
 Page 1 of 9

Control System Data Integrity using a Variable-round Message Authentication

Code with an Elliptic Curve Key Exchange Protocol

Dr. Ken Fischer, PhD

Code 516, NSWC Philadelphia Division
5101 S. 18th Street, Philadelphia PA 19112
Kenneth.a.fischer@navy.mil

Abstract—The challenge of securing industrial
control systems is significant and previous work
provided solutions to a number of these challenges
including performing mathematical operations on
BigIntegers; generating and distributing keys;
generating cryptographically secure hash values;
implementing random number generation; and
ensuring that the operations can be performed without
impacting normal operation / scan times. In previous
works the Variable-round Message Authentication
Code (VMAC) algorithm was introduced for per-
message data authentication, and a scheme was
presented for two nodes to exchange a symmetric key
for VMAC.
 This work expands upon previous work by
introducing the Key Exchange Protocol (KEP), which
allows for generation and distribution of symmetric
keys for use in multicast implementations of VMAC.
KEP is capable of being configured into multiple tree
configurations to increase the efficiency of key
distribution, but also provides for redundancy in case
the root node is taken offline. This work also provides
additional VMAC proof of security and VMAC
implementation details.
 A proof of concept for VMAC and KEP was then
created and tested using four 1756-L83 Rockwell
Automation processors. KEP was show to have an
average scan time impact of 10ms during a key
exchange with a minimum impact of less than 1ms
when IDLE and a maximum impact of 20 ms if
verifying and creating digital signed messages at the
same time.
Index Terms—PLC, HMI, ICS, multicast,
authentication, cybersecurity

1. INTRODUCTION
The challenge of securing Industrial Control Systems

(ICS) is significant and the need to provide authentication
and verification services for control system commands and
data has been well established [1, 2]. Implementing message

authentication for Industrial Control System (ICS) data and
commands would be a significant step forward in providing
security for these systems, but the process is complicated by
a number of factors which were described in [3]. Solutions
were presented to these challenges, however those works
were based around traditional ICS implementations which
use unicast technologies. This paper expands upon the
previous work by introducing a new Key Exchange Protocol
(KEP) that will generate and distribute symmetric keys for
use in the Variable-round Message Authentication Code
(VMAC) [3] or equivalent algorithm for per-message data
integrity verification. Section 2 of provides background
information on previous work and the challenges related to
multicast. Section 3 expands previous work [3] to provide
additional details related to the security and implementation
of VMAC. Section 4 introduces the KEP algorithm and
provides details for its implementation and use. Section 5
describes future work.

2. BACKGROUND
Previous works provided general solutions to the

underlying issues of ICS message authentication such as
processing speed and how to perform BigInteger
calculations on a PLC, which ultimately concluded with a
theoretical way to perform Edwards-curve digital signature
creation and verification on a PLC. It also presented a
solution for securing communications between two devices,
such as a PLC and a gas turbine’s Full Authority Digital
Controller (FADC) across an unsecure channel, in which a
Elliptic Curve Diffie-Hellman (ECDH) Key Exchange
would be performed to establish a shared symmetric key that
then would be used by a Hashed Message Authentication
Code (HMAC) algorithm to provide per message data
authentication and verification. The work then described
how the standard HMAC algorithm would run too slow for a
PLC to be able to execute, and an improvement was required.
The Variable-round Message Authentication Code (VMAC)
algorithm was introduced as a replacement for VMAC, and
the details of that algorithm are fully defined in [3].

Historically control systems data has been communicated
between devices via unicast messages. Examples of this
include an ICS consisting of just one PLC and one HMI, or a
system consisting of multiple PLCs that unicast to a PC-
based server node which then communicates to multiple

 Page 2 of 9

HMIs via unicast. However as systems have grown and
become more redundant the use of multicast technologies
has increased dramatically, particularly when there is a large
number of different controllers communicating with a large
number of consoles. The benefits of multicast are numerous
from a networking perspective, particularly in being able to
add nodes to an already established infrastructure. From a
controls engineering perspective, this means that additional
consoles can be added to a system without any impact to the
end controllers, significantly reducing the testing and
validation efforts.

From a security perspective, however, multicast presents
some unique challenges. The cryptographic algorithms that
exist today are designed for end-to-end security between a
pair of devices. Security between groups of devices
typically relies on the network infrastructure itself acting as
a middle man to provide the security between the various
end points. For example, in a normal unicast security
mechanism between 2 or more nodes each node would have
to send a unique unicast packet to each of the nodes that is
secured via some cryptographic algorithm. In a normal
multicast security scenario a node sends a secured packet to
a switch, with the cryptographic algorithm securing the data
only between the node and the switch. The switch then
needs to execute a separate cryptographic algorithm to
secure the packet being sent from the switch to a receiving
node, repeating the process for each individual node. The
result is that the most significant part of the security burden
is placed on the network itself, and the network itself must
be considered a trusted agent. If the network is somehow
compromised, then all nodes communicating via that
network can be compromised as well.

Therefore a security solution must be designed that allows
for multicast messages but assumes that the network that is
transmitting the data is hostile. Using a system where each
packet from each node is digitally signed avoids this
problem, since the nodes only need to know the public keys
of each other. However as discussed previously, the
limitations of processing power prevent this solution from
being feasible and thus we require some kind of symmetric-
key based solution such as VMAC. This means that the set
of multicasting nodes needs to somehow securely generate
and share a symmetric key with each other.

Most secure multicast schemes follow some variant of the
Iolus Framework for Secure Multicasting [4]. The
framework essentially establishes a secure distribution tree,
designed to communicate a symmetric key between the
nodes which is used to secure the multicast data. It
introduces the concept of different security subgroups, with
each group having a Group Security Controller (GSC) which
manages the top level subgroup and a Group Security
Intermediary (GSI) which manages each of the other
subgroups. Both GSCs and GSIs are known as Group
Security Agents (GSA). The idea is that these entities form
subgroups which then work together to deliver the multicast
traffic to all of the subgroups in the overall group. At the
root of the tree is the GSC which is ultimately responsible

for the entire group. Typically these kinds of frameworks
use a symmetric key called Kgroup to encrypt some new
Kgroupnew, and then transmit the new key.

In many ways this approach is similar to the Group Key
Management Protocol described in RFC 4046 [5], but since
it is a tree it is potentially more scalable since all of the
nodes will not have a reason to contact the root GSC at the
same time which can cause an out-of-sync implosion.
However, one of the issues with Iolus is that a node that
wishes to join the group would have to first locate a GSA,
particularly in a scenario where a GSA might be dynamic.
Solutions that have been proposed to solve this problem
primarily involve the node performing some kind of lookup
against a directory service, however devices like PLCs do
not have the processing power to perform such a lookup.
The framework also requires that when a member joins or
leaves a group a rekeying of the entire group will need to
take place.

 Some proposals such as found in [6] involve creating a
virtual binary tree from the root node and only require
rekeying between the end node and the path towards the root
node which improves the overall efficiency of the algorithm
to O(log n). In general the primary problem that these works
are attempting to solve is how to keep the group secure such
that an old node can’t just access data within the group
without properly joining the group, and to effectively boot
the node out of the group. As a result significant overhead
must be assigned towards joining and leaving the group to
ensure security before the nodes can talk. For an
information technology system this makes sense, however
for operational systems such as control systems this presents
significant problems. A control system needs to be able to
communicate as fast as possible when it powers on, and
delays in that could have unintended operational
consequences. Additionally, control system nodes do not
just go on and offline like a typical information system node.
The control systems are generally fairly static, and changes
to them have to go thru rigorous testing processes for
Installation Qualifications (IQ), Operational Qualifications
(OQ), and finally Process Qualifications (PQ). Therefore if
a node appears to be joining and leaving a group rapidly it is
likely due to either equipment or power failure and control
system operators will want to restore operation of the node
as fast as possible.

The larger problem with the Iolus framework is that it
does not account for damage to the network, which could
cause partitioning and prevent nodes from being able to
contact a GSA even though they are able to communicate
with other nodes. This is especially important for military
applications, but in general all critical infrastructure systems
need to be robust enough to handle damage from all sources
including natural disasters. The problem is mitigated to some
degree in that the nodes would currently have a shared key
and would be able to continue to talk for a limited time until
the partitioned network is restored. However since new keys
in the Iolus framework are generated and transmitted using
the current symmetric key the shelf life of the keys is limited.

 Page 3 of 9

The Iolus framework even includes an expiration for the
keys in the framework, requiring that nodes reach out to a
GSA to get an updated key.

The main purpose of the frequent key exchanges is to deal
with a scenario where a node leaves a multicast group. The
idea is to change the key once a minute or so to avoid having
to change the key each time a node leaves the multicast
group. This helps ensure that when a node leaves it must
renegotiate with a GSA to rejoin the group, which can take
some time. For a control system, however, you want the
exact opposite approach. Control system nodes do not
“come on and off” the network frequently, except in damage
or power loss scenarios. Therefore when the node is
restored you want to let it be able to rejoin the group as
quickly as possible.

Finally, none of these proposals assume any kind of prior
trust relationship between the various nodes. This makes
sense when considering applications like video conferencing
since the creation and membership of the group will vary
wildly. However for control systems the creation and group
membership will be fairly static. An algorithm tailored for
control systems requires some kind of prior trust relationship
between the nodes to ensure that only intended nodes join
the group. Therefore some kind of public-private key pair
and key infrastructure must be put into place so that a vendor
can allow a different vendor to have his control system
equipment be capable of joining the established group.

3. VMAC – ADDITIONAL DETAILS

Previous work [3] provided the VMAC algorithm along

with information on its security against collision and length
extension attacks. However that work did not provide
information on VMAC’s security to key reversal attacks or
implementation details with regards to what must be
included in a VMAC to protect against various forms of
replay attacks. This section expands that previous work to
cover these gaps.

3.1. VMAC Key Reversal Attack
An analysis of the VMAC was performed to determine

how difficult it would be to extract the key. The initial
assessment involved looking at a single input data block at
16-rounds, which is much simpler since it avoids any of the
data bit rotations in the SHA-256 message schedule. To
simplify the analysis the input data that was used did not
conform to the SHA-256 padding requirements, which are
implemented in VMAC. In order to reverse out a round,
first note that at the end of a round the intermediary hash
values are available as shown below

Figure 1. SHA Intermediary Hash Values

The values H0 through H7 are known constants, so given

out0 through out7, we can subtract the constants and recover
values a..h at the end of the 16th (the N-2) round. If we
know the values a..h at the 16th round we can recover what
the values were at the end of the 15th (N-1) round via the
following formulas:

 Round N-2 a,b,c,e,f,g are equal to Round N-1 b,c,d,f,g,h
 Round N-1 T2 can be computed from Round N-2 a,b,c
 Round N-1 T1 can be recovered from round N-1 a:

 a = T1 + T2  T1 = a – T2
 Round N-2 d can be recovered from round N-1 T1 and e:

 e =d + T1  d = e – T1

If the constant for the round Kt is known (and it is based on
the SHA-256 standard) then you can recover round N-2 h
from T1:

 T1 = h + ConditionalFunction +Kt + Wt

 h = T1 – ConditionalFunction – Kt - Wt

where the ConditionalFunction in SHA-256 is based on the
values of e thru g, which are known per above.

When we look at 16 rounds it turns out that a single bit
flip in the input data will cause a corresponding bit flip in T1,
and based on the change in the carry bit related to that flip
we can determine a bit of h and the key using the formula:

V = T1 – offset = h + W[N-1]

where offset includes the previously calculated low-order
bits of h, to eliminate carry propagation from those bits in
the addition. Details of the analysis are shown in Appendix
A. It turns out that all of the bits can be easily cracked when
using arbitrary chosen input data, finding all but 8 bits of the
256-bit key directly and the remaining 8 bits by exhaustive
search. Therefore 16 rounds are not secure, which means
that running 20 rounds is really the equivalent of only doing
4 “secure” rounds.

The next assessment was done looking at a single input
block at 17-rounds. The idea was similar to the 16-round
crack, where if you can determine h then you could unwind
the hash one more stage and find all of the key bits. At 17

 Page 4 of 9

rounds though, the message schedule takes affect which
means that W[16] is no longer a copied value with a trivial
key mix, and the formula expands to:

V = h + (((D XOR E) + X) XOR Y)

where

D = sigma1(Data[14])
E = sigma1(ROTR(Key[2],7))
Y = ROTR(Key[7],23)

and

X = sum of the Data[9,1,0] and Key[4,1,0] terms

If we can determine h then we could unwind the hash one
more stage and find all of the key bits. Data[9,1,0] affect h
and X, but changes in D do not change h, E, X, or Y, so
flipping bit i of D will flip bit i of V. Although the change in
bit i provides no information itself, the addition with X may
flip carry bits, and bit i+1 of ((D XOR E) + X) will change
only if bit i of X is 1. However we can only observe V, and
the addition with h may also flip carry bits. So if bit i+1 of
V changes then bit i of either h or X is 1, but we don't know
which. Therefore we would have to continue without
knowing h by running the approach for cracking 16 rounds
for each of the possible 232 values of h. Each of those
produces 28 candidate keys so the overall search space is
O(240). For each value of h, Crack16 invokes VMAC twice
for each of 256-8 = 248 bits, that is 2*248 = 496 invocations.
At a scan rate of 100msec, i.e. 10 invocations per second,
that would take over 6000 years:

496 * ((2^32)/10) / (60*60*24*365) = 6755.1

Extrapolating to N=20 rounds, there would be 4 unknown h
values associated with each candidate key, so the overall
search space is 28*(232)4 = O(2136). At a scan rate of
100msec that would take over 5.35e32 years.

3.2. VMAC Implementation Details
A secure implementation consists of two parts: the

generation of outgoing messages and the processing of
incoming messages. A secure implementation also
addresses the following concerns:

1. Protection against the standard replay attack, where a
message between two nodes is saved and then later
played again

2. Protection against a variant of the replay attack where
a message generated by one node intended for a
second node is captured and played to a third node

3. Determination of the key used in the VMAC
algorithm, either Ks or Ks’, which is changed by the
KEP and is used to provide a bumpless transfer
during a key change

3.2.1. Outgoing Messages
Generating outgoing messages is easier than verifying

incoming messages, but there are critical steps involved to
ensure the message is generated accurately. The most
important step is that the VMAC must be generated using a
temporary memory space, and then transmitted into the
outgoing send buffer due to the messages being sent
asynchronously from the logic execution. Otherwise what
will happen is that a message will be transmitted in the
middle of the VMAC generation process, which will cause
the receiving node to get an incorrect VMAC and generate a
fault. In the proof of concept implementation, messages
were transmitted every 20ms while the scan time of the total
IO_Mapping routine was closer to 50ms and the generation
of the outgoing message close to 8-9ms of that time.
Without processing the VMAC in a buffer prior to transmit
an error rate of every few seconds would result, frequently
with several invalid VMACs in a row.

The second most important aspect of generating a VMAC
is ensuring that the proper “header” data is incorporated into
the VMAC data message. The header information is used to
prevent the replay attacks described above. The structure of
header data is as follows:

Figure 2. VMAC Message Structure

The first value used in the header is a 64-bit counter,

which on controller power up is initialized to the number of
microseconds since epoch time. This counter is then
incremented by 1 each time a new VMAC is generated, and
essentially serves as a timestamp replacement. The
controller’s time itself does not have to be therefore
synchronized to some higher level server, it just needs to be
reasonably accurate (within a few minutes) and should never
be reset to a time earlier than it was previously set to.
However, since the counter is only incremented by 1 for
each VMAC generation, and in the proof of concept it takes
8-9 ms to generate a VMAC it means that for each VMAC
the counter increases only by 1 where the number of
microseconds since epoch time would increase by thousands.
This helps ensure that even during a power loss or a fresh
download which could cause a disturbance in the clock time
the VMAC counter will always be initialized at a value
significantly higher than the previous value. This would
hold true if even during a power loss the controller’s clock
does not increase such that when it powers up it still thinks
the time is what it was at the last power loss.

 Page 5 of 9

The 32-bit Node ID and Destination ID are used in the
message to indicate the source of the message and the
intended recipient of the message. The Destination ID can
be a code such as “234” used to indicate a group of nodes, or
an IPv4 address that represents a unicast, multicast, or
broadcast address. Similarly the Node ID can represent
something as simple as a Node number (as used in the proof
of concept) to a full IPv4 address. The purpose of these IDs
is to ensure that someone does not take a message from one
node and send it to a different set of recipients, thus
preventing a variant of the replay attack.

The last 64-bits represent the VMAC Key ID, which
indicates which Ks or Ks’ was used to generate the VMAC.
Note that it is not the value of the key itself, but rather a 64
bit code that could either be the hash of the key or a
timestamp of the key. The proof of concept uses a
timestamp value where the 64-bits represents the number of
microseconds since epoch time at the time the key was
generated, however a hash of the key could easily be
substituted and used to verify that the correct key was
transmitted, and if not then it could trigger a new Ks’_REQ
in KEP to get a corrected copy of the key. In general, the
VMAC Key ID is used by KEP to determine which key,
either Ks or Ks’ was used in VMAC.

Details will be provided in the description of KEP, but
from a VMAC perspective KEP provides a mechanism by
which a node will know if all nodes are reporting that they
have the latest and greatest Ks’. If any nodes do not have
the new Ks’, which likely occurs during the middle of key
propagation, then VMAC uses Ks which represents a backed
up copy of the old Ks’. Once KEP detects that all nodes
have a copy of Ks’ it instructs the node to use Ks’ for all
outgoing messages and embed the corresponding ID into the
VMAC message. This will let a receiving node know
whether to use the new key or the old key. Note that KEP
will have already determined that the receiving node has a
copy of the new key prior to instructing VMAC to use the
new key to send the message

3.2.2. Incoming Messages
The same principles for outgoing messages apply for

incoming messages, but in reverse. To begin, an incoming
message must first be copied into a buffer for processing
since the messaging is asynchronous. Otherwise in the
process of verifying one VMAC a new one could be written
in which could cause the verification to improperly fail.
After the message is copied into a buffer, the Counter is
immediately checked to determine Iif it is greater than the
last received value. If it is not then the message can be
immediately discarded, since it is either an old message that
has not yet been updated by the sending controller due to
asynchronous processing or it is a replay attack. In general,
if a counter is less than the last counter than the message is
likely to be a replay attack, but if it is equal it could be just
stale data.

The next step is to extract the VMAC Key ID from the
message and determine if the VMAC was created using Ks’
or Ks. Under most circumstances these values will be the
same, except during the middle of a key update by KEP.
KEP will have already determined that the receiving node
has a copy of the new Ks’ before it gets used in a VMAC
from the sender node. KEP also has logic in it to monitor
the VMAC verifications, and a node waits for all nodes to
have successfully sent it a valid VMAC using the new Ks’
before it sets Ks = Ks’, essentially discarding the old key and
backing up the new key.
Once the correct key is determined the VMAC of the
incoming data is calculated and then compared against the
VMAC provided by the sending node. If the two values are
equal, and the counter is greater than the previous counter,
and the Node ID of the sender is correct, and the Destination
ID is correct then the VMAC is flagged as “OK”. The data
for the message is then moved into a “data verified” buffer
to be used for process control. Invalid data is not processed.
The VMAC implementation for incoming messages includes
5 alarms for each message:

1. Invalid VMAC Alarm – if a node does not receive a
valid VMAC message within a set time period then
an alarm will be generated (recommend 250ms)

2. Replay Alarm – if a node does not receive a valid
VMAC with a Counter greater than the last valid
message within a set time period then an alarm will
be generated (recommend 250ms), OR if a node
receives a VMAC with a Counter less than the last
valid message

3. Node Alarm – if the Node ID of the message is not
what was expected then trigger an alarm (a 50ms
debounce timer is recommended to avoid potential
network errors)

4. Destination Alarm – similar to Node Alarm but
uses the Destination ID vice the Node ID

5. Invalid Key Alarm – if a node receives a VMAC
message with a key ID that does not match Ks or
Ks’ then generate an alarm

All alarms are cleared automatically on power up, but to

be cleared during operation both the alarm condition itself
must be cleared and an acknowledgement from an operator
must be provided. Actions that an operator should take
depend on the design of the system under question and the
acceptable risk profile of that system. The decision tree is
therefore beyond the scope of this thesis, however it should
be understood that unlike IT systems sometimes it will make
sense to continue operating using invalid data even in the
presence of a cyber threat. For example, if a machine is
providing life support to someone and the option is to either
shut down or keep running under risk then it is probably
better to keep running because that option might cause harm
where shutting down will definitely cause harm. Control
system design is also beyond the scope of this thesis, but it
should be noted that a good design will take into account

 Page 6 of 9

that sometimes a system component might need to run in a
“standalone” mode due to equipment damage, plant
maintenance, cyber threats, or a number of other reasons.

4. KEY EXCHANGE PROTOCOL
A multicast group can be efficiently protected through use

of a single symmetric key which can then be used to encrypt
traffic between nodes or to provide message authentication
and verification using algorithms such as VMAC. The
challenge comes in generating the symmetric key and
transmitting that key to the other nodes. It is possible to use
VMAC without KEP, however only in the case when the
system designer has complete control of every node in the
control system and does not have to interface with a 3rd
party vendor. In practice this is unlikely, since control
systems are often distributed, with a centralized
“overarching” system that then interfaces to a number of
controllers contained in panels that come with various
machines produced by OEMs to provide local control.
Therefore KEP provides a means by which a distributed
control system with components by different OEMs can
interface to each other and update the symmetric key used by
VMAC. Each vendor would generate an Ed25519
public/private key pair and then the vendors would exchange
the public keys as part of the Interface Design
Documentation. These keys can then be used to generate the
symmetric key.

Section 2 described the main approaches to generating
and handling the symmetric key in multicast groups, but
these approaches have additional complications when
applied to control systems. The limited processing power is
the primary challenge which impacts each of the multicast
solutions in a number of ways, primarily that they cannot
process the number of steps that would be required to update
keys each time group membership changes while at the same
time meeting performance requirements. Additionally there
are significant challenges that stem from how message
structures and send rates work since most of these
algorithms require that the system send out specialized “one-
time” messages as part of the group join and leave processes.
An implementation of these existing algorithms which must
transmit the control messages used to exchange the
symmetric key would likely suffer performance degradation.

Thankfully, the design of control systems does mean that
the requirements for multicast messaging are more limited
than the requirements for the generalized multicast group
scenarios that are addressed in [4, 5, 6]. The rate of group
membership changes is relatively low and is primarily the
result of equipment or power failures where there is a desire
to re-join the node to the group as speedily as possible. This
eliminates the need to change the group key solely based on
group membership changes which is a primary driver for the
approaches taken in the literature. However this does add a
unique challenge in that a node must be capable of being
restored to the group in near instantaneous time even during
the middle of a group key change. Even an algorithm

capable of updating a key with an O(log n) efficiency is not
going to be fast enough given the inherent limitations of
processing speed. This is commonly referred to in control
systems engineering as a “bumpless transfer” and is not
addressed in the literature simply because it is not a
requirement for an information system.

To solve these challenges the Key Exchange Protocol
(KEP) for control systems was developed. The primary
purpose of KEP is to securely generate and transmit a Ks’,
which serves as the primary shared symmetric key, along
with the identity number of the Ks’ and the Ks currently in
use. These identity numbers are 64-bit numbers that
represent the number of microseconds since epoch time at
the time these were generated. During a key exchange a new
Ks’ is created and distributed, however the old Ks is used in
VMAC until a node confirms that all nodes it communicates
with have received Ks’ via the identity number. The nodes
then begin to transmit messages using Ks’ vice Ks. When a
node receives valid VMAC messages from each node, which
were generated using Ks’, the node sets Ks equal to Ks’.

KEP consists of two parts, the Listener and the Processor,
that run in parallel with each other. The Listener is
responsible for receiving messages from other nodes and
verifying the messages of these nodes. The Processor is a
state-machine, shown in Figure 3, which uses verified
messages from the Listener along with internal data to
perform the bulk of the KEP logic. KEP operates using a
client-server model, however unlike the Iolus framework
which uses GSAs, each node in KEP can act as both a client
and a server depending on the state of the node. This is done
by each node having an internal “priority table” for all of the
other nodes. A node finds the highest priority node that is
advertising that it has a Ks’ available for distribution and
selects that node as its server to obtain the key. It then goes
through an Ed25519 ECDH process to generate a one-time
symmetric key with the server node, with that key known as
Kp. Kp is then used to encrypt a copy of Ks’, with the
encrypted key known as Ke. Ke is then transmitted from the
server node to the client node and subsequently decrypted
using the client’s copy of Kp to obtain Ks’.

Since KEP, and control systems in general, do not require
the symmetric key (i.e. Ks’) to change each time a node
leaves and joins the group the efficiency of the key exchange
is Θ(1). Also note that since the key does not change due to a
node dropping out of a group, a power loss and subsequent
power restore does not require a node to go through the key
exchange process before it can begin communicating. Even
if a key update has begun while a node is down, the key
update will wait for the node to be restored and obtain a
copy of the new Ks’ before the current Ks is abandoned.
This means that the node which experienced the failure and
subsequent restoration will be able to use Ks to immediately
authenticate and verify messages, meeting overall control
system performance requirements.

 Page 7 of 9

Figure 3. KEP State Machine

Node priorities and trust relationships are established as

part of the control system design. The trust relationships are
established by each node having a copy of the Ed25519
public keys of the other nodes. The priorities are set by
entering values into an internal table of the node, with “1”
being the highest priority. Note that it is not necessary for
all nodes to have the same priorities, i.e. if there are four
nodes it is not required that each node consider the same
node (say Node1) to be the highest priority node. This
means that it is possible to use KEP in a tree configuration
with a root node and have other nodes be branches and
leaves of the tree. This improves the speed at which a key
change propagates throughout the tree, with KEP having a
key change efficiency of O(log n).

In general there is a root node for the KEP tree, however
the root node does not necessarily have to be the node with
the highest priority at all times. If the highest priority node
“Node1” is down for some reason then the next highest
priority node will take over as the root. This “Node2” can
even perform a key update which will then propagate thru
the rest of the tree. When “Node1” is restored it will
perform the same function as any other leaf on the tree by
examining the existing nodes to determine the highest
priority node that is active and is advertising a Ks’ available.
“Node1” will then work to obtain a copy of the Ks’ from
“Node2”, and once that is obtained “Node1” will start to
advertise itself as having the key available. Since it is the
highest priority node it will automatically retake the position
as the tree root.

It should be noted that when a node is first powered on it
will enter a “powerup” state in the KEP Processor state
machine that will clear Ks’ from the node, with the
assumption that Ks’ might have changed while the node was
down. However the node can continue to use Ks to
authenticate packets because Ks does not get set equal to Ks’
until a node has verified that all other nodes within its
immediate vicinity in the tree are using the new Ks’. As a
result KEP provides bumpless transfer. It is not suitable for

scenarios where group membership in a multicast scheme is
dynamic, but it is very efficient where the group membership
is relatively static.

In general, it is recommended that KEP be used to trigger
a key update once per year in order to assure the validity of
the VMAC key. This can be done on an automatic cycle by
adding logic so that the root node triggers the update
automatically when a timer expires, or can be done thru an
message request sent by another node. Control engineers
can further tailor KEP to only allow designated nodes,
perhaps a particular administration console, to be allowed to
instruct the root node to perform a key update. Note that the
command to perform a key update is contained within a
digitally signed message.

5. RESULTS AND FUTURE WORK
A proof of concept was developed and tested using four

RSLogix 5000 1756-L83 PLCs that were placed in the same
rack. Messages were transmitted using produce/consume
tags across the backplane, however the work presented here
is protocol independent. Any transportation mechanism
including Ethernet and Fieldbus could be used, which is a
feature inherent for both this work and produce/consume
tags in general. The controllers were configured initially
with Node 1 having the highest priority and Node 4 the
lowest, all in a flat configuration. As testing continued
variations on the tree configuration were tested, such as
nodes farther down on the tree from the root node. VMAC
was used to provide data authentication during the entire
process.

In general for KEP it was found that the timing of KEP
ranged from almost a non-existent impact on scan time to at
most a 20 ms impact on scan time, depending on what KEP
was doing at the moment in time. The results on scan time
are not dependent on the number of nodes involved in the
KEP, however the time to complete an entire key change is
dependent on the tree configuration and the number of nodes.
The scan time impact is ultimately driven by the processing
of creating and verifying digital signatures, each of which
has a maximum 10 ms scan time. Therefore during KEP it is
possible to have both of them running in the worst case
scenario at a point in time resulting in the 20ms scan time
impact. In general though the results showed that during an
active key exchange KEP spent about 30% of the time with a
less than 1 ms impact, approximately 50% of the time with a
5-10 ms scan time impact, and remaining 20% of time
between 10-20ms scan time impact.

Ultimately the biggest scan time impacts come from
VMAC itself. Previous work [3] provided the timing results
for VMAC using various rounds. For the proof-of-concept
20 rounds were used with a message length of 100 DINTs,
or 400 bytes. Produce/consume tags have a maximum
length of 500 bytes so the VMAC data consumed 400 of the
500 bytes. The remaining 100 bytes was reserved for some
overhead such as the VMAC itself (32 bytes), flags
indicating the number of rounds and the length of the

 Page 8 of 9

message (8 bytes total), and information on the connection
status which is a generic part of using produce/consume tags
in a Rockwell PLC. With each node generating one VMAC
message and processing 3 incoming messages the total scan
time of the program (including all the other I/O handling for
none-VMAC data and all the implementation details
described in Section 4.4) was between 51.7 ms and 52.1 ms.

This result is interesting because the results indicate that
running four VMACs containing 400 bytes each should take
a total of approximately 51.6 ms, indicating that the
overwhelming majority of the run time is spent running
VMAC itself. Therefore the implementation details
provided in Section 3.2 have a negligible impact on overall
system performance but are critical for providing overall
security. The result also suggests that if additional alarms or
monitoring capability were to be added that capability would
have a negligible impact on performance.

The one area of potential improvement for VMAC is the
determination of the status of a loss of communications to a
node. In the proof of concept this was done using built in
system values and running a Get System Values (GSV)
instruction that would provide the status of communications
from the PLC. In most PLC applications if the status was
“good” then “COMMSOK” would be triggered immediately,
and the status would have to go “bad” for three seconds
before we would state the communications was lost. In this
proof of concept status this was reversed, meaning that we
would have to be “good” for three seconds before setting
“COMMSOK” and a “bad” status would immediately
indicate communications had been lost. The main driver for
this change was to ensure that stable communications had
been established before cryptographic functions would be
initialized to improve the overall operation of KEP and
VMAC. It is the author’s opinion that this change would not
negatively impact overall system performance, but that
might not hold true depending on the specific control system
application.

A long term solution to improve efficiency in the
algorithm would be to create a hardware based solution,
especially one that could perform 64-bit math natively in the
PLC. If a PLC was capable of performing 64-bit math
natively the performance of VMAC would be at least
doubled because we could use an SHA512 based solution
that would double the size of VMAC data blocks, although it
is likely we would have to modify the message scheduling
portion of SHA512. Additionally a hardware based solution
could include a built-in true-random number generator that
could be integrated into the control system platform (such as
a card that would fit in the chassis). It is suggested, however,
that if PLC vendors do create such a solution they offer at
least three different options based on different technologies
in case a flaw is discovered with one option that is not
solvable with a firmware update.

Finally, this work has been focused on providing a
mechanism for protecting and verifying data integrity
between nodes, and allowing a mechanism for the operator
to detect if there is a problem. However this work has not

defined what an operator should do if problem is detected.
In IT systems the usual answer is to disconnect the systems,
however in a control system it is possible that disconnecting
the system could result in even higher risk. The decision
tree is therefore based on a wide range of factors that require
further study with the goal of producing an automated
system that can respond intelligently to detected cyber
threats. Further work is required to map out these threat
profiles and corresponding decision trees, and ultimately to
develop the response solution.

REFERENCES
[1] K. Fischer, “Control System Data Authentication and

Verification Using Elliptic Curve Digital Signature
Algorithm.” Presented at ASNE Intelligent Ships
Symposium X, May 22-23, 2013, Philadelphia, PA.

[2] K. Fischer, “Results and Code for a Software-based
Implementation of ECDSA for Control System Data
Authentication and Verification.” Presented at ASNE
Electric Machines Technology Symposium, May 28-29,
2014, Philadelphia, PA.

[3] K. Fischer, “Advancements in Control System Data
Authentication and Verification.” Presented at ASNE
Intelligent Ships Symposium 2017, May 25-25, 2017,
Philadelphia, PA.

[4] S. Mittra, “Iolus: A Framework for Scalable Secure
Multicasting.”
(http://conferences.sigcomm.org/sigcomm/1997/papers
/p113.pdf) Accessed: 7 March 2018

[5] M. Baugher, R. Canetti, F. Lindholm, “RFC 4046:
Multicast Security (MSEC) Group Key Management
Architecture” (https://www.ietf.org/rfc/rfc4046.txt)
Accessed: 7 March 2018

[6] L. Dondeti, S. Mukherjee, A. Samal, “DISEC: A
Distributed Framework for Scalable Secure Many-to-
many Communication” ”
(http://digitalcommons.unl.edu/cgi/viewcontent.cgi?arti
cle=1030&context=cseconfwork) Accessed: 7 March
2018

ACKNOWLEDGEMENTS

The author would like to thank Dr. Richard Perry,

Villanova University, Associate Professor of Electrical and
Computer Engineering, for his support, technical review, and
mentorship in this work.

 Page 9 of 9

Kenneth A. Fischer, received a BS in Chemical
Engineering from the University of Delaware, and an MS
and PhD in Computer Engineering from Villanova
University. Dr. Fischer has over 15 years of automation and
controls experience in pharmaceutical, power generation,
food and beverage, specialty chemical, and naval
applications. He is currently employed with the Naval

Surface Warfare Center, Philadelphia Division and is the
Lead Engineer for DDG 1000 Machinery Control Systems.

“The views expressed herein are the personal opinions of
the author and are not necessarily the official views of the
Department of Defense or any military department thereof.”

 Page A.1 of A.3

APPENDIX A – CRACKING VMAC 16-ROUNDS
/**
File: crack16.py
**/

Crack one-block VMAC with N=16 rounds using arbitrary input data

The input data does not conform to the SHA-256 padding requirements.

This finds bits 0 to 30 of the rotated Key[0] used in round 16.

Bit 31 can not be found using this method because the carry bit related to
that is lost in the 32-bit additions. To continue, try both ways: with
that bit low and with that bit high. For each way, unwind H0 and H1 one
more round, and find bits 0 to 30 of rotated Key[1]. Again bit 31 will
be unknown, so another branch into two ways is required. After 8 unwind
levels 8 bits of KEY will remain unknown, and those 256 possibilities can
just be tested to determine those bits.

Only one unwind is done here, demonstrating the concept.

import sha, random

N = 16

extract internal SHA-256 variables

def extract(H):
 h = (H - sha._H0[7]) & sha._mask; H >>= 32
 g = (H - sha._H0[6]) & sha._mask; H >>= 32
 f = (H - sha._H0[5]) & sha._mask; H >>= 32
 e = (H - sha._H0[4]) & sha._mask; H >>= 32
 d = (H - sha._H0[3]) & sha._mask; H >>= 32
 c = (H - sha._H0[2]) & sha._mask; H >>= 32
 b = (H - sha._H0[1]) & sha._mask; H >>= 32
 a = (H - sha._H0[0]) & sha._mask;
 #
 # check
 #
 # H = (a + sha._H0[0]) & sha._mask
 # H <<= 32; H |= (b + sha._H0[1]) & sha._mask
 # H <<= 32; H |= (c + sha._H0[2]) & sha._mask
 # H <<= 32; H |= (d + sha._H0[3]) & sha._mask
 # H <<= 32; H |= (e + sha._H0[4]) & sha._mask
 # H <<= 32; H |= (f + sha._H0[5]) & sha._mask
 # H <<= 32; H |= (g + sha._H0[6]) & sha._mask
 # H <<= 32; H |= (h + sha._H0[7]) & sha._mask
 #
 return (a,b,c,d,e,f,g,h)

extract V = T1 - offset = h + W[N-1]

The previous round values a,b,c,d,e,f,g,T1,T2 can be determined directly,
but not h (see notes in file REVERSE here).

def reverse(D, N, K):
 H = sha.VMAC(D, N, K)
 W = sha.W[N-1]
 hprev = sha.hprev
 (an,b,c,d,e,f,g,h) = extract(H)
 #
 a = b; b = c; c = d; e = f; f = g; g = h
 T2 = (sha.Sigma0(a) + sha.Maj(a,b,c)) & sha._mask
 T1 = (an - T2) & sha._mask
 V = (T1 - sha.Sigma1(e) - sha.Ch(e,f,g) - sha._K[N-1]) & sha._mask
 #
 if V != (hprev + W) & sha._mask: print("error in reverse, V is wrong")
 return V

 Page A.2 of A.3

random KEY

KEY = random.getrandbits(256)

Key0 = sha.ROTR(KEY>>224, 3*0+(15>>3)) # Key[0] XOR with W[15] in VMAC()

print(" Key0 =", format(Key0,'032b'))

K0 will hold the cracked key bits

K0 = 0

R will hold the h bits

R = 0

arbitrary random input Data

Data = random.getrandbits(512)

masks to set bit 0 of Data high or low

ones = (1 << 512) - 1 # 11...11
mask1 = 1 # 00...01
mask0 = ones ^ mask1 # 11...10

find bit n of Key0

for n in range(31):
 #
 # W[15][n] = 0 or 1
 #
 V0 = reverse(Data & mask0,16,KEY)
 # W0 = sha.W[N-1]

 if n == 0: hprev0 = sha.hprev
 elif hprev0 != sha.hprev: print("error, hprev0 changed")

 V1 = reverse(Data | mask1,16,KEY)
 # W1 = sha.W[N-1]

 if hprev0 != sha.hprev: print("error, hprev1 changed")

 # for next iteration
 #
 mask1 <<= 1
 mask0 = ones ^ mask1

 # T1 ~= h + (Data XOR Key0), with T1 and Data known, h and Key0 unknown.
 #
 # A single bit flip in Data will cause a corresponding bit flip in T1,
 # and based on the change in the carry bit related to that flip, we can
 # determine a bit of h and Key0.
 #
 # V = T1 - offset = h + W[N-1]
 #
 # where offset includes R, the previously calculated low-order bits of h,
 # to eliminate carry propagation from those bits in the addition

 V0 = (V0 - R) & sha._mask

 V1 = (V1 - R) & sha._mask

 # print("V0 =", format(V0,'032b'))
 # print("V1 =", format(V1,'032b'))

 # print("W0 =", format(W0,'032b'))
 # print("W1 =", format(W1,'032b'), "\n")

 # get r = bit n of h, and k = bit n of Key0
 #
 # bits: i = input data, k = key, (v1,v0) = (carry, V bit n)
 #

 Page A.3 of A.3

 # i k r (v1,v0) = (i XOR k) + r
 # ----- -----
 # * 0 0 0 0 0
 # 1 0 0 0 1 no change in carry
 #
 # * 0 1 0 0 1
 # 1 1 0 0 0 no change
 #
 # * 0 1 1 1 0
 # 1 1 1 0 1 change
 #
 # * 0 0 1 0 1
 # 1 0 1 1 0 change
 #
 # As the input bit i changes 0->1, v0 changes 0->1 or 1->0,
 # and if the v1 carry bit changes then r = 1 else r = 0
 #
 # Take the four rows marked with (*) from the table above
 # (with i = 0), and rearrange the columns:
 #
 # v0 r k
 # ---- -
 # 0 0 0
 # 1 0 1
 # 0 1 1
 # 1 1 0
 #
 # So k = v0 XOR r
 #
 # Alternate derivation: v0 = i XOR k XOR r ==> k = v0 XOR r XOR i
 #
 v0 = (V0 >> n) & 1; w0 = (V1 >> n) & 1 # these bits must differ

 if v0 == w0: print("error, v0 = w0") # consistency check

 r = ((V0 >> (n+1)) & 1) ^ ((V1 >> (n+1)) & 1) # change in carry

 k = v0 ^ r # key bit

 # print("k =", k)

 if k != ((Key0 >> n) & 1): print("error, k bit", n, "is wrong")

 if r != ((hprev0 >> n) & 1): print("error, r bit", n, "is wrong")

 # insert k into K0 and r into R
 #
 K0 |= k << n
 R |= r << n

print(" K0 =", format(K0,'032b'))
print("hprev =", format(hprev0,'032b'))
print(" R =", format(R,'032b'))

sample runs:

Key0 = 10010101111101010001000100010011
K0 = 00010101111101010001000100010011
hprev = 10010001110011101110001100001011
R = 00010001110011101110001100001011

Key0 = 11001100001100000111011111011010
K0 = 01001100001100000111011111011010
hprev = 00001011000100000001101010010000
R = 00001011000100000001101010010000

Key0 = 00110100000010110000100010010010
K0 = 00110100000010110000100010010010
hprev = 11100011110111001011001101110100
R = 01100011110111001011001101110100
--------^
this bit is not determined here

