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Abstract—The challenge of securing industrial 
control systems is significant and previous work 
provided solutions to a number of these challenges 
including performing mathematical operations on 
BigIntegers; generating and distributing keys; 
generating cryptographically secure hash values; 
implementing random number generation; and 
ensuring that the operations can be performed without 
impacting normal operation / scan times. In previous 
works the Variable-round Message Authentication 
Code (VMAC) algorithm was introduced for per-
message data authentication, and a scheme was 
presented for two nodes to exchange a symmetric key 
for VMAC.  
  This work expands upon previous work by 
introducing the Key Exchange Protocol (KEP), which 
allows for generation and distribution of symmetric 
keys for use in multicast implementations of VMAC. 
KEP is capable of being configured into multiple tree 
configurations to increase the efficiency of key 
distribution, but also provides for redundancy in case 
the root node is taken offline.   This work also provides 
additional VMAC proof of security and VMAC 
implementation details.   
  A proof of concept for VMAC and KEP was then 
created and tested using four 1756-L83 Rockwell 
Automation processors. KEP was show to have an 
average scan time impact of 10ms during a key 
exchange with a minimum impact of less than 1ms 
when IDLE and a maximum impact of 20 ms if 
verifying and creating digital signed messages at the 
same time. 
Index Terms—PLC, HMI, ICS, multicast, 
authentication, cybersecurity 

1.  INTRODUCTION 
The challenge of securing Industrial Control Systems 

(ICS) is significant and the need to provide authentication 
and verification services for control system commands and 
data has been well established [1, 2]. Implementing message 

authentication for Industrial Control System (ICS) data and 
commands would be a significant step forward in providing 
security for these systems, but the process is complicated by 
a number of factors which were described in [3].  Solutions 
were presented to these challenges, however those works 
were based around traditional ICS implementations which 
use unicast technologies.  This paper expands upon the 
previous work by introducing a new Key Exchange Protocol 
(KEP) that will generate and distribute symmetric keys for 
use in the Variable-round Message Authentication Code 
(VMAC) [3] or equivalent algorithm for per-message data 
integrity verification.  Section 2 of provides background 
information on previous work and the challenges related to 
multicast.  Section 3 expands previous work [3] to provide 
additional details related to the security and implementation 
of VMAC.  Section 4 introduces the KEP algorithm and 
provides details for its implementation and use.  Section 5 
describes future work. 

2. BACKGROUND 
Previous works provided general solutions to the 

underlying issues of ICS message authentication such as 
processing speed and how to perform BigInteger 
calculations on a PLC, which ultimately concluded with a 
theoretical way to perform Edwards-curve digital signature 
creation and verification on a PLC.  It also presented a 
solution for securing communications between two devices, 
such as a PLC and a gas turbine’s Full Authority Digital 
Controller (FADC) across an unsecure channel, in which a 
Elliptic Curve Diffie-Hellman (ECDH) Key Exchange 
would be performed to establish a shared symmetric key that 
then would be used by a Hashed Message Authentication 
Code (HMAC) algorithm to provide per message data 
authentication and verification. The work then described 
how the standard HMAC algorithm would run too slow for a 
PLC to be able to execute, and an improvement was required.  
The Variable-round Message Authentication Code (VMAC) 
algorithm was introduced as a replacement for VMAC, and 
the details of that algorithm are fully defined in [3].   

Historically control systems data has been communicated 
between devices via unicast messages.  Examples of this 
include an ICS consisting of just one PLC and one HMI, or a 
system consisting of multiple PLCs that unicast to a PC-
based server node which then communicates to multiple 
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HMIs via unicast.  However as systems have grown and 
become more redundant the use of multicast technologies 
has increased dramatically, particularly when there is a large 
number of different controllers communicating with a large 
number of consoles.  The benefits of multicast are numerous 
from a networking perspective, particularly in being able to 
add nodes to an already established infrastructure.  From a 
controls engineering perspective, this means that additional 
consoles can be added to a system without any impact to the 
end controllers, significantly reducing the testing and 
validation efforts. 

From a security perspective, however, multicast presents 
some unique challenges.  The cryptographic algorithms that 
exist today are designed for end-to-end security between a 
pair of devices.  Security between groups of devices 
typically relies on the network infrastructure itself acting as 
a middle man to provide the security between the various 
end points.  For example, in a normal unicast security 
mechanism between 2 or more nodes each node would have 
to send a unique unicast packet to each of the nodes that is 
secured via some cryptographic algorithm.  In a normal 
multicast security scenario a node sends a secured packet to 
a switch, with the cryptographic algorithm securing the data 
only between the node and the switch.  The switch then 
needs to execute a separate cryptographic algorithm to 
secure the packet being sent from the switch to a receiving 
node, repeating the process for each individual node.  The 
result is that the most significant part of the security burden 
is placed on the network itself, and the network itself must 
be considered a trusted agent.  If the network is somehow 
compromised, then all nodes communicating via that 
network can be compromised as well. 

Therefore a security solution must be designed that allows 
for multicast messages but assumes that the network that is 
transmitting the data is hostile.  Using a system where each 
packet from each node is digitally signed avoids this 
problem, since the nodes only need to know the public keys 
of each other.  However as discussed previously, the 
limitations of processing power prevent this solution from 
being feasible and thus we require some kind of symmetric-
key based solution such as VMAC.  This means that the set 
of multicasting nodes needs to somehow securely generate 
and share a symmetric key with each other.   

Most secure multicast schemes follow some variant of the 
Iolus Framework for Secure Multicasting [4].  The 
framework essentially establishes a secure distribution tree, 
designed to communicate a symmetric key between the 
nodes which is used to secure the multicast data.  It 
introduces the concept of different security subgroups, with 
each group having a Group Security Controller (GSC) which 
manages the top level subgroup and a Group Security 
Intermediary (GSI) which manages each of the other 
subgroups.  Both GSCs and GSIs are known as Group 
Security Agents (GSA).  The idea is that these entities form 
subgroups which then work together to deliver the multicast 
traffic to all of the subgroups in the overall group.  At the 
root of the tree is the GSC which is ultimately responsible 

for the entire group.  Typically these kinds of frameworks 
use a symmetric key called Kgroup to encrypt some new 
Kgroupnew, and then transmit the new key.   

In many ways this approach is similar to the Group Key 
Management Protocol described in RFC 4046 [5], but since 
it is a tree it is potentially more scalable since all of the 
nodes will not have a reason to contact the root GSC at the 
same time which can cause an out-of-sync implosion.  
However, one of the issues with Iolus is that a node that 
wishes to join the group would have to first locate a GSA, 
particularly in a scenario where a GSA might be dynamic.  
Solutions that have been proposed to solve this problem 
primarily involve the node performing some kind of lookup 
against a directory service, however devices like PLCs do 
not have the processing power to perform such a lookup.  
The framework also requires that when a member joins or 
leaves a group a rekeying of the entire group will need to 
take place.  

 Some proposals such as found in [6] involve creating a 
virtual binary tree from the root node and only require 
rekeying between the end node and the path towards the root 
node which improves the overall efficiency of the algorithm 
to O(log n).  In general the primary problem that these works 
are attempting to solve is how to keep the group secure such 
that an old node can’t just access data within the group 
without properly joining the group, and to effectively boot 
the node out of the group.  As a result significant overhead 
must be assigned towards joining and leaving the group to 
ensure security before the nodes can talk.  For an 
information technology system this makes sense, however 
for operational systems such as control systems this presents 
significant problems.  A control system needs to be able to 
communicate as fast as possible when it powers on, and 
delays in that could have unintended operational 
consequences.  Additionally, control system nodes do not 
just go on and offline like a typical information system node.  
The control systems are generally fairly static, and changes 
to them have to go thru rigorous testing processes for 
Installation Qualifications (IQ), Operational Qualifications 
(OQ), and finally Process Qualifications (PQ).  Therefore if 
a node appears to be joining and leaving a group rapidly it is 
likely due to either equipment or power failure and control 
system operators will want to restore operation of the node 
as fast as possible. 

The larger problem with the Iolus framework is that it 
does not account for damage to the network, which could 
cause partitioning and prevent nodes from being able to 
contact a GSA even though they are able to communicate 
with other nodes.  This is especially important for military 
applications, but in general all critical infrastructure systems 
need to be robust enough to handle damage from all sources 
including natural disasters. The problem is mitigated to some 
degree in that the nodes would currently have a shared key 
and would be able to continue to talk for a limited time until 
the partitioned network is restored.  However since new keys 
in the Iolus framework are generated and transmitted using 
the current symmetric key the shelf life of the keys is limited.  
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The Iolus framework even includes an expiration for the 
keys in the framework, requiring that nodes reach out to a 
GSA to get an updated key.   

The main purpose of the frequent key exchanges is to deal 
with a scenario where a node leaves a multicast group.  The 
idea is to change the key once a minute or so to avoid having 
to change the key each time a node leaves the multicast 
group. This helps ensure that when a node leaves it must 
renegotiate with a GSA to rejoin the group, which can take 
some time.  For a control system, however, you want the 
exact opposite approach.  Control system nodes do not 
“come on and off” the network frequently, except in damage 
or power loss scenarios.  Therefore when the node is 
restored you want to let it be able to rejoin the group as 
quickly as possible.    

Finally, none of these proposals assume any kind of prior 
trust relationship between the various nodes.  This makes 
sense when considering applications like video conferencing 
since the creation and membership of the group will vary 
wildly.  However for control systems the creation and group 
membership will be fairly static.  An algorithm tailored for 
control systems requires some kind of prior trust relationship 
between the nodes to ensure that only intended nodes join 
the group.  Therefore some kind of public-private key pair 
and key infrastructure must be put into place so that a vendor 
can allow a different vendor to have his control system 
equipment be capable of joining the established group. 

 

3. VMAC – ADDITIONAL DETAILS 
 
Previous work [3] provided the VMAC algorithm along 

with information on its security against collision and length 
extension attacks.  However that work did not provide 
information on VMAC’s security to key reversal attacks or 
implementation details with regards to what must be 
included in a VMAC to protect against various forms of 
replay attacks.  This section expands that previous work to 
cover these gaps. 

 

3.1. VMAC Key Reversal Attack 
An analysis of the VMAC was performed to determine 

how difficult it would be to extract the key.  The initial 
assessment involved looking at a single input data block at 
16-rounds, which is much simpler since it avoids any of the 
data bit rotations in the SHA-256 message schedule.  To 
simplify the analysis the input data that was used did not 
conform to the SHA-256 padding requirements, which are 
implemented in VMAC.  In order to reverse out a round, 
first note that at the end of a round the intermediary hash 
values are available as shown below   

  
Figure 1.  SHA Intermediary Hash Values 

 
The values H0 through H7 are known constants, so given 

out0 through out7, we can subtract the constants and recover 
values a..h at the end of the 16th  (the N-2) round.   If we 
know the values a..h at the 16th round we can recover what 
the values were at the end of the 15th (N-1) round via the 
following formulas: 

 
 Round N-2  a,b,c,e,f,g are equal to Round N-1 b,c,d,f,g,h 
 Round N-1 T2 can be computed from Round N-2 a,b,c 
 Round N-1 T1 can be recovered from round N-1 a: 

 a = T1 + T2  T1 = a – T2  
 Round N-2 d can be recovered from round N-1 T1 and e: 

 e =d + T1   d = e – T1 
 

If the constant for the round Kt is known (and it is based on 
the SHA-256 standard) then you can recover round N-2 h 
from T1: 
 
 T1 = h + ConditionalFunction +Kt + Wt 

 h = T1 – ConditionalFunction – Kt - Wt  
 

where the ConditionalFunction in SHA-256 is based on the 
values of e thru g, which are known per above.   

When we look at 16 rounds it turns out that a single bit 
flip in the input data will cause a corresponding bit flip in T1, 
and based on the change in the carry bit related to that flip 
we can determine a bit of h and the key using the formula: 

 
V = T1 – offset = h + W[N-1] 

 
where offset includes the previously calculated low-order 
bits of h, to eliminate carry propagation from those bits in 
the addition.  Details of the analysis are shown in Appendix 
A.  It turns out that all of the bits can be easily cracked when 
using arbitrary chosen input data, finding all but 8 bits of the 
256-bit key directly and the remaining 8 bits by exhaustive 
search.  Therefore 16 rounds are not secure, which means 
that running 20 rounds is really the equivalent of only doing 
4 “secure” rounds. 

The next assessment was done looking at a single input 
block at 17-rounds.  The idea was similar to the 16-round 
crack, where if you can determine h then you could unwind 
the hash one more stage and find all of the key bits.  At 17 
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rounds though, the message schedule takes affect which 
means that W[16] is no longer a copied value with a trivial 
key mix, and the formula expands to: 

 
V = h + (((D XOR E) + X) XOR Y) 

 
where  

D = sigma1(Data[14])   
E = sigma1(ROTR(Key[2],7))  
Y = ROTR(Key[7],23) 

 
and  
 

X = sum of the Data[9,1,0] and Key[4,1,0] terms 
 

If we can determine h then we could unwind the hash one 
more stage and find all of the key bits. Data[9,1,0] affect h 
and X, but changes in D do not change h, E, X, or Y, so 
flipping bit i of D will flip bit i of V.  Although the change in 
bit i provides no information itself, the addition with X may 
flip carry bits, and bit i+1 of ((D XOR E) + X) will change 
only if bit i of X is 1. However we can only observe V, and 
the addition with h may also flip carry bits.  So if bit i+1 of 
V changes then bit i of either h or X is 1, but we don't know 
which.  Therefore we would have to continue without 
knowing h by running the approach for cracking 16 rounds 
for each of the possible 232 values of h.  Each of those 
produces 28 candidate keys so the overall search space is 
O(240).  For each value of h, Crack16 invokes VMAC twice 
for each of 256-8 = 248 bits, that is 2*248 = 496 invocations.  
At a scan rate of 100msec, i.e. 10 invocations per second, 
that would take over 6000 years:  

 
496 * ((2^32)/10) / (60*60*24*365) = 6755.1 

 
Extrapolating to N=20 rounds, there would be 4 unknown h 
values associated with each candidate key, so the overall 
search space is 28*(232)4 = O(2136).  At a scan rate of 
100msec that would take over 5.35e32 years. 

 

3.2. VMAC Implementation Details 
A secure implementation consists of two parts:  the 

generation of outgoing messages and the processing of 
incoming messages.  A secure implementation also 
addresses the following concerns: 

1. Protection against the standard replay attack, where a 
message between two nodes is saved and then later 
played again 

2. Protection against a variant of the replay attack where 
a message generated by one node intended for a 
second node is captured and played to a third node 

3. Determination of the key used in the VMAC 
algorithm, either Ks or Ks’, which is changed by the 
KEP and is used to provide a bumpless transfer 
during a key change 

 

3.2.1. Outgoing Messages 
Generating outgoing messages is easier than verifying 

incoming messages, but there are critical steps involved to 
ensure the message is generated accurately.  The most 
important step is that the VMAC must be generated using a 
temporary memory space, and then transmitted into the 
outgoing send buffer due to the messages being sent 
asynchronously from the logic execution.  Otherwise what 
will happen is that a message will be transmitted in the 
middle of the VMAC generation process, which will cause 
the receiving node to get an incorrect VMAC and generate a 
fault.  In the proof of concept implementation, messages 
were transmitted every 20ms while the scan time of the total 
IO_Mapping routine was closer to 50ms and the generation 
of the outgoing message close to 8-9ms of that time.  
Without processing the VMAC in a buffer prior to transmit 
an error rate of every few seconds would result, frequently 
with several invalid VMACs in a row. 

The second most important aspect of generating a VMAC 
is ensuring that the proper “header” data is incorporated into 
the VMAC data message.  The header information is used to 
prevent the replay attacks described above.  The structure of 
header data is as follows: 

 

 
Figure 2.  VMAC Message Structure 

 

 
The first value used in the header is a 64-bit counter, 

which on controller power up is initialized to the number of 
microseconds since epoch time.  This counter is then 
incremented by 1 each time a new VMAC is generated, and 
essentially serves as a timestamp replacement.  The 
controller’s time itself does not have to be therefore 
synchronized to some higher level server, it just needs to be 
reasonably accurate (within a few minutes) and should never 
be reset to a time earlier than it was previously set to.  
However, since the counter is only incremented by 1 for 
each VMAC generation, and in the proof of concept it takes 
8-9 ms to generate a VMAC it means that for each VMAC 
the counter increases only by 1 where the number of 
microseconds since epoch time would increase by thousands.  
This helps ensure that even during a power loss or a fresh 
download which could cause a disturbance in the clock time 
the VMAC counter will always be initialized at a value 
significantly higher than the previous value.  This would 
hold true if even during a power loss the controller’s clock 
does not increase such that when it powers up it still thinks 
the time is what it was at the last power loss. 
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The 32-bit Node ID and Destination ID are used in the 
message to indicate the source of the message and the 
intended recipient of the message.  The Destination ID can 
be a code such as “234” used to indicate a group of nodes, or 
an IPv4 address that represents a unicast, multicast, or 
broadcast address.  Similarly the Node ID can represent 
something as simple as a Node number (as used in the proof 
of concept) to a full IPv4 address.  The purpose of these IDs 
is to ensure that someone does not take a message from one 
node and send it to a different set of recipients, thus 
preventing a variant of the replay attack. 

The last 64-bits represent the VMAC Key ID, which 
indicates which Ks or Ks’ was used to generate the VMAC.  
Note that it is not the value of the key itself, but rather a 64 
bit code that could either be the hash of the key or a 
timestamp of the key.  The proof of concept uses a 
timestamp value where the 64-bits represents the number of 
microseconds since epoch time at the time the key was 
generated, however a hash of the key could easily be 
substituted and used to verify that the correct key was 
transmitted, and if not then it could trigger a new Ks’_REQ 
in KEP to get a corrected copy of the key.  In general, the 
VMAC Key ID is used by KEP to determine which key, 
either Ks or Ks’ was used in VMAC.   

Details will be provided in the description of KEP, but 
from a VMAC perspective KEP provides a mechanism by 
which a node will know if all nodes are reporting that they 
have the latest and greatest Ks’.  If any nodes do not have 
the new Ks’, which likely occurs during the middle of key 
propagation, then VMAC uses Ks which represents a backed 
up copy of the old Ks’.  Once KEP detects that all nodes 
have a copy of Ks’ it instructs the node to use Ks’ for all 
outgoing messages and embed the corresponding ID into the 
VMAC message.  This will let a receiving node know 
whether to use the new key or the old key.  Note that KEP 
will have already determined that the receiving node has a 
copy of the new key prior to instructing VMAC to use the 
new key to send the message 
 
 

3.2.2. Incoming Messages 
The same principles for outgoing messages apply for 

incoming messages, but in reverse.  To begin, an incoming 
message must first be copied into a buffer for processing 
since the messaging is asynchronous.  Otherwise in the 
process of verifying one VMAC a new one could be written 
in which could cause the verification to improperly fail. 
After the message is copied into a buffer, the Counter is 
immediately checked to determine Iif it is greater than the 
last received value.  If it is not then the message can be 
immediately discarded, since it is either an old message that 
has not yet been updated by the sending controller due to 
asynchronous processing or it is a replay attack.  In general, 
if a counter is less than the last counter than the message is 
likely to be a replay attack, but if it is equal it could be just 
stale data.   

The next step is to extract the VMAC Key ID from the 
message and determine if the VMAC was created using Ks’ 
or Ks.  Under most circumstances these values will be the 
same, except during the middle of a key update by KEP.  
KEP will have already determined that the receiving node 
has a copy of the new Ks’ before it gets used in a VMAC 
from the sender node.  KEP also has logic in it to monitor 
the VMAC verifications, and a node waits for all nodes to 
have successfully sent it a valid VMAC using the new Ks’ 
before it sets Ks = Ks’, essentially discarding the old key and 
backing up the new key. 
Once the correct key is determined the VMAC of the 
incoming data is calculated and then compared against the 
VMAC provided by the sending node.  If the two values are 
equal, and the counter is greater than the previous counter, 
and the Node ID of the sender is correct, and the Destination 
ID is correct then the VMAC is flagged as “OK”.  The data 
for the message is then moved into a “data verified” buffer 
to be used for process control.  Invalid data is not processed.  
The VMAC implementation for incoming messages includes 
5 alarms for each message:   
 

1. Invalid VMAC Alarm – if a node does not receive a 
valid VMAC message within a set time period then 
an alarm will be generated (recommend 250ms) 

2. Replay Alarm – if a node does not receive a valid 
VMAC with a Counter greater than the last valid 
message within a set time period then an alarm will 
be generated (recommend 250ms), OR if a node 
receives a VMAC with a Counter less than the last 
valid message 

3. Node Alarm – if the Node ID of the message is not 
what was expected then trigger an alarm (a 50ms 
debounce timer is recommended to avoid potential 
network errors)  

4. Destination Alarm – similar to Node Alarm but 
uses the Destination ID vice the Node ID 

5. Invalid Key Alarm – if a node receives a VMAC 
message with a key ID that does not match Ks or 
Ks’ then generate an alarm 

 
All alarms are cleared automatically on power up, but to 

be cleared during operation both the alarm condition itself 
must be cleared and an acknowledgement from an operator 
must be provided.  Actions that an operator should take 
depend on the design of the system under question and the 
acceptable risk profile of that system.  The decision tree is 
therefore beyond the scope of this thesis, however it should 
be understood that unlike IT systems sometimes it will make 
sense to continue operating using invalid data even in the 
presence of a cyber threat.  For example, if a machine is 
providing life support to someone and the option is to either 
shut down or keep running under risk then it is probably 
better to keep running because that option might  cause harm 
where shutting down will definitely cause harm.  Control 
system design is also beyond the scope of this thesis, but it 
should be noted that a good design will take into account 
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that sometimes a system component might need to run in a 
“standalone” mode due to equipment damage, plant 
maintenance, cyber threats, or a number of other reasons. 
 

4. KEY EXCHANGE PROTOCOL 
A multicast group can be efficiently protected through use 

of a single symmetric key which can then be used to encrypt 
traffic between nodes or to provide message authentication 
and verification using algorithms such as VMAC.  The 
challenge comes in generating the symmetric key and 
transmitting that key to the other nodes.  It is possible to use 
VMAC without KEP, however only in the case when the 
system designer has complete control of every node in the 
control system and does not have to interface with a 3rd 
party vendor.  In practice this is unlikely, since control 
systems are often distributed, with a centralized 
“overarching” system that then interfaces to a number of 
controllers contained in panels that come with various 
machines produced by OEMs to provide local control.  
Therefore KEP provides a means by which a distributed 
control system with components by different OEMs can 
interface to each other and update the symmetric key used by 
VMAC.  Each vendor would generate an Ed25519 
public/private key pair and then the vendors would exchange 
the public keys as part of the Interface Design 
Documentation.  These keys can then be used to generate the 
symmetric key. 

Section 2 described the main approaches to generating 
and handling the symmetric key in multicast groups, but 
these approaches have additional complications when 
applied to control systems.  The limited processing power is 
the primary challenge which impacts each of the multicast 
solutions in a number of ways, primarily that they cannot 
process the number of steps that would be required to update 
keys each time group membership changes while at the same 
time meeting performance requirements.  Additionally there 
are significant challenges that stem from how message 
structures and send rates work since most of these 
algorithms require that the system send out specialized “one-
time” messages as part of the group join and leave processes.  
An implementation of these existing algorithms which must 
transmit the control messages used to exchange the 
symmetric key would likely suffer performance degradation.  

Thankfully, the design of control systems does mean that 
the requirements for multicast messaging are more limited 
than the requirements for the generalized multicast group 
scenarios that are addressed in [4, 5, 6].  The rate of group 
membership changes is relatively low and is primarily the 
result of equipment or power failures where there is a desire 
to re-join the node to the group as speedily as possible.  This 
eliminates the need to change the group key solely based on 
group membership changes which is a primary driver for the 
approaches taken in the literature.  However this does add a 
unique challenge in that a node must be capable of being 
restored to the group in near instantaneous time even during 
the middle of a group key change.  Even an algorithm 

capable of updating a key with an O(log n) efficiency is not 
going to be fast enough given the inherent limitations of 
processing speed.  This is commonly referred to in control 
systems engineering as a “bumpless transfer” and is not 
addressed in the literature simply because it is not a 
requirement for an information system.   

To solve these challenges the Key Exchange Protocol 
(KEP) for control systems was developed.  The primary 
purpose of KEP is to securely generate and transmit a Ks’, 
which serves as the primary shared symmetric key, along 
with the identity number of the Ks’ and the Ks currently in 
use.  These identity numbers are 64-bit numbers that 
represent the number of microseconds since epoch time at 
the time these were generated.  During a key exchange a new 
Ks’ is created and distributed, however the old Ks is used in 
VMAC until a node confirms that all nodes it communicates 
with have received Ks’ via the identity number.  The nodes 
then begin to transmit messages using Ks’ vice Ks.  When a 
node receives valid VMAC messages from each node, which 
were generated using Ks’, the node sets Ks equal to Ks’.   

KEP consists of two parts, the Listener and the Processor, 
that run in parallel with each other.  The Listener is 
responsible for receiving messages from other nodes and 
verifying the messages of these nodes.  The Processor is a 
state-machine, shown in Figure 3, which uses verified 
messages from the Listener along with internal data to 
perform the bulk of the KEP logic.  KEP operates using a 
client-server model, however unlike the Iolus framework 
which uses GSAs, each node in KEP can act as both a client 
and a server depending on the state of the node.  This is done 
by each node having an internal “priority table” for all of the 
other nodes.  A node finds the highest priority node that is 
advertising that it has a Ks’ available for distribution and 
selects that node as its server to obtain the key.  It then goes 
through an Ed25519 ECDH process to generate a one-time 
symmetric key with the server node, with that key known as 
Kp.  Kp is then used to encrypt a copy of Ks’, with the 
encrypted key known as Ke.  Ke is then transmitted from the 
server node to the client node and subsequently decrypted 
using the client’s copy of Kp to obtain Ks’.  

Since KEP, and control systems in general, do not require 
the symmetric key (i.e. Ks’) to change each time a node 
leaves and joins the group the efficiency of the key exchange 
is Θ(1). Also note that since the key does not change due to a 
node dropping out of a group, a power loss and subsequent 
power restore does not require a node to go through the key 
exchange process before it can begin communicating.  Even 
if a key update has begun while a node is down, the key 
update will wait for the node to be restored and obtain a 
copy of the new Ks’ before the current Ks is abandoned.  
This means that the node which experienced the failure and 
subsequent restoration will be able to use Ks to immediately 
authenticate and verify messages, meeting overall control 
system performance requirements.   
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Figure 3.  KEP State Machine 

 
 
Node priorities and trust relationships are established as 

part of the control system design.  The trust relationships are 
established by each node having a copy of the Ed25519 
public keys of the other nodes.  The priorities are set by 
entering values into an internal table of the node, with “1” 
being the highest priority.  Note that it is not necessary for 
all nodes to have the same priorities, i.e. if there are four 
nodes it is not required that each node consider the same 
node (say Node1) to be the highest priority node.  This 
means that it is possible to use KEP in a tree configuration 
with a root node and have other nodes be branches and 
leaves of the tree.  This improves the speed at which a key 
change propagates throughout the tree, with KEP having a 
key change efficiency of O(log n).   

In general there is a root node for the KEP tree, however 
the root node does not necessarily have to be the node with 
the highest priority at all times.  If the highest priority node 
“Node1” is down for some reason then the next highest 
priority node will take over as the root.  This “Node2” can 
even perform a key update which will then propagate thru 
the rest of the tree.  When “Node1” is restored it will 
perform the same function as any other leaf on the tree by 
examining the existing nodes to determine the highest 
priority node that is active and is advertising a Ks’ available.  
“Node1” will then work to obtain a copy of the Ks’ from 
“Node2”, and once that is obtained “Node1” will start to 
advertise itself as having the key available.  Since it is the 
highest priority node it will automatically retake the position 
as the tree root. 

It should be noted that when a node is first powered on it 
will enter a “powerup” state in the KEP Processor state 
machine that will clear Ks’ from the node, with the 
assumption that Ks’ might have changed while the node was 
down.  However the node can continue to use Ks to 
authenticate packets because Ks does not get set equal to Ks’ 
until a node has verified that all other nodes within its 
immediate vicinity in the tree are using the new Ks’. As a 
result KEP provides bumpless transfer.  It is not suitable for 

scenarios where group membership in a multicast scheme is 
dynamic, but it is very efficient where the group membership 
is relatively static. 

In general, it is recommended that KEP be used to trigger 
a key update once per year in order to assure the validity of 
the VMAC key.  This can be done on an automatic cycle by 
adding logic so that the root node triggers the update 
automatically when a timer expires, or can be done thru an 
message request sent by another node.  Control engineers 
can further tailor KEP to only allow designated nodes, 
perhaps a particular administration console, to be allowed to 
instruct the root node to perform a key update.  Note that the 
command to perform a key update is contained within a 
digitally signed message. 

 

5. RESULTS AND FUTURE WORK 
A proof of concept was developed and tested using four 

RSLogix 5000 1756-L83 PLCs that were placed in the same 
rack.  Messages were transmitted using produce/consume 
tags across the backplane, however the work presented here 
is protocol independent.  Any transportation mechanism 
including Ethernet and Fieldbus could be used, which is a 
feature inherent for both this work and produce/consume 
tags in general.  The controllers were configured initially 
with Node 1 having the highest priority and Node 4 the 
lowest, all in a flat configuration.  As testing continued 
variations on the tree configuration were tested, such as 
nodes farther down on the tree from the root node.  VMAC 
was used to provide data authentication during the entire 
process. 

In general for KEP it was found that the timing of KEP 
ranged from almost a non-existent impact on scan time to at 
most a 20 ms impact on scan time, depending on what KEP 
was doing at the moment in time.  The results on scan time 
are not dependent on the number of nodes involved in the 
KEP, however the time to complete an entire key change is 
dependent on the tree configuration and the number of nodes.  
The scan time impact is ultimately driven by the processing 
of creating and verifying digital signatures, each of which 
has a maximum 10 ms scan time.  Therefore during KEP it is 
possible to have both of them running in the worst case 
scenario at a point in time resulting in the 20ms scan time 
impact.  In general though the results showed that during an 
active key exchange KEP spent about 30% of the time with a 
less than 1 ms impact, approximately 50% of the time with a 
5-10 ms scan time impact, and remaining 20% of time 
between 10-20ms scan time impact. 

Ultimately the biggest scan time impacts come from 
VMAC itself.  Previous work [3] provided the timing results 
for VMAC using various rounds.  For the proof-of-concept 
20 rounds were used with a message length of 100 DINTs, 
or 400 bytes.  Produce/consume tags have a maximum 
length of 500 bytes so the VMAC data consumed 400 of the 
500 bytes.  The remaining 100 bytes was reserved for some 
overhead such as the VMAC itself (32 bytes), flags 
indicating the number of rounds and the length of the 
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message (8 bytes total), and information on the connection 
status which is a generic part of using produce/consume tags 
in a Rockwell PLC.  With each node generating one VMAC 
message and processing 3 incoming messages the total scan 
time of the program (including all the other I/O handling for 
none-VMAC data and all the implementation details 
described in Section 4.4) was between 51.7 ms and 52.1 ms.   

This result is interesting because the results indicate that 
running four VMACs containing 400 bytes each should take 
a total of approximately 51.6 ms, indicating that the 
overwhelming majority of the run time is spent running 
VMAC itself.  Therefore the implementation details 
provided in Section 3.2 have a negligible impact on overall 
system performance but are critical for providing overall 
security.  The result also suggests that if additional alarms or 
monitoring capability were to be added that capability would 
have a negligible impact on performance. 

The one area of potential improvement for VMAC is the 
determination of the status of a loss of communications to a 
node.  In the proof of concept this was done using built in 
system values and running a Get System Values (GSV) 
instruction that would provide the status of communications 
from the PLC.  In most PLC applications if the status was 
“good” then “COMMSOK” would be triggered immediately, 
and the status would have to go “bad” for three seconds 
before we would state the communications was lost.  In this 
proof of concept status this was reversed, meaning that we 
would have to be “good” for three seconds before setting 
“COMMSOK” and a “bad” status would immediately 
indicate communications had been lost.  The main driver for 
this change was to ensure that stable communications had 
been established before cryptographic functions would be 
initialized to improve the overall operation of KEP and 
VMAC.  It is the author’s opinion that this change would not 
negatively impact overall system performance, but that 
might not hold true depending on the specific control system 
application. 

A long term solution to improve efficiency in the 
algorithm would be to create a hardware based solution, 
especially one that could perform 64-bit math natively in the 
PLC.  If a PLC was capable of performing 64-bit math 
natively the performance of VMAC would be at least 
doubled because we could use an SHA512 based solution 
that would double the size of VMAC data blocks, although it 
is likely we would have to modify the message scheduling 
portion of SHA512.  Additionally a hardware based solution 
could include a built-in true-random number generator that 
could be integrated into the control system platform (such as 
a card that would fit in the chassis).  It is suggested, however, 
that if PLC vendors do create such a solution they offer at 
least three different options based on different technologies 
in case a flaw is discovered with one option that is not 
solvable with a firmware update. 

Finally, this work has been focused on providing a 
mechanism for protecting and verifying data integrity 
between nodes, and allowing a mechanism for the operator 
to detect if there is a problem.  However this work has not 

defined what an operator should do if problem is detected.  
In IT systems the usual answer is to disconnect the systems, 
however in a control system it is possible that disconnecting 
the system could result in even higher risk.  The decision 
tree is therefore based on a wide range of factors that require 
further study with the goal of producing an automated 
system that can respond intelligently to detected cyber 
threats.  Further work is required to map out these threat 
profiles and corresponding decision trees, and ultimately to 
develop the response solution. 
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APPENDIX A – CRACKING VMAC 16-ROUNDS 
/******************************************************************** 
File:               crack16.py 
********************************************************************/ 
 
# Crack one-block VMAC with N=16 rounds using arbitrary input data 
# 
# The input data does not conform to the SHA-256 padding requirements. 
# 
# This finds bits 0 to 30 of the rotated Key[0] used in round 16. 
# 
# Bit 31 can not be found using this method because the carry bit related to 
# that is lost in the 32-bit additions.  To continue, try both ways: with 
# that bit low and with that bit high.  For each way, unwind H0 and H1 one 
# more round, and find bits 0 to 30 of rotated Key[1].  Again bit 31 will 
# be unknown, so another branch into two ways is required.  After 8 unwind 
# levels 8 bits of KEY will remain unknown, and those 256 possibilities can 
# just be tested to determine those bits. 
# 
# Only one unwind is done here, demonstrating the concept. 
 
import sha, random 
 
N = 16 
 
# extract internal SHA-256 variables 
# 
def extract(H): 
  h = (H - sha._H0[7]) & sha._mask; H >>= 32 
  g = (H - sha._H0[6]) & sha._mask; H >>= 32 
  f = (H - sha._H0[5]) & sha._mask; H >>= 32 
  e = (H - sha._H0[4]) & sha._mask; H >>= 32 
  d = (H - sha._H0[3]) & sha._mask; H >>= 32 
  c = (H - sha._H0[2]) & sha._mask; H >>= 32 
  b = (H - sha._H0[1]) & sha._mask; H >>= 32 
  a = (H - sha._H0[0]) & sha._mask;  
  # 
  # check 
  # 
  # H = (a + sha._H0[0]) & sha._mask 
  # H <<= 32;  H |= (b + sha._H0[1]) & sha._mask 
  # H <<= 32;  H |= (c + sha._H0[2]) & sha._mask 
  # H <<= 32;  H |= (d + sha._H0[3]) & sha._mask 
  # H <<= 32;  H |= (e + sha._H0[4]) & sha._mask 
  # H <<= 32;  H |= (f + sha._H0[5]) & sha._mask 
  # H <<= 32;  H |= (g + sha._H0[6]) & sha._mask 
  # H <<= 32;  H |= (h + sha._H0[7]) & sha._mask 
  # 
  return (a,b,c,d,e,f,g,h) 
 
# extract V = T1 - offset = h + W[N-1] 
# 
# The previous round values a,b,c,d,e,f,g,T1,T2 can be determined directly, 
# but not h (see notes in file REVERSE here). 
# 
def reverse( D, N, K): 
  H = sha.VMAC( D, N, K) 
  W = sha.W[N-1] 
  hprev = sha.hprev 
  (an,b,c,d,e,f,g,h) = extract(H) 
  # 
  a = b; b = c; c = d; e = f; f = g; g = h 
  T2 = (sha.Sigma0(a) + sha.Maj(a,b,c)) & sha._mask 
  T1 = (an - T2) & sha._mask 
  V = (T1 - sha.Sigma1(e) - sha.Ch(e,f,g) - sha._K[N-1]) & sha._mask 
  # 
  if V != (hprev + W) & sha._mask: print( "error in reverse, V is wrong") 
  return V 
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# random KEY 
# 
KEY = random.getrandbits(256) 
 
Key0 = sha.ROTR( KEY>>224, 3*0+(15>>3)) # Key[0] XOR with W[15] in VMAC() 
 
print( " Key0 =", format(Key0,'032b')) 
 
# K0 will hold the cracked key bits 
# 
K0 = 0 
 
# R will hold the h bits 
# 
R = 0 
 
# arbitrary random input Data 
# 
Data = random.getrandbits(512) 
 
# masks to set bit 0 of Data high or low 
# 
ones  = (1 << 512) - 1 # 11...11 
mask1 = 1              # 00...01 
mask0 = ones ^ mask1   # 11...10 
 
# find bit n of Key0 
# 
for n in range(31): 
  # 
  # W[15][n] = 0 or 1 
  # 
  V0 = reverse(Data & mask0,16,KEY) 
  # W0 = sha.W[N-1] 
 
  if n == 0: hprev0 = sha.hprev 
  elif hprev0 != sha.hprev: print( "error, hprev0 changed") 
 
  V1 = reverse(Data | mask1,16,KEY) 
  # W1 = sha.W[N-1] 
 
  if hprev0 != sha.hprev: print( "error, hprev1 changed") 
 
  # for next iteration 
  # 
  mask1 <<= 1 
  mask0 = ones ^ mask1 
 
  # T1 ~= h + (Data XOR Key0), with T1 and Data known, h and Key0 unknown. 
  # 
  # A single bit flip in Data will cause a corresponding bit flip in T1, 
  # and based on the change in the carry bit related to that flip, we can 
  # determine a bit of h and Key0. 
  # 
  # V = T1 - offset = h + W[N-1] 
  # 
  # where offset includes R, the previously calculated low-order bits of h, 
  # to eliminate carry propagation from those bits in the addition 
 
  V0 = (V0 - R) & sha._mask 
 
  V1 = (V1 - R) & sha._mask 
 
  # print( "V0 =", format(V0,'032b')) 
  # print( "V1 =", format(V1,'032b')) 
 
  # print( "W0 =", format(W0,'032b')) 
  # print( "W1 =", format(W1,'032b'), "\n") 
 
  # get r = bit n of h, and k = bit n of Key0 
  # 
  # bits: i = input data, k = key, (v1,v0) = (carry, V bit n) 
  # 
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  #   i k r (v1,v0) = (i XOR k) + r 
  #   -----  ----- 
  # * 0 0 0   0  0 
  #   1 0 0   0  1 no change in carry 
  # 
  # * 0 1 0   0  1 
  #   1 1 0   0  0 no change 
  # 
  # * 0 1 1   1  0 
  #   1 1 1   0  1 change 
  # 
  # * 0 0 1   0  1 
  #   1 0 1   1  0 change 
  # 
  # As the input bit i changes 0->1, v0 changes 0->1 or 1->0, 
  # and if the v1 carry bit changes then r = 1 else r = 0 
  # 
  # Take the four rows marked with (*) from the table above 
  # (with i = 0), and rearrange the columns: 
  # 
  #  v0 r  k 
  #  ----  - 
  #   0 0  0 
  #   1 0  1 
  #   0 1  1 
  #   1 1  0 
  # 
  # So k = v0 XOR r 
  # 
  # Alternate derivation:  v0 = i XOR k XOR r  ==>  k = v0 XOR r XOR i 
  # 
  v0 = (V0 >> n) & 1; w0 = (V1 >> n) & 1 # these bits must differ 
 
  if v0 == w0: print( "error, v0 = w0") # consistency check 
 
  r = ((V0 >> (n+1)) & 1) ^ ((V1 >> (n+1)) & 1) # change in carry 
 
  k = v0 ^ r # key bit 
 
  # print( "k =", k) 
 
  if k != ((Key0 >> n) & 1): print( "error, k bit", n, "is wrong") 
 
  if r != ((hprev0 >> n) & 1): print( "error, r bit", n, "is wrong") 
 
  # insert k into K0 and r into R 
  # 
  K0 |= k << n 
  R  |= r << n 
 
print( "   K0 =", format(K0,'032b')) 
print( "hprev =", format(hprev0,'032b')) 
print( "    R =", format(R,'032b')) 
 
# sample runs: 
# 
#  Key0 = 10010101111101010001000100010011 
#    K0 = 00010101111101010001000100010011 
# hprev = 10010001110011101110001100001011 
#     R = 00010001110011101110001100001011 
# 
#  Key0 = 11001100001100000111011111011010 
#    K0 = 01001100001100000111011111011010 
# hprev = 00001011000100000001101010010000 
#     R = 00001011000100000001101010010000 
# 
#  Key0 = 00110100000010110000100010010010 
#    K0 = 00110100000010110000100010010010 
# hprev = 11100011110111001011001101110100 
#     R = 01100011110111001011001101110100 
# --------^ 
# this bit is not determined here 
 


