 5% Difficult-Recovery. These values are small im-

provements over Case C to represent the added mission value from being able to load and

process video-based networking applications dynamically.

5.6 Sensitivity Analysis

The mission success time for the base case was set to 60 minutes to correspond to the

“golden hour” operational maxim for search-and-rescue operations. Since time is an impor-

tant parameter for critical missions, it would be desirable to assess the sensitivity of expected

performance improvements offered by Flexile Middleware relative to time. For this analysis,

mission success time is allowed to vary from 50 minutes to 90 minutes using 5-minute incre-

ments. For each case and each time setting, percent improvement of the Flexile Middleware

case (Case D) relative to the other three cases is calculated. Results are shown in Figure

5.1, and the values for this graph are shown in Table 5.6.

This analysis shows that performance improvements comparing Flexile Middleware to

Voice-Only is significant. Even when mission time is increased to 90 minutes, Flexile Mid-

53

5.6 Sensitivity Analysis

Figure 5.1: Sensitivity of Improvement Relative to Time

dleware shows a 25% improvement in probability of mission success. Comparisons to Simple

Connectivity and Basic Networking are not as significant with almost equal probabilities of

mission success occurring at 75 minutes and 65 minutes, respectively. A reasonable conclu-

sion is that Flexile Middleware can provide a significant advantage when success depends on

meeting aggressive times.

The base case contains a major significant event impacting probability of mission success,

and that is contamination from a radiation cloud. Variations in the probability of contam-

ination may be due to inaccuracies in the sensing equipment or swirling winds that make

predicting the movement of the cloud very difficult. For this sensitivity analysis, probability

of contamination is allowed to range from 50% less probable to 100% more probable in 25%

increments. These changes were incorporated into the mathematical model to produce the

results shown in Figure 5.2, and the values for this graph are shown in Table 5.7.

Figure 5.2 shows that there is a linear change in percentage of improvement comparing

Flexile Middleware to the Voice-Only case. This is not surprising because, there is a much

higher probability that the Voice-Only case will not make an early decision compared to the

other three. Improvements of Flexile Middleware compared to the other two cases are also

54

5.6 Sensitivity Analysis

Figure 5.2: Sensitivity of Improvement Relative to Probability of Contamination

Table 5.7: Contamination Sensitivity Values

55

5.7 Discussion of Metric Results

shown, but not very significant.

5.7 Discussion of Metric Results

This metric analysis was based on one mission with two decision points, and one major

event that could cause the mission to be a failure. Better situational awareness is directly

proportional to better decision making. In fact, in the general case, it is reasonable to assume

that more decisions means less effective mission execution. A generalization of the model

presented in the previous sections suggests that more decisions increases the mission time in

comparison to making better, earlier decisions. Of course, it is possible to contrive a scenario

that initially appears to contain a good early decision based on timely, mission information,

but it leads to a less desirable end result compared to not making the decision at all. Simply

stated, these contrived cases represent nothing more than bad luck, but the contention is

that bad luck is more probable when good information is either ignored or unavailable to

make a mission-critical decision. In these cases, more decisions later in the mission will need

to be made to either address the bad luck or the consequences of not using the information.

Another observation about the metric results is that more complex missions will value

decision-making based on real-time situational awareness information compared to other less

complex missions. In more complex missions, there may be too much information potentially

leading to cognitive overload that may prevent good decisions early in the mission. The

features of Flexile Middleware are well-suited to address this challenge with the expectation

that if more complex missions were analyzed using this methodology, there would be an

even larger improvement of Flexile Middleware over other methods of communication and

networking.

In summary, though the scenario only has two decision points and one mission-ending

event, it does represent the general case of critical missions intended for the application of

Flexile Middleware. It is a medical evacuation operation with potential contamination from

a radiation cloud, but it could also have been a military assault operation with potential

failure from an enemy ambush, or a maritime patrol operation with potential failure from

straying into unallowable regions. In all these cases and more, the common theme is the need

to accomplish the mission within a predetermined amount of time at risk of failure due to

known or unknown events, and mission-relevant information is available. The representative

scenario is a conservative case, and as discussed, the benefits of advanced networking with

56

5.7 Discussion of Metric Results

Flexile Middleware would exceed the predictions presented in this chapter for similar or more

complex critical missions.

57

6

Operational Environment and

Requirements

Flexile Middleware will increase the administrative overhead of a network. As such, the

application environment needs characteristics that will make this added overhead justifiable.

Flexile Middleware is dynamically adaptive to the operational environment both in functional

behavior and elasticity to available network processing resources and constraints. Critical

missions have the opportunity to exploit these capabilities for improved mission effectiveness.

Certain characteristics are expected of networks designed to operate in critical missions:

(a) Ad hoc network formation; (b) Interoperability among a wide variety of node capabili-

ties; (c) Real-time or near real-time responsiveness; (d) High bandwidth data dissemination

(e.g. video); (e) Quality of service including information assurance; and (f) Execution of

network applications that may have an impact on human life or other effect deemed critical

by human society. Using networks for operations associated with military, humanitarian,

and civil/police missions have these characteristics. DuBois and Perry introduced the con-

cept of Flexile Middleware and discussed the potential for its operational utility[51]. Tactical

networks depend on the affordable integration of communication systems, net-ready applica-

tions, middleware, and processing for practical use. A key point is the use of open standards

due to expected changes in component networking technologies. Adaptive middleware can

be used to improve operational performance in tactical networks, especially those involving

mobile communications among air and ground systems for the purpose of achieving some

shared operational goal among networked members of a team[52].

58

6.1 Net-Ready Requirements

Presented in the four sections that follow are descriptions of example missions that will

highlight expected performance of the network, modeling requirements, net-ready applica-

tions, and processing architectures. The mission examples will be used as a basis for the

construction of models to rate the performance of Flexile Middleware compared to other

forms of static and adaptive middleware.

6.1 Net-Ready Requirements

Both commercial and military domains have requirements for net-ready applications. Com-

mercial requirements are principally derived from the business associated with cellular-based

data services. Since this thesis focuses on critical applications, there is no reason to discuss

market forces associated with mobile data services as a principal source of commercial net-

ready requirements.

Figure 6.1 illustrates an outline for addressing networking requirements in military ap-

plications. The requirements development process is a part of the acquisition process and

includes major milestones. An Information Support Plan (ISP) is required and it contains

details on how to tailor the other requirements documents. The program requirements will

state compliance with the Net-Ready Key Performance Parameter (NR-KPP)[53], which

is refined by the ISP. The figure shows the major elements of the NR-KPP, which defines

the test requirements to show compliance with the NR-KPP. Information Assurance is an

important requirement, and the government has other contributing directives and instruc-

tions to explain how networked security requirements will be addressed. Following these

requirements leads to additional test requirements. Ultimately, the program needs to obtain

a Joint Interoperability Test Certificate (JITC)[53] following a successful test program to be

approved for networked military operations.

6.1.1 The Acquisition Process

Addressing military net-ready requirements starts with the acquisition process known as

Joint Capabilities Integration and Development System (JCIDS)[54]. JCIDS specifies that

acquisition from concept through full operating capability will be accomplished through a

series of milestones from A to C leading to Initial Operating Capability (IOC), and then

operations and support. The military recognizes the value of exploiting networks, so to

59

6.1 Net-Ready Requirements

Figure 6.1: Net-Ready Requirements Flow Diagram

60

6.1 Net-Ready Requirements

complement JCIDS, it mandates the creation of an Information Support Plan[55] (ISP)

which evolves as a system matures according to the JCIDS process. The goal of this process

is to ensure that when the military develops a weapon system, it can interoperate with

other systems using networked communications. Most of the details emphasize the digital

data aspects of this interoperability, but there are sections of the ISP where conventional,

non-networked radios must be mentioned.

6.1.2 Net-Ready Key Performance Parameter (NR-KPP)

JCIDS and the ISP describe the process for a specific military system to be networked, but

the details on how that networking will be accomplished is contained in the Net-Ready Key

Performance Parameter, which is specified in Chairman of the Joint Chiefs of Instruction

6212.01E[53]. All major DoD programs need to comply with the NR-KPP, which contains

five key elements and a test and certification process for compliance. The five elements are:

1. Solution Architectures

2. Net-Centric Data and Services Strategy

3. Global Information Grid Technical Guidance

4. Information Assurance and Critical Infrastructure Protection

5. DoD Supportability

The ISP describes how the NR-KPP should be tailored for the specific weapon system

to be produced.

6.1.2.1 Solution Architectures

The DoD Architecture Framework, or DoDAF[56] describes the content of solution architec-

tures, and the NR-KPP specifies which architecture products are required for each stage of

the acquisition process. The solution architectures are grouped as a series of views (all, oper-

ational, system, and technical). Most of the architecture products are prepared using either

the Unified Modeling LanguageTM (UMLTM)[57, 58] or the System Modeling LanguageTM

(SysMLTM)[59]. Fortunately, many commercial tools exist to help developers produce solu-

tion architectures[60, 61, 62, 63, 64].

61

6.1 Net-Ready Requirements

6.1.2.2 Net-Centric Data and Services Strategy

This key element of the NR-KPP specifies that a service-oriented, inter-networked informa-

tion infrastructure must be used. It also specifies compliance with the DoD Net-Centric

Data Strategy[65] and the DoD Net-Centric Services Strategy[66]. The Defense Industry

Standards Agency (DISA) maintains tools to enable network data exchanges, such as a

metadata registry, service registry, and enterprise catalog. By having a centralized source

for this type of information, the DoD is planning to ensure that all weapons systems use the

same conventions for sharing interoperable information.

6.1.2.3 Global Information Grid Technical Guidance

The DoD uses the term Global Information Grid (GIG) to describe broad use of its net-

working capabilities for military purposes[67]. The NR-KPP contains a key section which

provides technical guidance for interacting with the GIG. To conform with this element of

the NR-KPP, weapon system program managers need to fill out questionnaires about the

operational use of their system, which will be used to create GIG Enterprise Service Profiles

(GESPs). GESPs include items such as interoperability requirements, a technical implemen-

tation profile (including quality of service requirements), the compliance testing method, and

data descriptions for shared information. The weapon system program manager is free to

choose the method for sharing information, but that selection comes from those listed in the

online Defense Industry Standards Registry (known as DISROnline) with details specified

in other architecture products.

6.1.2.4 Information Assurance and Critical Information Protection

This element of the NR-KPP was mandated by Congress through the Clinger-Cohen Act.

It specifies compliance with DoD Instruction 8580.1 (Information Assurance in the Defense

Acquisition System)[68] and the Defense Acquisition Guidebook[69]. In addition to showing

compliance with these instructions, this element of the NR-KPP is where the weapon sys-

tem program manager describes the details on encryption and other information assurance

requirements, as well as details on how the program will follow the Defense Information

Assurance Certification and Accreditation Process (DIACAP[70]) process to obtain an In-

formation Assurance (IA) certification.

62

6.2 Modeling Requirements

6.1.2.5 DoD Supportability

This element of the NR-KPP addresses requirements for compliance with the Electromag-

netic Environmental Effects and Spectrum Supportability Policy. It also specifies the use

of the Joint Tactical Radio System[71] for all communications from 2 MHz to 2 Ghz unless

waived according to approved procedures. This element is also where the weapon system

program manager details the approach for “anti-spoofing” and how non-networked data link

information is made available to the network. This element requires a program to perform a

bandwidth analysis and show the impact on interoperability of the weapon system into the

GIG.

6.2 Modeling Requirements

Since the motivation and goals are focused on improving the probability of mission success,

the best way to measure the value of Flexile Middleware is to simulate its performance

in a model and measure the probability of mission success with and without the features

associated with Flexile Middleware. Generally, these modeling requirements are as follows:

1. The model needs to be able to simulate military, humanitarian, and civil/police mis-

sions.

2. Actors in the simulation need autonomous capabilities limited to constraints defined

in the scripts for the scenarios, i.e. decision points to determine courses of action.

3. The modeling system needs to have the ability to adequately represent operational

environments with various terrain options including urban overlays and settings.

4. The model needs to be aware of node connectivity as it is impacted by breaks in

line-of-sight. Examples impacting line-of-sight include natural obstructions, adversary

communications jamming, antenna implementation range, and inability to obtain ac-

cess to priority satellite communication channels.

5. The model needs to be able to represent selected system parameters, such as data rate

with compressed video streaming.

6. The model needs to track assumptions and collect metric data.

63

6.3 Critical Mission Examples

7. The model needs the ability to execute rules dynamically during the simulation to

represent Flexile Middleware behavior.

A wide variety of communication systems is expected for military, humanitarian, and

civil/police missions. Such missions will normally involve aircraft, ground vehicles, individual

first responders or soldiers, and possibly unmanned systems. Each of these systems has

different communication systems operating on different frequencies with different waveforms

and transmission ranges. All of these characteristics need to be modeled. To show the utility

of Flexile Middleware, the approach is to use a tool to measure operational performance.

The expectation is that operational performance is improved with adaptive middleware that

can adjust to the mission context.

AGIs Satellite Toolkit (STK R©) was selected as the modeling tool for this research and

analysis. Specific modules used for the studies include: (a) Terrain and Cityscape Modeling;

(b) Constraints for Visibility; (c) Communication Link Analysis; (d) Imagery and Map Data;

(e) Sensor Modeling; (f) Maneuver Modeling; (g) Aircraft and UAV Modeling; and (8)

System Performance Analysis. Though originally designed for satellite studies, the STK R©
product has evolved into something much more generally useful with the features to address

all of the modeling requirements needed for this research.

One area identified for future research is to analyze the network performance of Flex-

ile Middleware (e.g. latency, packet loss, etc.). The Common Open Research Emulator

(CORE)[72] is a tool that allows emulation of entire networks. CORE consists of a user

interface for easily drawing topologies and can be used to model mobile ad hoc networks.

This tool can be used to collect metrics such as bandwidth, latency, packet losses, and restart

time after recovering from lost connections.

6.3 Critical Mission Examples

This section describes three different critical mission areas: military, humanitarian, and

civil/police.

Military strategists are giving greater attention to irregular warfare operations . A key

characteristic of these types of operations is the organization of a force package designed

to address a specific adversarial situation. Many of these situations are small operations

64

6.3 Critical Mission Examples

in urban or mountainous environments. The following mission characteristics are to be

expected:

• No satellite connectivity

• Objective changes during the mission

• Heterogeneous communication systems in use

• Strategic assets are not always available

• Line-of-sight may be complicated by terrain and structures

• Small Unmanned Air Vehicles (UAVs) expected

A network can be used to improve the performance of military missions with these char-

acteristics. An ad hoc network allows tactical subnets to form where those subnets have

a common mission objective. Satellite connections are expensive and sometimes the group

assigned a mission does not have the priority to access available satellite bandwidth. Small

UAVs with long endurance (e.g. InSitu ScanEagle R© [73]) can be positioned to ensure all

members of a tactical subnet group are able to communicate with each other.

The combat team commander will often assign a varied mix of assets to address any given

military threat. Since these assets will most probably have different communication systems,

the tactical subnet will have different bandwidths between different assets. In any instant of

time, there is a weighted graph of network topology, where the weights are proportional to the

bandwidth. The mobile nature of missions will make this weighted topology dynamic. Since

the network will be expected to run applications to support mission objectives, knowledge

of this changing topology is important, especially since some of the applications will require

bandwidths to support video streaming. The military desire to use real-time video for

improved mission performance is growing[74]. To be successful from a mission perspective,

actions derived from network information need to be processed within the reaction time of

the adversary.

In summary, networks for military missions are highly dynamic (varying topology and

bandwidth), have heterogeneous communication systems, need to run applications with dif-

ferent processing requirements that are tailored to mission objectives, and have real-time

65

6.3 Critical Mission Examples

performance considerations. It is conceivable that every application can be designed to in-

corporate a knowledge representation that takes these factors into consideration, but the de-

sire to leverage commercial network applications, principally for cost reasons, makes it more

practical to include this functionality in the middleware. Not only would this middleware

include the services needed by the applications, but it would also contain the functionality

to use mission objectives and network characteristics towards the goal of maximizing the

probability of mission success.

Humanitarian missions are similar to military missions but with some adjustments. They

are similar with limited access to wideband satellite connections, a dynamic network topol-

ogy with varying bandwidths, and opportunities to use UAVs to support network creation.

They are different in that there are no human adversaries trying to perform a competing

mission objective. Also, depending on the nature of the mission, there may or may not be

ground-based communication systems that need to be connected. These could be cell phones

attempting to be used by survivors or radio systems commonly used by first responders. By

the same logic as in military missions, humanitarian missions would need the same advance

middleware functions to use a network to maximize the probability of a successful operation.

A major riot situation in an urban environment is a good example of a civil/police

mission where a network can be used to improve mission success. From a networking per-

spective, there are complications introduced by disruptions to line-of-sight (the so-called

urban canyon), multiple agencies needing to communicate with each other, and the need to

bring in military force if the situation escalates. Civil/police missions have characteristics

similar to both military and humanitarian missions, and therefore can use a network with

the discussed middleware functions to maximize the probability of mission success. The

operational environment is composed of different radios that connect to form a system of

systems dedicated to accomplishing a well-defined mission and purpose. These radios may

be upgraded as technologies to support more complex and bandwidth-intensive applications

move into production.

6.3.1 Evaluation Scenarios

This subsection provides details on two critical mission scenarios that can be used to eval-

uate and measure the operational utility of networking, middleware, adaptive middleware,

and Flexile Middleware. The basic approach is to calculate operational metrics based on

66

6.3 Critical Mission Examples

conducting this scenario with the following assumptions: (1) Only voice communications;

(2) Simple point-to-point connectivity; (3) Basic networked communications; and (4) Ad-

vanced networked communications using an implementation of Flexile Middleware. Addi-

tional background information on the scenarios follow, and the results of analyzing one of

these scenarios was presented in Chapter 5. The humanitarian mission was chosen for met-

ric evaluation because it is less demanding in terms of situational awareness, criticality of

real-time communications, and higher risk of mission-ending events.

6.3.1.1 Humanitarian Mission with Radiological Complications

One critical scenario is a humanitarian mission with radiological complications. Analytically,

the purpose of this mission is to emphasize how networking can improve communications for

better command control, and then how Flexile Middleware can be used to improve safety,

survivability, and efficiency of the operation. The STK R© product will be used to mea-

sure operational performance, which provides results applicable to networks with adaptive

middleware.

Obviously motivated by the devastating tsunami to hit Japan, this scenario starts with

a UAV sent to investigate a damaged nuclear power plant. This would be a long endurance

UAV with a relatively small payload for communications and processing. Since there is no

pilot, services to support a pilot-vehicle interface are not necessary. This particular UAV

is equipped with a radiation detection sensor. From a middleware perspective, active ser-

vices would be associated with flying search patterns and monitoring sensors. Next, the

UAV detects high levels of radiation. This detection would trigger a rule in the middle-

ware that would reconfigure active services to process changes in the flight plans towards

the goal of assessing the size, direction, and heading of the radiation cloud. Data is sent

to human ground controllers who identify areas that need to be evacuated, and dispatch

helicopters to perform the evacuations. More UAVs are sent to both monitor the radiation

cloud and monitor the evacuations. Some of these UAVs would be under control of the

manned helicopters performing the evacuations. Evacuation teams would be equipped with

handheld devices. Helicopters would have situational awareness displays to show video from

UAVs and for basic command and control functions. Line-of-sight communications would

be required because the catastrophe knocked out the usual communications infrastructure.

Some UAVs are positioned to act as relays. These agents have many different functions with

67

6.3 Critical Mission Examples

different processing capabilities and needs for different middleware services. The scenario

also includes a change in weather, with critical relevance connected to a change in wind

direction. This environmental dynamic changes the network topology significantly, which in

turn changes the mission roles of the agents. This description shows how a critical mission

can be accomplished with ad hoc networking and Flexile Middleware. Experiments using

this scenario will be used to both show the operational value and to establish more detailed

functionality to embed in Flexile Middleware.

6.3.1.2 Mountainous Search And Rescue

Another critical scenario is mountainous search and rescue, which due to terrain, would have

more complications introduced by breaks in line-of-sight communications. The same analysis

approach for the Humanitarian Mission will be applied here as well. This scenario is similar

to the Humanitarian scenario, but is set in mountainous terrain. It further emphasizes com-

munications among multiple agents collaborating to perform a search. Middleware services

to support applications that are aware of real-time search patterns would be a higher priority

with this scenario.

A mountainous search and rescue operation would have additional complications with

lower visibility from clouds and other weather conditions. If it is in high altitudes, awareness

of atmospheric pressure is very important for rotorcraft operations. Another rotorcraft

concern is rotor blade icing. All of these conditions could lead to mission-ending events. It

is therefore reasonable to assume that whatever advantages can be offered by networking

(or advanced networking with Flexile Middleware) for a humanitarian mission is even more

advantageous for mountainous search and rescue.

Both scenarios emphasize attributes common to most any critical mission. They are:

• Communications are mainly line-of-sight

• Connectivity needs to be ad hoc

• Real-time performance is directly connected to probability of success

• Networks and applications need to be robust enough to handle major unforeseen

changes in the operational environment (expect the unexpected)

• There is a wide range of processing capabilities for networked devices

68

6.4 Future Wideband Communications

• Automated decisions made with incomplete or uncertain information can be made, but

need to have high confidence or human review and approval

To estimate the expected utility offered by Flexile Middleware, a critical mission was

defined with a relatively small number of decisions and risks. However, it is still necessary

to define the mission to be critical. Accordingly, a humanitarian mission with two decision

points and one risk of a mission-ending event was selected. The measure of success is making

the rescue within a short period of time while avoiding a mission-ending event. Most other

critical missions would have more decision points and more risk of mission-ending events,

so the advantages offered by networking with Flexile Middleware would be greater than the

humanitarian mission chosen for this analysis.

6.4 Future Wideband Communications

Starting in 2010, the telecommunications industry began a serious transition from 3G to 4G

networks as evidenced by ubiquitous advertisements on this subject. 3G networks ushered

in data services at rates targeted to 3 Mbps with actual data rates closer to 1 Mbps. 4G

networks are supposed to achieve data rates anywhere from 100 Mbps to 1 Gbps, basically

providing the ability to handle high quality video streaming. The underlying network has a

definite impact on middleware requirements, especially those with features to address quality

of service, like Flexile Middleware.

Critical operations are witnessing the same transition to wider band forms of commu-

nication. Military experiments, like JEFX-10[75, 76], are demonstrating the operational

value of networked wideband communications. Military requirements [77, 78, 79, 80, 81, 82]

state the desire to provide the capability for Beyond-Line-Of-Sight (BLOS) communications

with enough bandwidth to support high quality video. Wideband Satellite Communica-

tions (SATCOM) are an approach for ubiquitous coverage[83], but its implementation has

challenges for critical operations, especially those that need rotorcraft[84]. To address these

challenges, DuBois, et al.[5], suggest an approach involving more use of networking. The

premise of this approach is that it is possible to make small changes to standard concepts of

operations (CONOPS) as an effective alternative to wideband SATCOM. If Beyond-Line-Of-

Sight communications is operationally necessary, then a mature, lower bandwidth solution

is acceptable given the relative rarity of its expected use. In this case, users would notice

69

6.5 Net-Ready Applications

degradation in video quality, but it would happen so infrequently that it would be a rea-

sonable trade. UAVs will play a critical role in the new CONOPS with the assumption of a

moderate degree of networking technology in the operational environment.

6.5 Net-Ready Applications

The principal purpose of net-ready applications is improved situational awareness. Appli-

cations result from the direct implementation of user desires for networking capabilities to

support operational requirements. Situational awareness information is extremely valuable

to those performing critical operations. From a military perspective, asymmetric and ir-

regular warfare are more common, causing new challenges for interoperability. Networked

communications between assets collaborating to accomplish a mission can decisively improve

performance. Demand for information to support modern operations continues to increase.

Persistent surveillance is a driving requirement, and this data must be made available to

those who need it, and when they need it.

Ad hoc connectivity is required for interoperability among a comparatively smaller num-

ber of units often uniquely tailored to address an adversary or situation. In this environment,

there is a need to directly control collection assets including a strong desire for real-time video.

Once connections are established, assured connectivity needs to be maintained. Additional

sensors alone are not the answer, nor are point-to-point data links. Increasing the number

of sensors will saturate the available bandwidth and cause confusion in the receivers of this

information as the same areas are sampled multiple times. Point-to-point data links only

support the two entities that are connected and impede integration and fusion with other

networked information.

When networked capabilities are considered for military, humanitarian, and civil/police

missions, several net-ready applications would be most desirable:

• Video Dissemination: For critical missions, it is important to maintain a high level

of vigilance that is best provided by video sources (visual or infrared). This data needs

to be available to all participants in the mission. Broadcasting video across a network

impacts bandwidth. Compression can be used, but for some situations only lossless

compression techniques would be allowable.

70

6.5 Net-Ready Applications

• Networked Weather: Weather can often be a hindrance to mission success, and in

military situations, it can also sometimes be a source of exploitation to improve the

probability of success. Some systems can have their own weather radars, but many will

not. Regardless of system capabilities, weather can be a major contributor to success

or failure of critical missions, and needs to be available to participants when they need

it.

• Tactical White-Boarding with Chat: Situations in critical missions can change

quickly and without warning. All participants need to adapt to those changes. A

tactical white-board provides the ability to take a picture of an area of operation, and

then mark it up with notes, symbols, and drawings. This information is immediately

viewable by all participants on the network, and it represents a depiction of how

the situation has changed, and how the team expects to react to that change. This

application is fairly common with networked systems and includes chat capabilities as

well.

• Common Operating Picture: With any networked system, there is the risk of in-

formation overload. As such, there also needs to be an application to view the most

important network information. The common operating picture fuses multiple sources

of networked information, and will often contain user-selectable filters for visualization.

These are a few net-ready applications expected for use in critical missions. Other mission

details create needs for additional applications. Net-ready applications have an impact on

processing throughput and memory availability, and are expected to call middleware services

to share information across the network.

Operational mission requirements determine the net-ready applications. Physical factors

can scope the number and types of applications that can be installed on the network pro-

cessor. The net-ready applications determine which middleware services are needed. The

middleware also has a direct impact on processing throughput and memory, because it is

installed on the network processor with the applications. The diversity of communication

systems and available network processing resources are driving the need for adaptive and

flexible middleware. Systems collaborating to accomplish a mission need to prioritize their

applications and be able to adapt their network functionality to support changing mission

roles.

71

6.6 Network Processing Architectures and Systems

6.6 Network Processing Architectures and Systems

The Joint Tactical Radio System (JTRS)[71] was selected by the U.S. Department of Defense

to be the radio of choice for the future. It has ad hoc networking features and the bandwidth

to support critical operations. By analogy, each JTRS is essentially a mobile hot spot and

can form a network based on geographic proximity[85]. Other IP-based network radios can

be used to create operational networks suitable for critical missions (e.g. SeaLancetTM).

The radio is only one element of a networked system. Other components include proces-

sor/router, middleware, and application software. Boeing developed an Advanced Tactical

Network System (ATNS)[52], which employs open architecture principles addressing all four

of these major components of networked systems. The Boeing ATNS was installed on a V-22

tiltrotor aircraft. It has been tested with multiple radios, processors, routers, and middle-

ware with minimal changes to the underlying executive software. It has also been tested

with numerous applications, both developed in house and from third party sources.

ATNS is representative of emerging network architectures for tactical platforms. Middle-

ware functionality needs to contain processing to support a network infrastructure composed

of systems like ATNS, but also for other more disadvantaged network connections used by

others collaborating to accomplish a mission. As explained earlier in this section, critical

missions are often accomplished in an ad hoc manner employing dynamic changes to initial

plans. Due to time constraints, infrastructure limitations, and other details associated with

these missions, there is no opportunity to study the information requirements and design

the optimal network to address those requirements, and then deploy it. This ad hoc, hetero-

geneous environment demands adaptive middleware for any network that can be formed to

connect collaborating agents. It is obvious that advantages can be gained by providing the

ability for that middleware to configure itself to fit on host processors regardless of capabili-

ties, to reconfigure dynamically based on changing roles during the mission, and to comprise

the best set of service functionality to achieve the goals and objectives of the mission.

72

7

Summary

In summary, middleware is important in the design of networked systems, and with creative

approaches, new forms of middleware can be used to improve the operational performance of

networked systems. As network connections become more ubiquitous, opportunities for col-

laboration among heterogeneous nodes to accomplish a common goal have started to emerge

and will continue for the foreseeable future. Heterogeneous networks will contain powerful

and disadvantaged nodes operating together. Middleware that is aware of operational goals

with knowledge of node-level processing and bandwidth resources is one way to improve

operational performance of collaborative systems. This thesis presented Flexile Middleware

as such an approach to middleware that flexes based on operational goals and node-level

resources. It is a form of adaptive middleware, but deserves a class of its own due to the

many ways in which it can flex, and the different ways it can be implemented yet still comply

with the characteristics defined for Flexile Middleware.

Missions that would value more intelligent middleware processing are critical in nature.

These missions may have challenging operational goals or may lack important information if

done without this capability. This thesis presented a close examination of critical missions

and how Flexile Middleware may be used to improve operational performance in compar-

ison to other approaches. Adding functionality to middleware introduces more processing

latency. For most critical missions, there is a real-time processing consideration associated

with operational success.

There is a need to show that the added overhead for Flexile Middleware processing is

justified. It would appear that this is the case, as was shown by modeling and analysis

of a representative critical mission, which compared Flexile Middleware to other forms of

73

networked communications. Flexile Middleware was used to represent advanced networking,

and was modeled by mapping its characteristics against information expectations. Those

expectations were used for the design of an experiment that would model a representative

mission in a tool, so that many different ways to accomplish the mission can be tried. Mission

time and probability of a mission-ending event were used to calculate probability of mission

success, and by using the simulations, it was possible to build a statistical model that could

be used to compare the four types of networked communications. The representative mission

contained two decision points, and one mission-ending event. A sensitivity analysis showed

that when a mission had challenging time constraints, Flexile Middleware could provide

significant improvement in operational performance. It also showed that Flexile Middleware

could definitely improve operational performance with most any assignment of probabilities

of encountering a mission-ending event. Since the mission that was modeled was relatively

simple (two decision points and one mission-ending event), the value of Flexile Middleware

would be greater for more complex missions provided there are tight time constraints.

A chapter in this thesis was dedicated to describe how Flexile Middleware works. It con-

tains data flow diagrams, sequence diagrams, and flow charts to illustrate processing steps.

At the heart of Flexile Middleware is a processing module referred to as the “Reconfigura-

tor”. This particular module provides the flex to Flexile Middleware, and is described in

more detail compared to the other modules. This chapter suggests a creative implementa-

tion of Flexile Middleware that exploits multi-core architectures to reduce the time for the

middleware to flex and change states.

Several areas of future research relative to Flexile Middleware are worth noting. For

example, setting parameters associated with monitoring and how the Reconfigurator works

are very important to its implementation. These parameters can be estimated analytically,

but would probably require detail modeling of implementations to settle on the right values.

Another topic would be to study the relationship between ad hoc routing algorithms and

Flexile Middleware. In particular, it may be the case that if more intelligent ad hoc routing

algorithms are employed then less capabilities in Flexile Middleware would be required to

achieve the same level of improvement in operational performance, or vice versa. In practice,

it may be the case that certain applications need to be present all the time. Services and

applications to implement Flexile Middleware functionality need to be omnipresent, but for

practical reasons it maybe desirable to expand the set of core applications and services to

reduce the processing overhead. The thesis contains a suggestion to exploit the capability

74

of a multi-core processing architecture to minimize the time for reconfiguration. However,

Flexile Middleware would be expected to run on processors that may not have this type of

architecture. Accordingly, it would be desirable to measure the processing overhead assuming

reconfiguration that does not use a multi-core architecture. Finally, from an implementation

perspective, most developers would settle on the use of data models and application program

interfaces for an additional layer of abstraction between the middleware and the applications.

Understanding the impact of this added level of software abstraction to Flexile Middleware

is important.

75

8

Trademarks

The following trademarked items are mentioned in this thesis:

• CoreDXTM is a registered trademark of Twin Oaks Computing, Inc.

• DDSTM, OMG R©, SysMLTM, System Modeling LanguageTM. UMLTM, and Unified

Modeling LanguageTM are registered trademarks of the Object Management Group

• Integrity OS R© is a registered trademark of Green Hills Software, Inc.

• LynxOS R© is a registered trademark of LynuxWorks

• Microsoft R© is a registered trademark of Microsoft, Inc.

• OpenMP R© is a registered trademark of the OpenMP Architecture Review Board

• OpenSplice R© is a registered trademark of PrismTech, Inc.

• Rackspace R© is a registered trademark of Rackspace US, Inc.

• ScanEagle R© is a registered trademark of Insitu, a wholly owned subsidiary of The

Boeing Company

• SeaLancet TM is a registered trademark of Harris Corporation

• STK R© is a registered trademark of AGI, Inc.

With certain trademarked items (e.g. DDS) that are mentioned frequently, and in agreement

with common practice, the notation will be used once at the beginning of the chapter.

76

Appendix A

DDS Middleware Trade Study

This section contains selections from a middleware trade study that was developed as part

of a National Rotorcraft Technology Center (NRTC) project, titled Net-Ready Applications

to Improve Rotorcraft Safety and Survivability. The author of this thesis in his capacity

as a Boeing employee is the principal investigator on this project, and the detailed analysis

was performed by Gustavo Baptista and Markus Endler of Pontif́ıcia Universidade Católica

- Rio de Janeiro under subcontract to Boeing.

The trade study is structured as follows: First, the main aspects of existing DDS im-

plementations are presented and compared. Then, an analysis of the architectures of the

two most well-established implementations is presented, with their respective implications on

performance. The set of known existing COTS implementations of DDSTM to be investigated

in the trade study document is the following:

• OpenSplice R© DDS (PrismTech)[20]

• RTI DDS (Real Time Innovations)[19]

• CoreDXTM (TwinOaks Computing)[21]

• MilSoft DDS Middleware (MilSoft)[86]

• InterCOM DDS (Gallium)[87]

77

A.0.1 Comparison of Attributes

Attributes of evaluation include:

• DDS Specification Compliance: This includes compliance with five DDS profiles:

(1) Data Centric Publish/Subscribe (DCPS) Minimum Profile – Implements the pub-

lish/subscribe communication paradigm for high performance information dissemina-

tion. With this profile, publishers and subscribers can communicate asynchronously

and anonymously by sending and receiving data through Topics. A Topic contains

strongly typed definitions of data to be transmitted atomically, i.e. a data structure

definition in OMG R© IDL which can be used to generate typed Writers and Readers for

specific programming languages, a set of Quality of Service (QoS) settings and a unique

name. The DCPS profile also includes the QoS framework that allows the middleware

to match requested and offered Quality of Service parameters between Readers and

Writers respectively. (2) DCPS Ownership Profile – This profile allows replication of

information publishers, allowing each publisher to have an associated value which rep-

resent a strength, so that only the ’highest-strength’ information will be made available

to interested parties. (3) DCPS Content Subscription Profile – Implements content-

filters, allowing applications to express content-based subscriptions. It also provides

ways of specifying projection-views and aggregation of data, and dynamic queries for

subscribed topics using a subset of the SQL language. (4) DCPS Persistence Pro-

file – Implements durability, which offers transparent and fault-tolerant availability of

non-volatile data, allowing late-joining of subscribers. (5) Data Local Reconstruction

Layer (DLRL) Profile – Extends the previous four data-centric DCPS profiles with

an object-oriented view on a set of related topics thus providing typical Object Ori-

ented features such as navigation, inheritance and use of value-types, performing the

mapping between the object oriented model to the underlying Topic relational model

automatically. It also contains an object caching mechanism which is automatically

synchronized with the distributed global system state.

• Technical Maturity, Real-World applications and Industry Acceptance: A

mature, field proven system is required, already deployed in a number of mission crit-

ical scenarios, widely accepted in the industry and with previous known deployment

success.

78

• Quality of Service Control: Effective Quality of Service (QoS) control mechanisms

are needed in order to achieve reliability and availability in the target rotorcraft Mo-

bile Ad-hoc Network (MANET) scenarios. The set of main QoS settings in the DDS

specification need to be provided by the implementations. Specifically, QoS configu-

rations for fault tolerant mechanisms (e.g. handling and recovery of network losses)

are essential and must be available for definition and testing. The Terminal Control

Protocol (TCP) provides one level of QoS, but additional capabilities are needed which

depend on how DDS handles publish-subscribe. One example of this would be data

persistence, which is a parameter that can be set to inform the middleware that a data

item is still relevant for a certain period of time even if it may not have been published

as quickly as expected.

• Network Scheduling Control: For effective real-time communication, explicit con-

trol of network resources is necessary to ensure predictable, scalable, and dependable

behavior. Thus, mechanisms for such control are expected in the system.

• Communication Protocols and Bandwidth: The Real Time Publish/Subscribe

(RTPS) protocol was specifically developed to support the unique requirements of data-

distribution systems. It is widely adopted as a standard wire protocol that allows DDS

implementations from multiple vendors to interoperate, and it is specifically targeted

to address the requirements and to take advantage of the main features of the DDS

specification (e.g. it takes advantage of DDS QoS settings to optimize its behavior).

It is designed to be able to run over connectionless transport protocols. Thus, the

implementation of RTPS and support for lower-level protocols such as UDP/IP, us-

ing different communication techniques such as unicast, broadcast and multicast are

investigated. Support for these different communication techniques are an important

aspect to be considered, since in future stages of the project specific networking and

MANETs infrastructures will have to provide support for them, and will require use of

specific techniques, or even the use of different techniques depending on the scenario.

• Runtime Size and Memory Footprint: Memory footprint and runtime size need

to be investigated in order to map system non functional requirements and to evaluate

how deployment would take place in real world platforms, such as onboard computers.

79

• Real-Time Performance, Throughput, and Scalability: The scope of this study

was not to execute new tests with the products for benchmarking. Intra-nodal scala-

bility is also important, allowing different applications in the same node to access the

DDS domain in a scalable and efficient manner (e.g. with low intra-nodal latency).

The impact on bandwidth is a very important aspect, considering the restrictions of

the radio-based MANET scenarios. For instance, the amount of traffic of meta-data

exchanged by the system should be evaluated.

• Supported Interfaces like Web Services, Sockets, Databases: Exposing the

DDS system through other standard interfaces facilitate interfacing with other types

of systems. For example, a system which requires access to data being shared into the

DDS Domain could use a Service-Oriented Architecture Protocol (SOAP) interface to

retrieve such information, or a database which can be synchronized with this shared

data. Therefore, the interfaces provided by each of the products are investigated.

• Security: Considering that not every deployment scenario will have secure networks

for data transmission, supported security mechanisms must be analyzed. The goal

is to evaluate how well the candidate systems could operate in unsecured networked

scenarios, or to provide additional security features in an existing secure network. For

example, in an unsecured network, data encryption would be crucial for confidentiality.

On the other hand, even in a secure network, access control (possibly role-based) would

ensure that only authorized actors would have appropriate access rights to the shared

data, providing any desired level of confidentiality. Data authentication and integrity

are also requirements to be considered.

• Platform Support and Language Bindings: Supported platforms and language

bindings are presented since the middleware should be used for application develop-

ment in Windows and Unix environments. Also, bindings for programming languages

available to be used for application development are listed.

• Cost: The licensing model of different versions of each product and respective asso-

ciated costs need to be compared in order to evaluate the best cost/benefit relation

for choosing the middleware to be used in this project. This analysis must take in

to account costs of productivity tools, development tools and run-time licensing. The

80

cost of each product will then be related to the other aspects in the trade study, in

order to consider the benefits associated with the cost.

• Productivity: The complexity of application development with the solution provided,

complexity of the programming languages supported and tools to improve productivity,

such as code generators, specialized Integrated Development Environments (IDEs) and

modeling tools are important aspects to be considered. Such tools improve the quality

of the resulting product, reduce time-to-market, and provide better maintainability.

Also, debugging, testing and monitoring tools are crucial.

Table A.1: OpenSplice R© DDS Evaluation

Aspect Assessment Description

1 – OMG R© DDS Standard
Specification Compliance

High

• DDS API 1.2

• Minimum Profile

• Durability Profile

• Ownership Profile

• Partial Content Subscription
Profile (ContentFilteredTopic
and QueryCondition)

• Data Local Reconstruction Layer
(DLRL)

Continued on next page

81

Table A.1 – continued from previous page
Aspect Assessment Description

2 – Technical Maturity and
Real World Applications

High

• PrismTech participated on the
OMG R© DDS specification defini-
tion.

• Initially developed as SPLICE-
DDS by Thales Naval Nether-
lands (TNL)

• Considered a field proven middle-
ware

• Information backbone of TNLs
TACTICOS CMS currently de-
ployed in 15 navies around the
world (OpenSplice R© DDS is the
2nd generation COTS evolution
of this product).

• Deployed in many different
mission- and business-critical
systems including: Automated
Trading, Air Traffic Control and
Management, Combat Manage-
ment Systems, Naval Systems,
SCADA. Recently, was selected
to be used by the European
Flight Data Processor.

Continued on next page

82

Table A.1 – continued from previous page
Aspect Assessment Description

3 – Industry Adoption High

• Wide set of customers in dif-
ferent fields, such as Defense
and Aerospace, Financial Ser-
vices, Transportation, SCADA
and Utilities, Telecom and others.

• Customers in the Defense and
Aerospace Industry: THALES,
Raytheon, Yaltes, Nexter, Gen-
eral Dynamics, Northrop Grum-
man, Boeing, BAE Systems,
NASA, Lockheed Martin, EADS,
Aselsan, Rockwell Collins, US
Department of Defense, US Navy,
Embraer, Australian Department
of Defense, Scientific Research
Corporation.

4 – QoS Control High
Complete set of QoS Policies from DDS
specification.

Continued on next page

83

Table A.1 – continued from previous page
Aspect Assessment Description

5 – Network Scheduling
Control

High

• Networking architecture schedul-
ing mechanisms allow full control
over networking resources

• Scheduler uses QoS settings in-
formation to schedule data trans-
mission properly

• Allows the definition of different
communication channels which
have associated priorities (prior-
ity lanes), as well as networking
resources in terms of bandwidth
(traffic shaping) and urgency lev-
els.

6 – Communication Proto-
cols

Complete

• RTPS 2.1

• UDP/IP

• Broadcast

• Multicast

7 – Bandwidth Overhead Unknown

The traffic shaping mechanism can be
used to limit bandwidth utilization.
Data about overhead on bandwidth not
found/available.

Continued on next page

84

Table A.1 – continued from previous page
Aspect Assessment Description

8 – Run-Time Size and
Memory Footprint

Small and Scal-
able

• Shared-memory utilization with-
out applications is about 1 Mbyte
(for built-in-topics, related ad-
ministration and internal topics).

• Libraries that provide the API’s
to applications are shared-objects
i.e. are in memory only once re-
gardless of the number of appli-
cations.

• The size of the shared-libraries
are between 1.5 (for C-language)
and 2.5 (for C++/Java) Mbytes.

• Regardless of the number of ap-
plications, the ’payload’ of top-
ics (i.e. not the instance-
administration) is present in
shared-memory only once regard-
less of the number of applications.

• Optimizations allow for many
applications (existing combat-
management-system use-cases
run hundreds of applications).

• Example with 200 applications
with 2 Topics with simple data
types consumed 1.5 Mbyte of
shared-memory.

• Example with 1000 applications
with 2 Topics with simple data
types consumed 21.8 Mbyte of
shared-memory.

Continued on next page

85

Table A.1 – continued from previous page
Aspect Assessment Description

9 – Architecture Features
and Optimizations

Wide Set

• Multi-core ready and shared-
memory based architecture for
minimizing intra-nodal latency,
as well as maximizing nodal scal-
ability.

• The communication by shared
memory can be done between ap-
plications as well between ser-
vices on a single node.

• Pluggable Service Architecture.

• High performance and scalable
marshalling, implemented to
maximize processor cache usage.

• The networking service imple-
ments marshalling for all types.
Marshalling only happens once,
instead of being performed mul-
tiple times by applications which
subscribe to the same data.

10 – Performance, Through-
put and Scalability

High TBD

Continued on next page

86

Table A.1 – continued from previous page
Aspect Assessment Description

11 – Supported Interfaces
Such as Web Services, Sock-
ets, and Databases

Wide Set

• SOAP-Connector: Allows to ex-
pose the (remote) DDS system
to a SOAP-aware application
such as the OpenSplice R© Tuner
thus allowing remote monitoring
and control of any DDS target-
system equipped with the SOAP-
connector.

• DBMA-Connector: Enables
transparent two-way exchanges
between the real-time DDS
data space and any ODBC v3.0
compliant database.

12 – Security Available

• Data Authentication

• Integrity

• Confidentiality

• Access Control

13 – Platform Support Wide Set
Linux, Windows, AIX, and Solaris,
along with the leading RTOSes, such
as, VxWorks, Integrity OS R©.

14 – Programming Lan-
guage Bindings

Wide Set C, C++, Java, and C#

15 – Licensing/Cost Medium TBD

Continued on next page

87

Table A.1 – continued from previous page
Aspect Assessment Description

16 – Productivity High

• Information modeling (topic def-
initions in IDL, code-generation
for topic QoS)

• Code-generation for application
frameworks and DDS entities
such as publishers/writers, sub-
scribers/readers

• Information partitioning,
network-configuration and
durability configuration resulting
in XML-based configuration
data.

• 100 percent Java based

• Aids design, implementation,
test and maintenance of
OpenSplice R© based distributed
systems.

The table below provides evaluation details on the RTI DDS product.

88

Table A.2: RTI DDS Evaluation

Aspect Assessment Description

1 – OMG R© DDS Standard
Specification Compliance

High

• DDS API 1.2

• Minimum Profile

• Durability Profile

• Ownership Profile

• Partial Content Subscription
Profile (ContentFilteredTopic
and QueryCondition)

• Durability Profile implemented
by separate service

2 – Technical Maturity and
Real World Applications

High

• RTI participated on the OMG R©
DDS specification definition.

• According to RTI, it has more
than 300,000 copies licensed for
use in over 400 unique designs.

• Proven in successful U.S. Depart-
ment of Defense missions, qual-
ified for the highest Technology
Readiness Level, TRL 9.

Continued on next page

89

Table A.2 – continued from previous page
Aspect Assessment Description

3 – Industry Adoption High

• Wide set of customers in different
areas such as: Aerospace and De-
fense, Communications, Control
Systems, SCADA and Instrumen-
tation, Energy Systems, Finan-
cial Services, Simulation, Trans-
portation, Unmanned Vehicles

• List of customers in Defense: Ad-
vanced Fusion Technologies, BAE
Systems, Boeing, Dot21, Lock-
heed Martin, Northrop Grum-
man, QinetiQ, Raytheon, Saab,
Samsung Thales, Sperry Marine
(Northrop Grumman), Tactical
Communications Group, U.S. Air
Force, U.S. Navy, Ultra Electron-
ics

4 – QoS Control High
Complete set of QoS Policies from DDS
specification.

5 – Network Scheduling
Control

Unknown
Mechanisms for network scheduling
control and priority channels not found.

6 – Communication Proto-
cols

Average – No
Broadcast Sup-
port

• RTPS 2.1

• UDP/IP, IPv4 and IPv6

• Broadcast

• Multicast

• Concurrent use of different com-
munication protocols

7 – Bandwidth Overhead Unknown Data not found

Continued on next page

90

Table A.2 – continued from previous page
Aspect Assessment Description

8 – Run-Time Size and
Memory Footprint

Small and Scal-
able

• Fully deterministic memory uti-
lization with no dynamic alloca-
tion required after system initial-
ization

• Small footprint – with an ex-
tremely small-footprint version
(as low as 130 KB available for
high assurance and severely re-
source limited systems

9 – Architecture Features
and Optimizations

Wide Set

• Shared memory for intra-node
communication

• Pluggable interface for custom
transports, ability for applica-
tions to concurrently use multiple
different transports.

Continued on next page

91

Table A.2 – continued from previous page
Aspect Assessment Description

10 – Performance, Through-
put and Scalability

High

• Up to 80,000 messages or 950
megabits of data per second

• Latency as low as 30 microsec-
onds over Gigabit Ethernet

• Application-to-application
throughput as high as millions
of messages per second with
no inherent limit on overall
system-wide capacity – aggre-
gate throughput of hundreds of
millions of messages per second
can be achieved

11 – Supported Interfaces
Such as Web Services, Sock-
ets, and Databases

Wide Set

JMS, WSDL/SOAP, SQL Lightweight
CORBA Component Model, Sockets,
File, Custom via adapter interface,
Relational databases, Microsoft R© Ex-
cel, Complex Event Processing en-
gines, Visualization platforms, Appli-
cation Servers and ESBs

12 – Security Wide Set

Utilizes many different techniques and
partner security companies for provid-
ing security in different levels, from
local networking security provided by
operating systems policies (tailored by
company partners), to a WAN commu-
nication security service called RTI Se-
cure WAN Transport.

Continued on next page

92

Table A.2 – continued from previous page
Aspect Assessment Description

13 – Platform Support Wide Set

• Integrity OS R©

• Linux, SELinux and Embedded
Linux

• LynxOS R© and LynxOS-SE

• Mac OS X

• QNX

• Unix AIX and Solaris

• VxWorks ,VxWorks 653 and Vx-
Works MILS

• Windows and Windows
CE/Mobile

14 – Programming Lan-
guage Bindings

Wide Set ANSI C, C++, C# (.NET), Java, Ada

15 – Licensing/Cost High

Available in three standard editions
(Basic, Professional, and Elite), and
one safety-critical edition for high as-
surance applications

Continued on next page

93

Table A.2 – continued from previous page
Aspect Assessment Description

16 – Productivity High

Rich Run-Time Tools and Services to
accelerate debugging and testing while
easing management of deployed sys-
tems:

• Analyzer – a system-level vi-
sualization and debugging tool
that discovers all DDS objects on
a network, organizes them, and
shows their properties such as
Quality of Service (QoS) settings.

• RTI Scope – a data visualiza-
tion and logging tool that cap-
tures DDS data traffic

• Monitor – Accelerates testing
and optimization while easing
management of deployed sys-
tems. Provides comprehensive in-
sight into real-time performance
and system health.

• Spreadsheet Add-in – Allows
use of Microsoft R© Excel for real-
time data visualization, analysis
and injection.

• Recording Service – Logs high-
speed real-time data for future
analysis. Replays recorded data
for testing and simulation.

Similar analyses were preformed against CoreDXTM, MilSOFT DDS Middleware, and

InterCOM DDS (Gallium). The following table summarizes the comparative evaluations of

all five DDS products.

94

Table A.3: DDS Evaluation Summary

Aspect OpenSplice R© RTI CoreDXTM MilSoft Gallium
1 – OMG R© DDS Standard
Specification Compliance

High High Low Average Unknown

2 – Technical Maturity and
Real World Applications

High High Unknown High High

3 – Industry Adoption High High Unknown Unknown Unknown
4 – QoS Control High High Incomplete Unknown Unknown
5 – Network Scheduling
Control

High Unknown Unknown Unknown Unknown

6 – Communication Proto-
cols

Complete Average Average Unknown Unknown

7 – Bandwidth Overhead Unknown Unknown Unknown Unknown Unknown

8 – Run-Time Size and
Memory Footprint

Small
and
Scalable

Small
and
Scalable

Small
and
Scalable

Unknown Unknown

9 – Architecture Features
and Optimizations

Wide Set Wide Set Unknown Unknown Unknown

10 – Performance, Through-
put and Scalability

High High High Unknown Unknown

11 – Supported Interfaces
Such as Web Services, Sock-
ets, and Databases

Wide Set Wide Set Low Unknown Unknown

12 – Security Available Wide Set Low Unknown Unknown
13 – Platform Support Wide Set Wide Set Wide Set Unknown Good
14 – Programming Lan-
guage Bindings

Wide Set Wide Set Wide Set Good Good

15 – Licensing/Cost Medium High Unknown Unknown unknown
16 – Productivity High High High High Low

A.0.2 Architectural and Performance Analysis

As shown in the previous section, OpenSplice R© and RTI are the leading DDS products. The

Open Architecture Benchmark[88] provides benchmarks for evaluating the performance of

DDS-based middleware. Before presenting performance results, it is necessary to discuss the

architectural differences between OpenSplice R© and RTI.

95

A.0.2.1 OpenSplice R© DDS Architecture

OpenSplice R© DDS[20] uses a separate Data-Centric Publish-Subscribe (DCPS) daemon pro-

cess for each nodes network interface, which is responsible for communicating with daemons

running on other nodes. This federated architecture is designed to allow a level of decou-

pling of local communication endpoints from the networking service. This approach results in

advantages including simplification of configuration, advanced networking scheduling mech-

anisms and intra-nodal scalability.

The daemon processes store common configurations and parameters shared by all local

communication endpoints associated with a network interface, decoupling the applications

(which run in separate user processes) from DCPS configuration and communication-related

details. Using this separate daemon process to mediate access to the network simplifies

application configuration, and allows the definition of policies for groups of participants

associated with the same network interface. Changing the networking configurations does

not affect application code or processing[20].

The networking service allows the definition of data communication channels. Each

channel handles communication and QoS for all the local participants requiring particular

properties. The definition of network channels helps enforce message priority even on non-

priority-preserving transports, such as UDP/IP. These “priority lanes” allow prioritizing

data for every single node to ensure that the more important data always preempts less

important data. Predictive behavior of data even on worst case scenarios is then possible,

avoiding priority inversion problem[89]. OpenSplice R© DDS networking service functionality

is summarized in Figure A.1.

A.0.2.2 RTI DDS Architecture

RTI DDS uses a decentralized architecture, which places communication and configuration

related capabilities into the same user process as the application itself. These capabilities

execute in separate threads (rather than in a separate daemon process) that the DCPS mid-

dleware library uses to handle communication and QoS (put ref here). The advantage of a

decentralized architecture is that each application is self-contained, without needing a sepa-

rate daemon. As a result, latency and jitter are reduced, and there is one less configuration

and failure point. However, some disadvantages of using this approach are:

96

Figure A.1: OpenSplice R© DDS Networking Service Functionality

• Specific configuration details, such as multicast address, port number, reliability model,

and parameters associated with different transports, must be defined at the application

level, which is tedious and error-prone.

• Contrasted with the daemon-based architecture, it elevates the number of networking

endpoints, possibly impacting the scale on global discovery times. It also elevates the

amount of required data transmissions, since data is replicated in each user process.

• Application misbehavior (under/over responsiveness) can impact other nodes. For ex-

ample, a non-responsive low-priority process can trigger system-wide retransmissions,

while an over-responsive high-priority process can overload system-wide network and

processing resources. As a result, every application is a potential failure source.

• This architecture also makes it hard to buffer data sent between multiple DDS appli-

cations on a node, and thus does not provide intra nodal scalability benefits.

97

A.0.2.3 Performance Evaluations

Xiong[90] developed the DDS Benchmarking Environment (DBE), which is an open-source

framework for automated DDS testing. Parameters for evaluation are latency, jitter, and

throughput. Latency is defined as the roundtrip time between the sending of a message and

reception of an acknowledgment from the subscriber. It is calculated as the average value of

10,000 round trip measurements. Jitter is the standard deviation of latency. Throughput is

defined as the total number of bytes received per unit time. The only available comparison

of RTI and OpenSplice R© DDS uses multicast, since RTI doesn’t support broadcast.

Xiong, et al [90] conducted tests of performance latency between DDS-based middleware

and conventional publish/subscribe middleware. These tests were performed on a single

computer to avoid clock synchronization issues, and to insulate the middleware architectures

from the network. Two scenarios were tested, one with messages/events carrying a simple

data type, and the other with a more complex and nested data type definition. The results

confirm that DDS performance is superior to conventional pub/sub middleware. RTI presents

the best performance for the transmission of simple data types and complex data types

with smaller payloads. However, since these tests were performed on a single machine,

OpenSplice R© DDS optimizations for intra-nodal scalability start to show improvement on

the transmission of complex data types above 512 bytes.

The low latency of RTI is due to its mature implementation, and to its decentralized

architecture, which does not require communication to pass through a separate daemon

process. In contrast, although OpenSplice R© DDS also has a very mature implementation,

its federated architecture involves extra hops through the publishers and subscribers daemon

processes, which explain why its latency is higher than RTIs.

Xiong, et al. also conducted comparison tests of multicast performance between RTI and

OpenSplice R©. The results indicate that RTI outperforms OpenSplice R© DDS for smaller

payload sizes. As the size of the payload increases, however, OpenSplice R© DDS performs

better. It appears that the difference in the results comes from the different architectures.

Since all subscriber nodes are running on the same machine, again the OpenSplice R© DDS

architecture provides optimizations for intra-nodal scalability.

Analyses are based on a very limited set of scenarios. They were performed several

years ago, and newer versions of both products have been released. However, the presented

benchmarks show how DDS performs better than standard publish-subscribe mechanisms,

98

and it shows a baseline performance comparison between two mature DDS products. The

results and studies indicate that the differences in performance between these two main DDS

implementations is not significantly large, and that performance is not the decisive factor

when deciding specifically between these two solutions.

Since MANET is assumed for critical applications, the most important aspect is the

capacity of the middleware to comply with the best network communication technique, such

as unicast, multicast or broadcast. MANET protocols and communication layers have to be

taken into account when deciding which communication method to use. For instance, existing

studies such as in [91] indicate that using broadcast for communication over MANETs is

more efficient than using multicast. Others, like [92], show that the best use of broadcast or

multicast over MANETs is only achieved when taking into account particular scenarios of

different node densities and degree of mobility, and due to the dynamics of the network, even

one strategy could be preferable over the other at different times and in different localized

regions.

Between the products evaluated, in addition to a complete set of interesting features, the

only one that provides support both for multicast and broadcast is OpenSplice R© DDS, which

makes this product the most flexible choice. Its network scheduling mechanisms provide a for

predictive system behavior in complex and constrained networking scenarios. In addition, its

traffic shaping features will allow appropriate use of the constrained bandwidth of radio-based

MANETs to be used by assets participating in critical missions. Finally, the optimizations

of this product for high intra-nodal scalability is suitable to the critical missions, in which

many applications running on the same node must take advantage of this net-centricity with

low impact on bandwidth and onboard computing resources.

99

References

[1] B. Li, W. Jeon, W. Kalter, K. Nahrstedt, and J. Seo. Adaptive Middleware

Architecture for a Distributed Omni-Directional Visual Tracking System. In Pro-

ceedings of SPIE/ACM MMCN 2000, pages 101–112, 2000. 1, 9, 22

[2] O. Othman and D. Schmidt. Optimized Distributed System Performance via Adap-

tive Middleware Load Balancing. Technical report, Department of Electrical and Com-

puter Engineering, University of California, Irvine, 2001. 1, 23

[3] X. Yu, K. Niyogi, S. Mehrotra, and N. Venkatasubramanian. Adaptive Middle-

ware for Distributed Sensor Environments. IEEE Distributed Systems Online, 2003. 1,

22

[4] R. Couto A. da Rocha, M. Endler, and T. de Siqueira. Middleware for Ubiqui-

tous Context-Awareness. In MPAC ’08 Proceedings of the 6th International Workshop on

Middleware for Pervasive and Ad-hoc Computing, 2008. 1, 20

[5] T. DuBois, W. Blanton, J. Clemens, P. Meyers, and A. Patrick. Interoperability

with Unmanned Air Vehicles as an Operationally Effective Alternative to Wide-

band SATCOM on Rotorcraft. In Proceedings of the American Helicopter Society Spe-

cialists Meeting on Unmanned Air Vehicles and Network Centric Operations, January 2011.

3, 69

[6] C. Britton and P. Bye. IT Architectures and Middleware: Strategies for Building Large, In-

tegrated Systems. Addison-Wesley Professional, second edition, 2004. Chapter 3: Middleware:

A History of Objects, Components, and the Web. 9, 12

[7] J. Loyall, P. Pal, K. Rohloff, and M. Gillen. Issues in Context-Aware and

Adaptive Middleware for Wireless, Mobile Networked Systems. Technical report,

BBN Technologies, Cambridge, MA, 2009. 9, 11

100

REFERENCES

[8] Object Management Group. Data Distribution Service for Real-time Systems.

Technical report, OMG, January 2007. 10, 12, 13

[9] P. Naur and B. Randell. Software Engineering. In NATO Software Engineering Con-

ference Proceedings, page 14, January 1969. 10

[10] D. Krieger and R. M. Adler. The emergence of distributed component platforms.

Computer, 31(3):43–53, 1998. 11

[11] R. Mateosian. COM and DCOM – Microsoft’s vision for distributed objects [Book

Reviews]. IEEE Micro, 18(2):9–10, 1998. 11

[12] A. Watson. OMG (Object Management Group) architecture and CORBA (com-

mon object request broker architecture) specification. In Proc. IEE Colloquium Dis-

tributed Object Management, 1994. 12

[13] W. Emmerich. An overview of OMG/CORBA. In Proc. IEE Colloquium Distributed

Objects - Technology and Application (Digest No: 1997/332), 1997. 12

[14] Minqi Zhou, Rong Zhang, Dadan Zeng, and Weining Qian. Services in the Cloud

Computing era: A survey. In Proc. 4th Int. Universal Communication Symp. (IUCS),

pages 40–46, 2010. 12

[15] D. Vassilopoulos, T. Pilioura, and A. Tsalgatidou. Distributed technologies

CORBA, Enterprise JavaBeans, Web services: a comparative presentation. In

Proc. 14th Euromicro Int. Conf. Parallel, Distributed, and Network-Based Processing PDP

2006, 2006. 12

[16] Object Management Group. Common Object Request Broker Architecture

(CORBA) Specification, Version 3.1. Technical report, Object Management Group,

2007. 12, 23

[17] D. G. Schmidt and F. Kuhns. An overview of the Real-Time CORBA specification.

Computer, 33(6):56–63, 2000. 12

[18] UAS Control Segment. The Data Distribution Service – Reducing Cost Through

Agile Integration. Technical report, Department of Defense, 2011. UNCLASSIFIED. 12

[19] RTI. RTI Data Distribution Service. http://www.rti.com, January 2011. 12, 77

[20] PrismTech. OpenSplice DDS. http://www.prismtech.com, January 2011. 13, 77, 96

101

http://www.rti.com
http://www.prismtech.com

REFERENCES

[21] TwinOaks Computing. CoreDX DDS Data Distribution Service Middleware. http:

//www.twinoakscomputing.com/coredx, 2011. 13, 77

[22] IBM. Implementing Vendor-Independent JMS Solutions. http://www.ibm.com/

developerworks/java/library/j-jmsvendor/, 2011. 13

[23] A. Corsaro. Advanced DDS Tutorial. Technical report, PrismTech, 2008. 13

[24] G. Pardo-Castellote. Introduction to DDS. In OMG Real-Time Workshop. RTI, Inc.,

2008. x, 13, 14

[25] G. Hunt. DDS - Advanced Tutorial Using QoS to Solve Real-World Problems. In

OMG Real-Time & Embedded Workshop. RTI, Inc., July 2006. Conference Presentation. 13

[26] P. Mell and T. Grance. The NIST Definition of Cloud Computing (Draft), NIST

Special Publication 800-145 (Draft). Technical report, National Institute of Standards

and Technologies, 2011. 15

[27] D. Plummer, T. Bittman, T. Austin, D. Clearley, and D. Smith. Cloud Comput-

ing: Defining and Describing an Emergent Phenomenon. Technical report, Gartner

Group, 2008. 15

[28] Force.com Developer Documentation. http://wiki.developerforce.com/page/

Documentation-Development_on_Force.com. 15

[29] Google App Engine. http://code.google.com/appengine/. 15

[30] IBM Smart Cloud. http://www.ibm.com/cloud-computing/us/en/index.html. 15

[31] Microsoft. Windows Azure. http://www.microsoft.com/windowsazure. 15

[32] Rackspace Cloud. http://www.rackspace.com/cloud/. 15, 16

[33] Amazon EC2 Getting Started Guide. http://docs.amazonwebservices.com/AWSEC2/

latest/GettingStartedGuide. 16

[34] S. Sadjadi and J. McKinley. A Survey of Adaptive Middleware. Technical report,

Department of Computer Science, Michigan State University, 2003. x, 16, 17

[35] D. Schmidt and T. Suda. An Object-Oriented Framework for Dynamically Congur-

ing Extensible Distributed Systems. BCS/IEE Distributed Systems Engineering Journal,

1995. 16

102

http://www.twinoakscomputing.com/coredx
http://www.twinoakscomputing.com/coredx
http://www.ibm.com/developerworks/java/library/j-jmsvendor/
http://www.ibm.com/developerworks/java/library/j-jmsvendor/
http://wiki.developerforce.com/page/Documentation-Development_on_Force.com
http://wiki.developerforce.com/page/Documentation-Development_on_Force.com
http://code.google.com/appengine/
http://www.ibm.com/cloud-computing/us/en/index.html
http://www.microsoft.com/windowsazure
http://www.rackspace.com/cloud/
http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide
http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide

REFERENCES

[36] J. Lukkien. Middleware: A Survey, 2009. 17

[37] M. Uland. System of Systems Common Operating Environment (SOSCOE) Sup-

port to Net Centricity. www.sei.cmu.edu/library/assets/uland.pdf, March 2007. 18

[38] P. Schoen. System of Systems Common Operating Environment. http://www.

boeing.com/ids/soscoe/about.htm, August 2005. Approved for Public Release, Distribution

Unlimited, TACOM. 18

[39] V. Sacramento, M. Endler, H. Rubinsztejn, L. Lima, K. Gonçalves, F. Nasci-

mento, and G. Bueno. MoCA: A Middleware for Developing Collaborative Appli-

cations for Mobile Users. IEEE Distributed Systems Online, 5(10), 2004. Departamento

de Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro. 22

[40] V. Sacramento, M. Endler, H. Rubinsztejn, S. Lima, and G. Bueno. An Architec-

ture Supporting the Development of Collaborative Applications for Mobile Users.

Technical report, Departamento de Informática, PUC-Rio, R. Marquês de São Vicente, 2004.

22

[41] R. Balan, M. Ebling, P. Castro, and A. Misra. Matrix: Adaptive Middleware

for Distributed Multi-Player Games. Middleware 2005, G. Alonso, editor, LNCS 3970,

pages 392–405, 2005. 23

[42] O. Othman, J. Balasubramanian, and D. Schmidt. Performance Evaluation of an

Adaptive Middleware Load Balancing and Monitoring Service. In Proceedings of the

24th IEEE International Conference on Distributed Computing Systems, pages 135–146, 2004.

23

[43] Editors of the American Heritage Dictionaries. The American Heritage Dictionary

of the English Language. Houghton Mifflin Company, fourth edition, 2000. 24

[44] OpenMP Architecture Review Board. OpenMP Application Program Interface,

Version 3.1. Technical report, OpenMP Organization, 2011. 37

[45] M. Endsley. Toward a Theory of Situation Awareness in Dynamic Systems: Sit-

uation Awareness. Human Factors, 37:32–64, 1995. 38, 39

[46] M. Endsley, R. Sollenberger, and E. Stein. Situation awareness: A comparison of

measures. In Proceedings of the Human Performance, Situation Awareness and Automation:

User-Centered Design for the New Millenium, Savannah, GA, 2000. 38

103

www.sei.cmu.edu/library/assets/uland.pdf
http://www.boeing.com/ids/soscoe/about.htm
http://www.boeing.com/ids/soscoe/about.htm

REFERENCES

[47] C. Hoffman, Y. Kim, R. Winkler, J. Walrath, and P. Emmerman. Visualization

for Situation Awareness. In Proceedings of the 1998 Workshop on New Paradigms in

Information Visualization and Manipulation, pages 36–40. ACM, 1998. 39

[48] E. Feibush, N. Gagvani, and D. Williams. Visualization for Situational Awareness.

IEEE Computer Graphics and Applications, 1:38–45, 2000. 39

[49] D. Overby, J. Wall, and J. Keyser. Interactive Analysis of Situational Awareness

Metrics. In SPIE - IS&T Electronic Imaging, 8294, 2012. 39

[50] T. DuBois, W. Blanton, F. Reetz III, M. Endler, W. Kinahan, G. Baptista, and

R. Johnson. Open Networking Technologies for the Integration of Net-Ready

Applications on Rotorcraft. In Proceedings of the American Helicopter Society Conference,

May 2012. 40

[51] T. DuBois and R. Perry. Flexile Middleware: Responding to Operational De-

mands of Critical Network-Based Applications. In Information Technologies for the

Next Generation (ITNG) Conference Proceedings, April 2010. 58

[52] T. DuBois. Networking Challenges for Tactical Aviation Systems. In Presentation

to Airborne Networks Conference, November 2009. 58, 72

[53] Chairman of the Joint Chiefs of Staff. CJCSI 6212.01E Net-Ready Key Perfor-

formance Parameter. Technical report, Department of Defense, 2000. 59, 61

[54] Chairman of the Joint Chiefs of Staff. CJCSI 3170.01 Joint Capabilities Inte-

gratation and Development System (JCIDS). Technical report, Department of Defense,

2000. 59

[55] DoD Chief Information Officer. Interoperability and Supportability of Infor-

mation Technology (IT) and National Security Systems (NSS) (DoDD 4630.05).

Technical report, Department of Defense, 2007. 61

[56] Defense Industry Standards Agency. DoD Architecture Framework Version 2.0.

Technical report, Department of Defense, 2009. 61

[57] Object Management Group. Unified Modeling Language (UML), Infrastructure,

V2.1.2. Technical report, Object Management Group, 2007. 61

[58] Object Management Group. Unified Modeling Language (UML), Superstructure,

V2.1.2. Technical report, Object Management Group, 2007. 61

104

REFERENCES

[59] Object Management Group. Systems Modeling Language (SysML). Technical re-

port, Object Management Group, 2010. 61

[60] IBM. IBM Rational Software. http://www-01.ibm.com/software/rational/, 2011. 61

[61] Sparx Systems. Enterprise Architect Software. http://www.sparxsystems.com/, 2011.

61

[62] No Magic Inc. MagicDraw UML Software. http://www.magicdraw.com/, 2011. 61

[63] MetaStorm Inc. MetaStorm ProVision Software. http://www.metastorm.com/

products/provision_ea.asp, 2011. 61

[64] Atego Inc. Artisan UML Software. http://www.atego.com/, 2011. 61

[65] DoD Chief Information Officer. Department of Defense Net-Centric Data Strat-

egy. Technical report, Office of the Secretary of Defense, May 2003. 62

[66] DoD Chief Information Officer. Department of Defense Net-Centric Services

Strategy. Technical report, Office of the Secretary of Defense, May 2007. 62

[67] DoD Chief Information Officer. DoD Global Information Grid Architectural

Vision. Technical report, Office of the Secretary of Defense, June 2007. 62

[68] DoD Chief Information Officer. Information Assurance (IA) in the Defense Ac-

quisition System. Technical report, Office of the Secretary Defense, July 2004. 62

[69] Defense Acquisition University. DoD Acquisition Guidebook. Technical report,

Office of the Secretary of Defense, 2010. 62

[70] DoD Chief Information Officer. DoD Information Assurance Certification and

Accreditation Process. Technical report, Office of the Secretary of Defense, 2007. 62

[71] A. Feikert. The Joint Tactical Radio System (JTRS) and the Army’s Future

Combat System (FCS): Issues for Congress. Technical report, U.S. Congress, November

2005. CRS Report for Congress, Order Code RL33161. 63, 72

[72] J. Ahrenholz, C. Danilov, T. Henderson, and J.H. Kim. CORE: A real-time net-

work emulator. In Proceedings of IEEE MILCOM Conference, 2008. 64

[73] InSitu. ScanEagle Web Page and Data Sheet. http://www.insitu.com/scaneagle/.

65

105

http://www-01.ibm.com/software/rational/
http://www-01.ibm.com/software/rational/
http://www.sparxsystems.com/
http://www.sparxsystems.com/
http://www.magicdraw.com/
http://www.magicdraw.com/
http://www.metastorm.com/products/provision_ea.asp
http://www.metastorm.com/products/provision_ea.asp
http://www.metastorm.com/products/provision_ea.asp
http://www.atego.com/
http://www.atego.com/
http://www.insitu.com/scaneagle/

REFERENCES

[74] T. DuBois. Personal discussion between Thomas A. DuBois and Brigadier Gen-

eral Walters (USMC). Meeting at New River Marine Corps Air Station, New River, NC,

September 2010. 65

[75] United States Air Force (USAF) Global Cyberspace Integration Center

(GCIC). JEFX 10-03 Initiatives: Irregular Warfare. http://www.gcic.af.mil/

shared/media/document/AFD-100625-053.pdf, April 2010. 69

[76] Linda Maines. Joint Expeditionary Force Experiment 10-3. Inside the Air Force, April

2010. 69

[77] R. Gates. National Defense Strategy. United States Government Printing Office, June 2008.

69

[78] U.S. Joint Forces Command. Joint Tactics, Techniques, and Procedures for Joint Intel-

ligence Preparation of the Battlespace (Joint Publication 2-01.3). United States Government

Printing Office, May 2000. 69

[79] U.S. Army. Decisive Force: The Army In Theater Operations (Field Manual 100-7). United

States Government Printing Office, May 1995. 69

[80] U.S. Navy. Naval Doctrine Publication 1 – Naval Warfare. United States Government

Printing Office, March 1994. 69

[81] U.S. Marine Corps. MCDP Command and Control – PCN 142 000001 00. Technical

report, U.S. Marine Corps, October 1996. 69

[82] U.S. Air Force. Air Force Transformation: The Edge. United States Government Printing

Office, 2005. 69

[83] U.S. Air Force. Wideband Global SATCOM Satellite Fact Sheet. http://

www.afspc.af.mil/library/factsheets/factsheet_print.asp?fsID=5582&page=1, Au-

gust 2010. 69

[84] D. Wilcoxson, B. Sleight, J. O’Neill, and D. Chester. Helicopter Ku-band SAT-

COM On-the-Move. In Proceedings Military Communications (MILCOM) Conference 2006.

IEEE, 2006. 69

[85] Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS).

Software Communications Architecture Specification. Technical report, JTRS Stan-

dards Certification Authority, November 2010. Version: Next Draft; Approved for public

release; Distribution is unlimited. 72

106

http://www.gcic.af.mil/shared/media/document/AFD-100625-053.pdf
http://www.gcic.af.mil/shared/media/document/AFD-100625-053.pdf
http://www.afspc.af.mil/library/factsheets/factsheet_print.asp?fsID=5582&page=1
http://www.afspc.af.mil/library/factsheets/factsheet_print.asp?fsID=5582&page=1

REFERENCES

[86] MilSoft. MilSoft DDS Middleware. http://dds.milsoft.com.tr/en/dds-home.php,

2011. 77

[87] Gallium Inc. InterCOM DDS. http://www.gallium.com/solutions/

solutions-intercom.htm, 2011. 77

[88] B. McCormick and L.Madden. Open Architecture Publish-Subscribe Bench-

marking. www.omg.org/news/meetings/workshops/RT_2005/03-3_McCormick-Madden.

pdf, 2005. OMG Real-Time Embedded System Work Shop. 95

[89] A. Corsaro. 10 Reasons to Choose OpenSplice DDS as your Messaging Middle-

ware. Technical report, PrismTech, Inc., 2011. 96

[90] M. Xiong, J. Parsons, J. Edmondson, H. Nguyen, and D. Schmidt. Evaluating

Technologies for Tactical Information Management in Net-Centric Systems. In

Proceedings of the Defense Transformation and Net-Centric Systems Conference, 2007. 98

[91] T. Kunz. Multicast versus Broadcast in a MANET. Ad-Hoc, Mobile, and Wireless

Networks, 1:630, 2004. 99

[92] L. K. Law, S.V. Krishnamurthy, and M. Faloutsos. Understanding and Exploit-

ing the Trade-Offs between Broadcasting and Multicasting in Mobile Ad Hoc

Networks. IEEE Transactions on Mobile Computing, 1:264–279, 2007. 99

107

http://dds.milsoft.com.tr/en/dds-home.php
http://www.gallium.com/solutions/solutions-intercom.htm
http://www.gallium.com/solutions/solutions-intercom.htm
www.omg.org/news/meetings/workshops/RT_2005/03-3_McCormick-Madden.pdf
www.omg.org/news/meetings/workshops/RT_2005/03-3_McCormick-Madden.pdf

	List of Figures
	List of Tables
	Glossary
	1 Introduction
	2 Aims of the Research
	2.1 Principal Aim of the Research
	2.2 Advancing the State-Of-The-Art in Middleware
	2.3 Measuring the Operational Value of Middleware

	3 Middleware Discussion
	3.1 Description and Perceptions of Middleware
	3.2 Middleware History, Products, and Standards
	3.2.1 History
	3.2.2 The Data Distribution Service Standard

	3.3 Relationship Between Middleware and Cloud Computing
	3.4 Classifying Middleware
	3.4.1 Static Middleware
	3.4.2 Adaptive Middleware

	4 Flexile Middleware
	4.1 Network Processing Parameters
	4.2 Application Library
	4.3 Domain Rules
	4.4 Service List
	4.5 Executable Applications and Middleware
	4.6 Performance Monitor
	4.7 Usage Statistics
	4.8 Learning Rules
	4.9 Reconfigurator

	5 Metrics and Measurements
	5.1 Measurement Methods
	5.2 Introduction to the Selected Measurement Method
	5.3 Example Setup
	5.4 Calculations
	5.5 Rationale for Assumptions
	5.6 Sensitivity Analysis
	5.7 Discussion of Metric Results

	6 Operational Environment and Requirements
	6.1 Net-Ready Requirements
	6.1.1 The Acquisition Process
	6.1.2 Net-Ready Key Performance Parameter (NR-KPP)
	6.1.2.1 Solution Architectures
	6.1.2.2 Net-Centric Data and Services Strategy
	6.1.2.3 Global Information Grid Technical Guidance
	6.1.2.4 Information Assurance and Critical Information Protection
	6.1.2.5 DoD Supportability

	6.2 Modeling Requirements
	6.3 Critical Mission Examples
	6.3.1 Evaluation Scenarios
	6.3.1.1 Humanitarian Mission with Radiological Complications
	6.3.1.2 Mountainous Search And Rescue

	6.4 Future Wideband Communications
	6.5 Net-Ready Applications
	6.6 Network Processing Architectures and Systems

	7 Summary
	8 Trademarks
	A DDS Middleware Trade Study
	A.0.1 Comparison of Attributes
	A.0.2 Architectural and Performance Analysis
	A.0.2.1 OpenSplice® DDS Architecture
	A.0.2.2 RTI DDS Architecture
	A.0.2.3 Performance Evaluations

	References

