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Abstract— In previous works the need for control 

system data authentication and verification was 

discussed, and the use of the Elliptic Curve Digital 

Signature Algorithm (ECDSA) was proposed as a 

solution. Following up on that work, this paper 

presents a software based implementation of ECDSA 

utilizing ISaGRAF SoftPLCs running on both a virtual 

machine configuration (test string 1) and on four 

General Micro Systems VS 275 single board VME 

computers (test string 2).  The implementation is 

primarily written in IEC 61131-3 ladder logic using 

specialized function blocks developed in C utilizing the 

OpenSSL library.  The four SoftPLCs were configured 

in a round robin architecture in order to determine the 

average time it takes to generate a message, sign it, 

transmit it, receive it, and verify the signature.  Test 

string 1 gave an average time of 26-28ms with PLC 

scan times of 22-24 ms.  Test string 2 gave an average 

time of 55-60ms with PLC scan times of 55-60 ms.  As 

expected, timing of the completed transmission is 

linearly related to PLC scan time. 

 

Index Terms—PLC, HMI, Stuxnet, Smart Grid, 

NGIPS, ECDSA, Machinery Control System 

 

1.  INTRODUCTION 
In previous works [1] the need for increased security for 

control systems was discussed.  The requirements for control 

system security were surveyed and it was determined that a 

method for verifying the authenticity and integrity of the 

commands and data transmitted between PLCs was needed.  

Specifically, it was proposed that the data traveling across 

any controls network is first signed by the sending controller 

at the application layer.  The signature would then be 

transmitted across the control network along with the data 

and be subsequently verified by the receiving controller at 

the application layer.  This would allow the receiving 

controller to verify both the authenticity and integrity of the 

data and would allow both controllers to utilize any available 

communications protocol to transmit.  It was also noted that 

signing and verifying the data at the application layer will 

also allow intermediary controllers to relay data silently 

without additional overhead that would impact transmission 

time. 

To accomplish this, the use of a digital signature 

algorithm was proposed using a public key cryptography 

system.   A literature survey was performed of two major 

cryptographic technologies used in digital signature 

algorithms: RSA and Elliptic Curve Cryptography (ECC).  

Figures 1 through 3 below show timing comparisons of the 

two different algorithms based on the work performed by 

Jansma and Arrendondo.  The data showed that as higher 

levels of security are needed ECC technology begins to 

outperform RSA technologies.  Given that the need for 

security will only increase, the Elliptic Curve Digital 

Signature Algorithm (ECDSA) was proposed as a solution  

for control system data authentication and verification. 

 

 
Figure 1.  ECC vs RSA Key Generation [2] 

 

 
Figure 2.  ECC vs RSA Signature Generation [2] 

 

 
Figure 3.  ECC vs RSA Signature Verification [2] 
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After reviewing the mathematics of ECDSA and potential 

variations of the algorithm, it was concluded that ECDSA is 

a promising solution and that an IEC61131-3 compliant 

implementation would be needed in order to use existing 

PLC hardware and encourage widespread adoption by 

control engineers.  Unfortunately, such an implementation 

would be extremely complicated and expensive to produce.  

Furthermore, based on the timing data presented in [2], it 

seemed uneconomical to commit the resources towards 

development of such an implementation until the feasibility 

of the approach could be more fully evaluated and 

demonstrated.  

SoftPLCs provide a unique opportunity to perform this 

analysis by developing a prototype system that is 

predominately written in IEC 61131-3 code but allows the 

use of specialized custom function blocks written in other 

high level languages.  This allows the development of a 

prototype implementation of a control system ECDSA 

algorithm that is able to reuse existing software libraries in 

order to avoid the expense of developing ladder logic 

cryptographic functions.  The prototype implementation, 

being predominately written in ladder logic, can then be 

reused for a full IEC611-31 implementation by simply 

replacing the custom function blocks with IEC61131-3 

versions.   Furthermore, the large number of SoftPLCs 

already existing in both Navy and industry applications 

would be better suited by the prototype implementation than 

the full IEC 61131-3 implementation.   

This paper presents the source code, timing results, and 

stability results for an ISaGRAF SoftPLC implementation of 

ECDSA for control systems.  ISaGRAF SoftPLCs are 

currently in use on a wide range of industrial control 

applications around the world, and are currently employed 

by the Navy in two major programs:  the Littoral Combat 

Ship (LCS) Class and the Mobile Landing Platform (MLP) 

Class for ship wide machinery control.  The challenges and 

solutions uncovered when developing the implementation 

are discussed, and a path forward for converting the 

prototype into a full IEC 61131-3 compliant implementation 

is presented.  

2. SYSTEM ARCHITECTURE 

OVERVIEW 
The primary goal of the prototype was to determine the 

overhead the ECDSA implementation would have on control 

system operation.  In order to have effective control, the scan 

times for the logic must be sufficiently low enough to 

approximate real time operation (less than 100 ms and 

ideally less than 50 ms).  Additionally, for PLC to PLC 

communications effective control requires that you are 

transmitting and processing at least one set of actions every 

300 ms or less (ideally every 100 ms or less).    There are a 

number of different things that can impact both scan times 

and transmission times, particularly for SoftPLCs running on 

a Windows OS, such as network latency and individual 

hardware I/O access rates.   

In order to obtain averages for scan times and 

transmission times a simple “round robin” architecture was 

chosen as shown in Figure 4 below.  Four SoftPLCs, labelled 

1 through 4, were configured so that each processes a piece 

of data and then subsequently transmits it down the line, 

repeating the process in an indefinite loop.  The data 

transmitted included a number of simulated signals, 

including BOOL, INT, REAL, DATE, and STRING values 

that were part of a small logic simulation routine.  The 

details of this are discussed in Section 6 below. 

 

 
Figure 4.  SoftPLC Round Robin Architecture Concept 

 

The primary data point of interest for this system is a 

DINT value called COUNT.  COUNT is a number that is 

initialized at 0 at the very start of the system.  Each SoftPLC 

receives COUNT as an input from its predecessor, verifies 

the digital signature that came with the COUNT value, and if 

verification is successful it increments the COUNT value by 

1, generates a new message, and transmits the new message 

to the next PLC in the loop.  Figure 5 below illustrates the 

count increment lifecycle within the PLC’s execution 

processes.  As can be seen, each value of count represents a 

complete set of signature generation, data transmission, and 

signature verification actions.  Transmission time is then 

synonymous with the timing of the COUNT lifecycle.  In 

order to determine an average time, the system was run until 

it had reached a certain value of COUNT.  The runtime was 

then captured and the runtime divided by the COUNT gives 

us the average transmission time.   

 

 

 
Figure 5.  SoftPLC Round Robin Architecture Concept 

 

Please note that some SoftPLC products offer an 

additional “WAIT” option as a step after the DATA 

TRANSMISSION step in their PLC.  This feature normally 

works by predefining a PLC execution cycle time, like 100 

ms, and essentially takes the 100 ms minus the time it took 

to complete all of the above steps and then waits for that 

time until it begins executing the next cycle.  This is 

normally used to add a bit more determinism to the SoftPLC 

and provides a window of opportunity for the operating 
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system to execute tasks.  Since the goal of this prototype to 

determine loads by monitoring scan and transmission times 

the WAIT feature was disabled. 

The PLC scan times would be monitored by using built-in 

tools that come with all major SoftPLC and regular PLC 

packages.  Scan time is not synonymous with transmission 

time since the PLCs are not synchronized (as is typical with 

industrial operations).  Additionally, it is possible that a PLC 

might receive an invalid signature in a data transmission due 

to events like network transmission errors that have damaged 

the data.  Any COUNT with an invalid signature is 

disregarded, making COUNT representative for only 

successful transmissions with correct signature generation 

and verification. 

 

3. SOFTWARE ARCHITECTURE 

BACKGROUND INFORMATION 

3.1. SoftPLC Package 

There are two popular SoftPLC packages currently in use 

by the Navy:  Rockwell Canada’s ISaGRAF package and 

Siemens WinAC.  Both packages can be used to develop 

IEC 61131-3 ladder logic and include custom C function 

blocks.  The primary difference between the packages is that 

Siemens WinAC includes additional functionality installed 

on the target hardware that adds real-time determinism and 

disables certain functions in Windows that could result in a 

“blue screen of death” error.  ISaGRAF, on the other hand, is 

more comparable to Java in that it includes a simple 

executable known as the ISaVM that in turn executes the 

logic.  Like Java, ISaGRAF has multiple ISaVM 

implementations that allow the software to be used with 

multiple platforms including both Linux and Windows.  

Ultimately ISaGRAF was chosen for this implementation 

because it used on more US Navy Ships than Siemens 

WinAC and because Rockwell Canada was willing to 

provide free licenses to support development of this 

prototype.  

The ISaVM executable lives with a collection of related 

executables in a folder that is collectively referred to as the 

“target”.  The target is installed onto the hardware via a 

simple copy operation which can be performed anywhere 

within the file structure of the SoftPLC’s operating system.  

The target includes a main program, “ISaGRAF.exe” that is 

manually started by the user.  This program then starts up the 

subprograms including both ISaVM.exe and the default 

Ethernet communications program “ETCP.exe”.  The target 

also includes a text file known as the “target definition” file 

that describes details about the target such as what custom C 

function blocks are available. 

In order to develop custom C function blocks for 

inclusion in the ladder logic a tool called TDBuild (Target 

Definition Builder) is used to define the input and output 

variables of the function blocks.  The tool is then used to 

auto-generate C code which essentially provides the API 

between the ladder logic and the custom C code that was 

developed as part of this prototype.  TDBuild is also used to 

update the target definition files, which are then read into the 

main ISaGRAF program in order to allow the software to 

include the specialized function blocks in the ladder logic. 

For Windows-based targets the custom C code is 

eventually compiled as a dynamic link library (DLL) which 

is then copied and pasted into the target folder.  This DLL, 

combined with the target definition files discussed 

previously, provide full runtime access to the custom C code 

for program execution.  Note that you do not have to register 

the DLL with Windows which greatly simplifies the install.   

3.2. OpenSSL 

As stated previously, developing a custom IEC 61131-3 

implementation of ECDSA is a complicated endeavour and a 

prototype system that utilizes existing implementations is a 

necessary first step.  For this prototype the OpenSSL [3] 

implementation has been chosen for both its efficiency and 

its free and open source availability to all controls engineers. 

There are three methods by which OpenSSL can be included 

in a project:   

 

1. By installing OpenSSL onto the target system and 

using its command line interface. 

2. By performing a fresh compile of OpenSSL as a 

dynamic library which can then be copied onto the 

target system and used after first properly registering 

the DLL. 

3. By performing a fresh compile of OpenSSL as a 

static library which can then be included in your 

application without having to first install OpenSSL 

onto the target system or register any DLLs including 

the DLL used by the ISaGRAF software itself. 

 

For this prototype OpenSSL was compiled as a static 

library in order to simplify the installation process onto the 

target machines (i.e. to keep the ISaGRAF target install 

down to a simple copy operation).  The downside to this 

option is that it does complicate the structure of the actual C 

source code and increased development time of the 

prototype.  It was decided that the increase in development 

time is justified by the increased ability to use the prototype 

on existing Navy ship classes that are using SoftPLCs and do 

not require a 100% IEC 61131-3 implementation, such as 

LCS and MLP.   

The following steps were performed to compile OpenSSL 

as a static library on a Windows 7 machine: 

 

1. Install Visual Studio 2010 

2. Install Active Pearl 32-bit 

3. Download the latest version of OpenSSL 

4. Open the Visual Studio Command Prompt 

5. Unzip OpenSSL to a directory such as C:\openssl-src-

32 

6. CD to the directory 



 

  Page 4 of 9  

 

7. Run the command:  perl Configure VC-WIN32 –

prefix=C:\Build-OpenSSL-VC-32 

8. Run the command:  ms\do_ms 

9. Run the command:  nmake –f ms\nt.mak 

10. Run the command:  nmake –f ms\nt.mak install 

 

The compiled library will end up in the C:\Build-OpenSSL-

VC-32 directory. 

 

3.3. Visual Studio 2010 Express 

Visual Studio 2010 Express (a free product) was used to 

develop and compile the custom C function blocks into a 

DLL.  Taking the C code and header files generated by 

TDBuild and adding it to the Visual Studio project is a 

simple matter, but there are additional steps that must be 

taken in order to configure the compiler to properly utilize 

the dependent libraries in order to generate the DLL.  The 

two critical steps required are: 

 

1. Under Linker – General – Additional Library 

Dependencies add the OpenSSL static library. 

2. Under Linker – Input – Additional Dependencies add 

the libeay32.lib and the ssleay32.lib. 

 

3.4. Cryptographic Algorithms Used 

As discussed in the previous work [1] performing a digital 

signature requires the use of two different cryptographic 

algorithms:  a hash function and a public-key cryptography 

function.  The hash function is performed first in order to 

process the arbitrarily long amount of data into a fixed 

length tag.  The cryptographic function then encrypts the 

data using the private key, which can then be decrypted 

using the public key by an agent desiring to verify the public 

signature.  

For this work the SHA-512 algorithm was used in 

combination with the P-521 ECDSA algorithm.  The goal 

was to use the strongest measure of security possible at the 

time of development, and it is worth noting that the weaker 

P-384 ECDSA algorithm is considered valid for even TOP 

SECRET data.  OpenSSL includes implementations of both 

algorithms in the static library that was compiled. 

Using the SHA-512 algorithm was relatively trivial, but 

the P-521 algorithm proved to be a bit tricker than originally 

anticipated.  The P-521 algorithm consists of 65 bytes of 

data plus 1 bit.  The extra bit, when true, results in an output 

of 66 bytes.  When the extra bit is false, the result is an 

output of 65 bytes.  As will be illustrated in the walkthrough 

of the C code (and as is shown in the source code comments) 

special considerations were needed to monitor the output of 

the algorithm to ensure that the correct amount of data was 

read.   

 

3.5. Base64 Encoding / Decoding 

Transmitting cryptographic keys and digital signatures 

between PLCs is not a trivial manner.  PLCs only include a 

predefined number of data types such as BOOL, INT, DINT, 

and STRING which can be transmitted between devices.  All 

of the data types except for STRING are therefore unsuitable 

for transmitting the keys and signatures due to the 

insufficient bit length. 

In most PLC products, the STRING variable can consist 

of any ASCII character array up to a length of 255 characters 

according to the literature of the various vendors.  This 

would appear to give a data value of 2040 bits using ASCII 

encoding, sufficiently long enough to transmit ECDSA keys 

and signatures.  Note that this length is still too short for the 

use of RSA keys and digital signatures which is one of the 

reasons why ECC technologies were chosen. 

The problem is that the 255 character set is misleading, 

since in ISaGRAF and in other PLC products 3 of the 255 

characters are reserved to process the STRING.  One of the 

three character slots must be used for the NULL character 

(which should indicate to the experienced C programmer 

that the STRING data type is really a C-String and not the 

more advanced string data type found in C++ or other high 

level languages).  Additionally, the STRING must begin 

with an apostrophe and end with an apostrophe. The 

“apostrophe” problem becomes our greatest concern.  When 

representing an ECDSA signature or key in ASCII it is 

possible that the resulting ASCII string will output an 

apostrophe in the middle of the key or signature.  The PLC 

will interpret the second apostrophe (and note that you must 

always start with an apostrophe) as the end of the string and 

subsequently cut off the remaining data.   

In order to work around this problem, a different  

character encoding must be used that maximizes the data 

compression of the string representation.  Hexadecimal 

representation of the data was considered, but at only 4 bits 

per character it was considered insufficient.  A custom 

variant of ASCII was considered that didn’t use the 

apostrophe, but in the interests of conforming to widely 

accepted standards this idea was dropped.  Base64 encoding, 

using 6 bits per character, became the most logical choice.   

Base64 encoding allows the cryptographic keys to be 

transmitted as a single string variable for each key.  The 

private key is represented by a 75 character string (plus 3 for 

the null and the leading/lagging apostrophes).  The public 

key, which represents a point on an elliptic curve, is 

represented by a 152 character string (plus 3).  The digital 

signature is represented by two values, SIG_R and SIG_S, 

each with a length equivalent to the private key.  These 

values were transmitted as two separate strings to help 

facilitate the need for possible future expansion.   

Note that the STRING variables themselves which are 

storing the data in the PLC ladder logic are required to be set 

to a fixed length.  This is a fairly standard requirement by 

most PLC manufacturers.  In order to facilitate the need for 

future strong cryptography it was decided to set the length 

for these variables in the ladder logic to the largest possible 
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value.  As a consequence, the PLC STRING variables 

include padded data in addition to the cryptographic keys or 

digital signatures. 

 

3.6. Self-Signing Keys 

One of the largest areas of discussion with using a public-

key cryptography system for control system security has 

been a concern about how to setup a public-key 

infrastructure (PKI).  In order for two systems to be able to 

communicate securely, there needs to be some initial trust 

relationship established so that a receiving system which 

obtains a public key from a sending system knows that the 

public key really belongs to that system.  Put another way, 

how does the receiver really know that the sender is who it 

claims to be? 

 In traditional information systems a Certificate Authority 

(CA) is used to issue certificates to users. This certificate 

contains the identity of the key pair owner, the owners 

public key, and a digital signature of the Certificate 

Authority.  When users communicate securely, they receive 

a copy of each other’s signed certificate (minus the private 

key) and they establish trust in each other’s identity based on 

the successful validation of the CA’s signature.  Put another 

way, they trust each other because someone else told them it 

was okay.  Ultimately, even trusting the digital signature of a 

CA is based on the idea that some human ultimately made 

the decision that the CA who issued the certificates is of 

good repute. 

This kind of complicated infrastructure is necessary in IT 

systems, since two communicating systems may send a wide 

range of different kinds of data with a wide disparity in both 

timing and content.  Furthermore, an IT system may 

communicate only once with another system it never heard 

of before and then never communicate to that system again.  

This constant flux requires a PKI in order to establish trust 

relationships with CAs and individual users.  Unfortunately, 

running a PKI system requires a significant amount of 

processing power and adds significant complexity to a 

control system.  Significant research is ongoing to develop a 

modified version of a PKI that can be executed on 

operational technology platforms, however most of these are 

simply slightly modified versions of the same technologies 

used in IT systems.   

It is the opinion of the author that implementing a PKI for 

control systems is unnecessary.  The two central problems 

that a PKI system solves are 1) establishing a trust 

relationship between two systems and 2) handling the large 

amount of flux in data transmitted between control systems.  

In Operational Technology systems, neither of these 

problems really exists.  OT systems are designed to 

communicate in a very consistent and precise manner, 

transmitting the same basic message structure at a consistent 

interval to the exact same targets.  The relationship between 

these targets is established when the system is first 

commissioned for operation (i.e. on the day of birth) and no 

new communication partnerships are ever established 

without significant software changes and a recommissioning 

of the system. 

Therefore, in designing this prototype, a different system 

for establishing communications and updating keys was 

created.  During commissioning, each system is 

preconfigured with a public / private key pair, and the public 

keys of each part of the system are given to each of the other 

parts.  When an agent in the system decides to change its 

public / private key pair (this decision is made at regular 

intervals with the interval length configured at 

commissioning) it first generates a new key pair and then 

signs the new public key with the old private key.  This 

information is then transmitted to each of the other agents in 

the system who then verify the key change message with the 

old public key they currently have on file.  If the digital 

signature is valid, the new public key is accepted and the old 

public key is disregarded. 

In order to ensure that an adversary will not be able to 

attack the system using the original preconfigured 

public/private key pair each agent immediately changes its 

key to a new random key pair at startup, before any other 

logic is processed.  Additionally, since there is no CA and 

communications are highly deterministic there is little risk in 

changing the key pairs at a much more frequent interval.  In 

the prototype, each of the four SoftPLC agents were 

configured to change their key pairs at 53 minutes, 59 

minutes, 61 minutes, and 67 minutes respectively.   

As a result, this system effectively generates keys 175,000 

to 265,000 times more often the PKI CA systems used in IT 

applications and greatly weakens an adversaries capabilities 

to brute force crack the system.  Ultimately, this allows for 

smaller key sizes to be used by OT systems and thus reduces 

the required processing power and memory required to 

effectively implement an ECDSA algorithm. 

The major downside with this implementation is that an 

agent in the control system which is powered down must 

retain their current public/private key pair in memory and 

resume use of that key pair upon startup (though it can 

immediately change it).  A agent which does not have this 

capability may default back to the original pre-

commissioned key pair and will therefore be considered to 

be a bad actor by the other agents in the system, requiring a 

complete re-initialization of the entire system. Fortunately, 

this problem is easily solved by adding the required memory 

capabilities  and is mitigated by the fact that these kinds of 

systems are highly redundant and designed to run 

uninterrupted for years without failures. 

 

4. HARDWARE ARCHITECTURE 
Two test strings were used in the development and testing 

of the prototype, Test String 1 and Test String 2.   

4.1. Test String 1 

Test String 1 used four Windows 7 virtual machines 

running on VMWare Player on top of a Windows 7 Pro 64-

bit machine.  This system was primarily used for initial 
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development and testing. The ISaGRAF software was run on 

the main machine in order to view the PLC code.  The four 

virtual machines were bridged to the host NIC card which 

was then connected to a router.  DHCP was used to assign IP 

addresses to both the host and virtual machines. 

The main machine had the following relevant hardware 

specifications: 

• I5-2500K processor, 4C, overclocked to 4.3 GHz, 

with 4x256KB of L2 Cache and 6MB of L3 Cache 

• 16 GB RAM 

• 1 GB Hardwired NIC  

• 1.5 TB SATA 3 HDD 

 

4.2. Test String 2 

Test String 2 used four General Micro System VS275 

Single Board Computer VME boards in the same VME 

chassis.  No communications across the VME backplane 

were used.  Each board was running Windows XP 

Professional, 32-bit, SP2.  Figure X below shows the front 

panel of the VS275. 

 

 

Figure 6.  SoftPLC Round Robin Architecture Concept 

 

Each VS275 board had the following specifications: 

• 2.16 GHz Core 2 Duo Processor, 4-MB L2 cache 

• 3 GB of 667-MHz DDR-2 SDRAM 

• 1 GB Hardwired NIC  

• 64 GB SATA2 SSD 

 

Hardwired Ethernet communications were used via the 

ENET port on the front of the board. All four boards were 

connected to an 8 port flat 10/100 MB hub that was in turn 

connected to a 10/100/1000MB router.  A development 

station running ISaGRAF was connected to the router 

directly in order to download the software to the boards and 

to go online to the SoftPLCs.  DHCP was used to assign IP 

addresses to each of the boards and development station. 

 

5. SOURCE CODE WALKTHROUGH 
 

Copies of the source code developed for this prototype 

with comments are available as appendices to this paper, and 

key details and decisions made in designing the software 

have been presented in the previous sections.  This 

subsection presents a high level description of each of the 

modules that together make up the prototype, in an effort to 

provide context for the source code modules.   

Note that for the C code, the portions of the ISaGRAF 

code generated by the TDBuild tool are not available as that 

code is considered proprietary.  Fortunately, the code not 

shown simply serves as the API to the PLC ladder logic and 

is specific to the ISaGRAF platform.  Current users of 

ISaGRAF will be able to use the same tools with the 

information provide in this document to quickly regenerate 

this code.  Users of other SoftPLC products should be able to 

develop their own variations using the information provided 

in this paper.  

 

5.1. C CODE Walkthrough 

 

The subsections below describe the model and C code for 

each of the custom function blocks that are used in the 

IEC61131-3 ladder logic.  A fully compliant IEC61131-3 

implementation will replace the C code of these blocks with 

a ladder logic version. 

In developing the prototype, debug logic was added into 

each of the function blocks.  Two different mechanisms for 

debug logic were included. The first is that each block 

outputs an integer status variable, with a 1 indicating 

successful operation and a negative number indicating a 

failure.  The code of the blocks is organized internally in 

steps as shown in the source code and comments.  A failed 

step will output a negative number equal to the step number 

(i.e. a fail on step 3 will output a -3 value for the status). 

The second debug logic is normally turned off for full 

operation and was only added for development.  This logic 

generates text files during operation that contain key status 

variables useful for debugging the code.  This adds overhead 

to the program execution and creates a security risk, but is 

extremely valuable for debugging.  In order to turn the logic 

on or off, the variable “ISaDEBUG” must be set true for on 

or false for off.  This variable is located in the “debug.h” file, 

and a change in the status of the variable requires a 

recompile of the DLL.  All the timing results presented in 

this paper are with the ISaDEBUG variable set to false. 

5.1.1. MsgGen 

Figures 7 and 8 below define the details of the MsgGen 

block.  In digital signature applications, the first step of an 

algorithm is to hash the data to be signed into one single 

value of fixed length, that will later be encrypted by the 

private key.  The MsgGen block generates that hash value 

using the SHA-512 algorithm.  The data to be signed is 

inputted into the B#, I#, R#, and STRING fields.  The DATE 

and TIME fields should always be used for the current date 

and time stamps of the message or the entire algorithm is 

potentially subject to a replay attack.  The block outputs the 

hash as a hexadecimal string. 

Creating one generic message generation block that can 

be used in a wide range of applications is tricky, since one 

application could only need a few Booleans and another 

application could require 40 different real values.  Therefore 

the block was structured generically in order to allow the 

widest range of possible inputs, and then a HASH_I value 

was added that allows the user to chain multiple blocks 

together.  Readers familiar with the SHA-512 algorithm will 

recognize that there is no loss in processing the data in this 

manner, since the algorithm generates the hash in a “chain” 

fashion naturally.  This implementation simply extends the 
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chain, and there is no limit to the number of MsgGen blocks 

that can be chained together. 

The key for implementing this function is that the data to 

be signed must have a hash generated on both the source 

PLC and the destination PLC.  Therefore, during system 

design, it is critical that the layout of the MsgGen blocks is 

the same on each endpoint or the signature will never verify 

successfully. 

   

 

 
Figure 7.  Three MsgGen Blocks Connected Together   

 
Variable 

Name 

I/O Type Description 

DATE IN DATE Used to date the message in 

order to prevent replay 

attacks.  Has resolution up 

to the second. 

TIME IN TIME Used to timestamp the 

message in order to prevent 

replay attacks occurring 
within the last second.  Has 

resolution up to the 

millisecond. 

HASH_I IN STRING(252) Hash from previous 

MsgGen.  Used to string 

multiple blocks together in 
order to generate messages 

containing large amounts of 

data. 

B1 Thru B8 IN BOOL Boolean data inputs. 

I1 Thru I4 IN DINT Integer data inputs. 

R1 Thru R4 IN REAL Real data inputs. 

STRING IN STRING(252) String data inputs. 

STATUS OUT INT Status of the computation.   

HASH_Q OUT STRING(252) Hash of the message. 

Figure 8.  MsgGen Input / Output Structure 

 

5.1.2. KeyGen 

The KeyGen block generates an ECC-521 prime 

public/private key pair.  Ladder logic should be placed in the 

application to only enable the block at specific intervals 

when generation of a new key is desired.  The new keys are 

outputted as base64 encoded strings. Figures 9 and 10 below 

define the details of the KeyGen block.   

 

 
Figure 9.  KeyGen Block 

 
Variable Name I/O Type Description 

PUBLIC_KEY OUT STRING(252) ECC 521 public key 

PRIVATE_KEY OUT STRING(252) ECC 521 private key 

STATUS OUT INT Status of the computation  

Figure 10.  KeyGen Input / Output Structure 

   

5.1.3. KeyVerify 

The KeyVerify block is used as an added check to verify 

the integrity of the public/private key pair by using the 

private key to first sign an internal dummy hash and then 

using the public key to verify the signature. This block is 

solely used in the prototype to verify that the system is 

functioning correctly.  As the maturity of the design 

improves it is believed that this block can be removed, thus 

reducing system overhead and improving communications 

results. Figures 11 and 12 below define the details of the 

KeyVerify block.   

 

  
Figure 11.  KeyVerify Block 

 
Variable Name I/O Type Description 

PUBLIC_KEY IN STRING(252) ECC 521 public key 

PRIVATE_KEY IN STRING(252) ECC 521 private key 

STATUS OUT INT Status of the computation  

Figure 12.  KeyVerify Input / Output Structure 

 

5.1.4. SigGen 

The SigGen block is the heart of the ECDSA 

implementation, and takes the hash from the MsgGen block 

and the PrivateKey from the KeyGen block to output an 

ECDSA P-521 signature.  The signature itself is composed 

of two components, SIG_R and SIG_S, which are each a 

base64 encoded string. Figures 13 and 14 below define the 

details of the SigGen block.   
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Figure 13.  SigGen Block 

 
Variable Name I/O Type Description 

PRIVATE_KEY IN STRING(252) ECC 521 private key 

HASH IN STRING(252) Data hash to be signed 

from the MsgGen block. 

SIG_R OUT STRING(252) ECDSA P-521 signature, 

R component. 

SIG_S OUT STRING(252) ECDSA P-521 signature, 

S component. 

STATUS OUT INT Status of the computation  

Figure 14.  SigGen Input / Output Structure 

 

5.1.5. SigVerify 

The SigVerify block is used to verify that the validity of a 

digital signature by the receiving agent.  The receiving agent 

first uses the MsgGen block to generate the same hash that 

the original sender generated, and then uses the public key of 

the sender along with the signature to determine if the 

signature and the hash match.  Figures 15 and 16 below 

define the details of the SigGen block.   

The SigVerify block is also used in the prototype system 

on the sender side to ensure a signature is properly generated 

before transmission.  As the design matures it is believed 

that this usage of the block can be eliminated, reducing 

system overhead and improving communications results. 

 

 
Figure 15.  SigVerify Block 

 
Variable Name I/O Type Description 

PUBLIC_KEY IN STRING(252) ECC 521 public key 

HASH IN STRING(252) Data hash to be verified 

from the MsgGen block. 

SIG_R IN STRING(252) ECDSA P-521 signature, 

R component. 

SIG_S IN STRING(252) ECDSA P-521 signature, 

S component. 

STATUS OUT INT Status of the computation  

Figure 16.  SigGen Input / Output Structure 

 

5.2. LADDER LOGIC WALKTHROUGH 

For the prototype system, the ladder logic for each of the 

four SoftPLC agents is structured identically, and execution 

of the logic commences in the following order: 

 

1. ECDSA_D#_I – process digital signatures for 

incoming data transmissions, including the validation 

of new public keys sent to the SoftPLC 

2. MAIN – general logic such as determining current 

date, setting ALWAYS_ON and ALWAYS_OFF bits, 

and incrementing the counter value received during 

ECDSA_D#_I 

3. SIM_BOOL and SIM_REAL – generic simulation 

routines that fill the place for where actual PLC logic 

would normally occur 

4. ECDSA_KeyCntrl – controls the generation and 

validation of the SoftPLC’s own private / public key 

pair 

5. ECDSA_Q – generates digital signatures for the 

outgoing data transmissions 

 

6. RESULTS AND FUTURE WORK 

The prototype implementation was run on both test 

strings for periods ranging from several days to several 

weeks.  COUNT values, reflecting the number of 

completed message transmissions (including both the 

signature generation and signature verification 

components) ranged from 10,000 to 4 million.  In all 

scenarios the timing results were independent of the 

count length for values over 10,000.  Test String 1 gave 

an average time of 26-28ms with PLC scan times of 

22-24 ms.  Test string 2 gave an average time of 55-

60ms with PLC scan times of 55-60 ms.  As expected, 

timing of the completed transmission is linearly related 

to PLC scan time. 

Values under 10,000 counts gave slightly higher 

results (1-5 ms increase).  During the first scan of the 

PLCs when the system is initializing there is an 

additional load on the system to establish TCP 

communications resulting in an increased scan time 

and transmission time for that cycle.  For low COUNT 

values this initial time has a stronger effect on the 

average.  As a result, for approximately the first 10 

minutes of system runtime the average transmission 

time gradually decreased until the system settled at the 

values stated above. 
 

7. CONCLUSION 

It is believed that the timing results are the worst 

case scenario given that no real-time modifications 
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were added to the operating system (which would be 

untypical for a SoftPLC control system).  Since the 

entire timing cycle is in the order of tens of 

milliseconds (as opposed to seconds as published by 

[2]) future development of a fully IEC 61131-3 

compliant prototype is justified.   
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APPENDIX A – C SOURCE CODE SAMPLE 
 

*NOTE:  Only the parts of the C Source Code written by the author are included in this Appendix.  Auto-

generated code from TD Build will not be included.  Also note that header files not included indicate that the 

file is completely the result of auto-generated code.  Presence of auto-generated code in the source files below 

will be indicated by the tag ---autocode---. 
 
 

A.1 - MsgGen 

 

/************************************************************************** 

File:               msggen.c 

Author:             kfischer 

Creation date:      05/11/2013 - 19:52 

POU name:           MsgGen 
***************************************************************************/ 

 

---autocode--- 

 

//START OF CUSTOM CODE HEADERS 

#include <debug.h> 
#include <stdio.h> 

#include <stdlib.h> 

#include <openssl/sha.h>  //for SHA512  

//END OF CUSTOM CODE HEADERS 

 

---autocode--- 

 
 

   //START OF CUSTOM CODE 

    
   //--Declarations 

    /*debug variables*/ 

 #if ISaDEBUG 

  FILE *fp; 

 #endif 

 

 /*string and hash variables*/ 
    #define P_PTR_HASH_I_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA->hash_i))+2) 

 #define P_PTR_STRING_I_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA-

>string))+2) 

 unsigned char digest[SHA512_DIGEST_LENGTH]; 

 char mdString[SHA512_DIGEST_LENGTH*2+1]; 

 char *hash_Q; 
 const char *string; 

 char *tstring; 

 char str[STRLEN]; 

 char tstr[STRLEN/4]; 

 int i; 

 

 /*base64 variables*/ 
 

   //--Logic 

 
 /*STEP 0 - Initialization*/ 

 P_STATUS = 0; 
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 memset(digest,0,SHA512_DIGEST_LENGTH); 

 memset(mdString,0,SHA512_DIGEST_LENGTH*2+1); 

 memset(str,0,STRLEN); 
 memset(tstr,0,STRLEN/4); 

 hash_Q = mdString; 

 string = str; 
 tstring = tstr; 

 

 /*STEP 1 - build string for hashing*/ 

 strcpy(str, "DATE="); 
 sprintf(tstring,"%u,",P_DATE); 

 strcat(str,tstring); 

 
 strcat(str, "TIME="); 

 sprintf(tstring,"%u,",P_TIME); 

 strcat(str,tstring); 

 

 strcat(str, "HASH_I="); 

 sprintf(tstring,"%s,",P_PTR_HASH_I_DATA); 
 strcat(str,tstring); 

 

 strcat(str,"P_B1="); 

 sprintf(tstring,"%s,", (P_B1)?"TRUE":"FALSE"); 

 strcat(str,tstring); 

 

 strcat(str,"P_B2="); 
 sprintf(tstring,"%s,", (P_B2)?"TRUE":"FALSE"); 

 strcat(str,tstring); 

 
 strcat(str,"P_B3="); 

 sprintf(tstring,"%s,", (P_B3)?"TRUE":"FALSE"); 

 strcat(str,tstring); 

 
 strcat(str,"P_B4="); 

 sprintf(tstring,"%s,", (P_B4)?"TRUE":"FALSE"); 

 strcat(str,tstring); 
 

 strcat(str,"P_B5="); 

 sprintf(tstring,"%s,", (P_B5)?"TRUE":"FALSE"); 

 strcat(str,tstring); 

 

 strcat(str,"P_B6="); 
 sprintf(tstring,"%s,", (P_B6)?"TRUE":"FALSE"); 

 strcat(str,tstring); 

 

 strcat(str,"P_B7="); 

 sprintf(tstring,"%s,", (P_B7)?"TRUE":"FALSE"); 

 strcat(str,tstring); 

 
 strcat(str,"P_B8="); 

 sprintf(tstring,"%s,", (P_B8)?"TRUE":"FALSE"); 

 strcat(str,tstring); 

 

 strcat(str,"P_I1="); 

 sprintf(tstring,"%d,",P_I1); 

 strcat(str,tstring); 
 

 strcat(str,"P_I2="); 

 sprintf(tstring,"%d,",P_I2); 
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 strcat(str,tstring); 

 

 strcat(str,"P_I3="); 
 sprintf(tstring,"%d,",P_I3); 

 strcat(str,tstring); 

 
 strcat(str,"P_I4="); 

 sprintf(tstring,"%d,",P_I4); 

 strcat(str,tstring); 

 
 strcat(str,"P_R1="); 

 sprintf(tstring,"%f,",P_R1); 

 strcat(str,tstring); 
 

 strcat(str,"P_R2="); 

 sprintf(tstring,"%f,",P_R2); 

 strcat(str,tstring); 

 

 strcat(str,"P_R3="); 
 sprintf(tstring,"%f,",P_R3); 

 strcat(str,tstring); 

 

 strcat(str,"P_R4="); 

 sprintf(tstring,"%f,",P_R4); 

 strcat(str,tstring); 

 
 strcat(str, "P_STRING = "); 

 sprintf(tstring,"%s,",P_PTR_STRING_I_DATA); 

 strcat(str,tstring); 
 

 if (NULL == str) 

 { 

  P_STATUS = -1; /*failed to create string*/ 
 } 

 else 

 { 
  /*STEP 2 - hash string*/ 

  SHA512_CTX ctx; 

  SHA512_Init(&ctx); 

  SHA512_Update(&ctx, string, strlen(string)); 

  SHA512_Final(digest, &ctx); 

 
  for(i = 0; i < SHA512_DIGEST_LENGTH; i++)  

  { 

   sprintf(&mdString[i*2], "%02x", (unsigned int)digest[i]); 

  } 

 

  if (NULL == mdString) 

  { 
   P_STATUS = -2; /*failed to create hash*/ 

  } 

  else 

  { 

   /*STEP 3 - output result*/ 

   strcpy(P_HASH_Q,hash_Q); 

   HASH_Q_MAXLEN = 128; 
   HASH_Q_CURLEN = 128; 

   P_STATUS = 1; 

  } 



 

  Page A.4 of 21  

 

 } 

 

 
 

 /*debug logic*/ 

 #if ISaDEBUG 
    fp = fopen("debug-message.txt", "w"); 

    if (fp == NULL) { 

     P_STATUS = 666; 

     exit(0); 
    } 

 

    fprintf(fp, "string = %s\n", string); 
    fprintf(fp, "digest = %s\n", digest); 

    fprintf(fp, "mdString = %s\n", mdString); 

 

 

    fprintf(fp, "\n\nDATE = %u\n", P_DATE); 

    fprintf(fp, "HASH_I = %s\n", P_PTR_HASH_I_DATA); 
    fprintf(fp, "BOOL1 = %s\n", (P_B1)?"TRUE":"FALSE"); 

    fprintf(fp, "BOOL2 = %s\n", (P_B2)?"TRUE":"FALSE"); 

    fprintf(fp, "BOOL3 = %s\n", (P_B3)?"TRUE":"FALSE"); 

    fprintf(fp, "BOOL4 = %s\n", (P_B4)?"TRUE":"FALSE"); 

    fprintf(fp, "BOOL5 = %s\n", (P_B5)?"TRUE":"FALSE"); 

    fprintf(fp, "BOOL6 = %s\n", (P_B6)?"TRUE":"FALSE"); 

    fprintf(fp, "BOOL7 = %s\n", (P_B7)?"TRUE":"FALSE"); 
    fprintf(fp, "BOOL8 = %s\n", (P_B8)?"TRUE":"FALSE"); 

    fprintf(fp, "INT1  = %i\n", P_I1); 

    fprintf(fp, "INT2  = %i\n", P_I2); 
    fprintf(fp, "INT3  = %i\n", P_I3); 

    fprintf(fp, "INT4  = %i\n", P_I4); 

    fprintf(fp, "REAL1 = %f\n", P_R1); 

    fprintf(fp, "REAL2 = %f\n", P_R2); 
    fprintf(fp, "REAL3 = %f\n", P_R3); 

    fprintf(fp, "REAL4 = %f\n", P_R4); 

    
    fclose(fp); 

 #endif 

 

 

   //END OF CUSTOM CODE 

 
 

} 

 

/* eof ********************************************************************/ 
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A.2 – KeyGen 
 

/************************************************************************** 

File:               keygen.c 
Author:             kfischer 

Creation date:      15/06/2013 - 20:02 

POU name:           KeyGen 

***************************************************************************/ 

 

---autocode--- 

 
//START OF CUSTOM CODE HEADERS 

#include <debug.h> 

#include <stdio.h> 
#include <stdlib.h> 

#include <openssl/ec.h>      // for EC_GROUP_new_by_curve_name, EC_GROUP_free, 

EC_KEY_new, EC_KEY_set_group, EC_KEY_generate_key, EC_KEY_free 

#include <openssl/obj_mac.h> // for NID_secp384r1 
#include <openssl/bn.h>   // for BIGNUM conversions 

#include <openssl/bio.h> 

#include <openssl/evp.h>  // for base64 conversions 
#include <openssl/buffer.h> 

#include <math.h> 

#include <base64.h>    // for base64 conversions 

 

//END OF CUSTOM CODE HEADERS 

---autocode--- 

 
   //START OF CUSTOM CODE  

    

   //--Declarations 

 

 

    /*debug variables*/ 
 #if ISaDEBUG 

  FILE *fp; 

  FILE *fpa; 
  FILE *fpb; 

  int i,j; 

 #endif 

 
   /*status variables*/ 

   const int set_group_success = 1; 

   const int gen_success = 1; 

   int set_group_status; 

   int gen_status; 

 

   /*key and base 64 variables*/ 

 

   const BIGNUM *PrivateKeyBN; 

   BIGNUM *PublicKeyBN; 

   const EC_POINT *PublicKeyPoint; 

   EC_KEY *eckey; 

   EC_GROUP *ecgroup; 

 

   unsigned char *PublicKeyBinaryUnsigned, PublicKeyBinaryUnsignedArray[250]; 

   unsigned char *PrivateKeyBinaryUnsigned, PrivateKeyBinaryUnsignedArray[250]; 
 

   int encodedSize; 
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   char *buffer, BufferArray[250]; 

   unsigned char *PrivateKeyBase64, PrivateKeyBase64Array[250]; 

 
   int encodedSize_b; 

   char *buffer_b, BufferArray_b[250]; 

   unsigned char *PublicKeyBase64, PublicKeyBase64Array[250]; 
 

 

   //--Logic 

 
   /*STEP 0 - Initialization*/ 

 P_STATUS = 0; 

 
 memset(PrivateKeyBinaryUnsignedArray,0,250); 

 PrivateKeyBinaryUnsigned = PrivateKeyBinaryUnsignedArray; 

 

 memset(PublicKeyBinaryUnsignedArray,0,250); 

 PublicKeyBinaryUnsigned = PublicKeyBinaryUnsignedArray; 

 
 memset(PrivateKeyBase64Array,0,250); 

 PrivateKeyBase64 = PrivateKeyBase64Array; 

 

 memset(PublicKeyBase64Array,0,250); 

 PublicKeyBase64 = PublicKeyBase64Array; 

  

 memset(BufferArray,0,250); 
 buffer = BufferArray; 

 memset(BufferArray_b,0,250); 

 buffer_b = BufferArray_b; 
 

 /*STEP 1 - create key object*/ 

    eckey=EC_KEY_new(); 

    if (NULL == eckey) 
    { 

        P_STATUS = -1;  /*failed to create key object*/ 

    } 
    else 

    { 

  /*STEP 2 - create EC_GROUP object*/ 

        //ecgroup = EC_GROUP_new_by_curve_name(NID_secp384r1);    --worked for 384 

ECDSA, will want to come back and add an option to turn this on and off 

  ecgroup = EC_GROUP_new_by_curve_name(NID_secp521r1); 
        if (NULL == ecgroup) 

        { 

            P_STATUS = -2; /*failed to create new EC Group*/ 

        } 

        else 

        { 

   /*STEP 3 - associate key with group*/ 
            set_group_status = EC_KEY_set_group(eckey,ecgroup); 

            if (set_group_success != set_group_status) 

            { 

    P_STATUS = -3; /*failed to associate key with group*/ 

            } 

            else 

   { 
    /*STEP 4 - create PRIVATE and PUBLIC keys*/ 

                gen_status = EC_KEY_generate_key(eckey); 

                if (gen_success != gen_status) 
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                { 

                    P_STATUS = -4; /*failed to generate EC Key*/ 

                } 
                else 

    {    

     /*STEP 5 - extract PRIVATE keys*/ 
     PrivateKeyBN = EC_KEY_get0_private_key(eckey); 

     if (PrivateKeyBN == NULL)  

     { 

      P_STATUS = -5; /*failed to extract PRIVATE 
key*/ 

     } 

     else 
     {     

      /*STEP 6 - extract PUBLIC KEY*/ 

      PublicKeyPoint = 

EC_KEY_get0_public_key(eckey); 

      if (PublicKeyPoint == NULL) 

      { 
       P_STATUS = -6; /*failed to extract 

PUBLIC key*/ 

      } 

      else 

      { 

       /*STEP 7a - Private Key convert from 

BN to binary and then encode as base64*/ 
 

      

 BN_bn2bin(PrivateKeyBN,PrivateKeyBinaryUnsigned);  
       encodedSize = 

EVP_EncodeBlock(PrivateKeyBase64,PrivateKeyBinaryUnsigned,89); 

 

       /*STEP 7b - Public Key convert from 
Point to BN to binary and then encode as base64*/ 

 

       PublicKeyBN = BN_new(); 
      

 EC_POINT_point2bn(ecgroup,PublicKeyPoint,POINT_CONVERSION_UNCOMPRESSED,PublicKe

yBN,NULL); 

      

 BN_bn2bin(PublicKeyBN,PublicKeyBinaryUnsigned); 

       encodedSize_b = 
EVP_EncodeBlock(PublicKeyBase64,PublicKeyBinaryUnsigned,179); 

 

 

        

       /*STEP 7c - set outputs*/ 

 

       buffer = (char*) PrivateKeyBase64; 
       buffer_b = (char*) PublicKeyBase64; 

 

 

       strcpy(P_PRIVATE_KEY_BUFADD, buffer); 

       PRIVATE_KEY_MAXLEN = 250; 

       PRIVATE_KEY_CURLEN = encodedSize; 

 
       strcpy(P_PUBLIC_KEY_BUFADD, buffer_b); 

       PUBLIC_KEY_MAXLEN = 250; 

       PUBLIC_KEY_CURLEN = encodedSize_b; 
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       P_STATUS = 1; /*success*/ 

/*debug logic*/ 
#if ISaDEBUG 

 fpb = fopen("debug-keygen-BIGNUM.txt", "w"); 

 fprintf(fpb, "PublicKeyBigNumber = "); 
 BN_print_fp(fpb, PublicKeyBN); 

 fprintf(fpb, " \n"); 

 fprintf(fpb, " \n"); 

 fprintf(fpb, "PrivateKeyBigNumber = "); 
 BN_print_fp(fpb, PrivateKeyBN); 

 fclose(fpb); 

 
 fp = fopen("debug-keygen-Private.txt", "w"); 

 fprintf(fp, "hello world\n"); 

 fprintf(fp,"encodedSize = %i\n", encodedSize); 

 fprintf(fp,"encodedSize_b = %i\n", encodedSize_b); 

 fprintf(fp,"array dump = "); 

 for (i = 0; i<250; i++) 
 { 

  fprintf(fp, "%c", PrivateKeyBinaryUnsignedArray[i]); 

 } 

 fprintf(fp, " \n"); 

 fprintf(fp,"PrivateKeyBinaryUnsigned = %s\n", PrivateKeyBinaryUnsigned); 

 fprintf(fp,"PrivateKeyBase64 = %s\n", PrivateKeyBase64); 

 fprintf(fp,"buffer = %s\n", buffer); 
 fclose(fp); 

#endif 

      } 
     } 

    } 

   } 

  } 
 } 

   //END OF CUSTOM CODE 

 
} 

 

/* eof ********************************************************************/ 
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A.3 – KeyVerify 

 

 
/************************************************************************** 
File:               keyverify.c 

Author:             kfischer 

Creation date:      15/06/2013 - 13:53 
POU name:           KeyVerify 

***************************************************************************/ 

 

---autocode--- 

 

//START OF CUSTOM CODE HEADERS 

#include <debug.h> 
#include <stdio.h> 

#include <stdlib.h> 

#include <openssl/ec.h>      // for EC_GROUP_new_by_curve_name, EC_GROUP_free, 

EC_KEY_new, EC_KEY_set_group, EC_KEY_generate_key, EC_KEY_free 

#include <openssl/ecdsa.h>   // for ECDSA_do_sign, ECDSA_do_verify 

#include <openssl/obj_mac.h> // for NID_secp384r1 

#include <openssl/bn.h>   // for BIGNUM conversions 
#include <openssl/bio.h> 

#include <openssl/evp.h> 

#include <openssl/buffer.h> 

#include <math.h> 

#include <base64.h>    // for base64 conversions 

//END OF CUSTOM CODE HEADERS 
 

---autocode--- 

       

   //START OF CUSTOM CODE 

         

 

   //--Declarations 
 

   /*debug variables*/ 

 #if ISaDEBUG 
 FILE *fp; 

 FILE *fpa; 

 FILE *fpb; 

 int i, j; 

 #endif 

 

   /*status variables*/ 

 #define P_PTR_PUBLIC_KEY_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA-

>public_key))+2) 

 #define P_PTR_PRIVATE_KEY_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA-

>private_key))+2) 

 

 const int set_group_success = 1; 
 const int gen_success = 1; 

 const int set_public_success = 1; 

 const int set_private_success = 1; 

 const int verify_success = 1; 

 

 int set_group_status; 

 int set_public_status; 
 int set_private_status; 
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 int verify_status; 

 

 unsigned char hash[] = "c7fbca202a95a570285e3d700eb04ca2"; 
 

   /*base64 variables*/ 

 EC_KEY *eckey; 
 EC_GROUP *ecgroup; 

 EC_POINT *PublicKeyPoint; 

 BIGNUM *PrivateKeyBN; 

 BIGNUM *PublicKeyBN; 
 ECDSA_SIG *signature; 

 

 unsigned char *buffer; 
 unsigned char *buffer_b; 

 

 unsigned char *PublicKeyBinaryUnsigned, PublicKeyBinaryUnsignedArray[250]; 

 unsigned char *PrivateKeyBinaryUnsigned, PrivateKeyBinaryUnsignedArray[250]; 

 

 const unsigned char *PublicKeyBinaryConst; 
 const unsigned char *PrivateKeyBinaryConst; 

 

 

 

   //--Logic 

 P_STATUS = 0; 

 
 memset(PrivateKeyBinaryUnsignedArray,0,250); 

 PrivateKeyBinaryUnsigned = PrivateKeyBinaryUnsignedArray; 

 
 memset(PublicKeyBinaryUnsignedArray,0,250); 

 PublicKeyBinaryUnsigned = PublicKeyBinaryUnsignedArray; 

 

 
 /*STEP 1 - create key object*/ 

 eckey=EC_KEY_new(); 

    if (NULL == eckey) 
    { 

        P_STATUS = -1;  /*failed to create key object*/ 

    } 

    else 

    { 

  /*STEP 2 - create EC_GROUP object*/ 
  ecgroup = EC_GROUP_new_by_curve_name(NID_secp521r1); 

        if (NULL == ecgroup) 

        { 

            P_STATUS = -2; /*failed to create new EC Group*/ 

        } 

        else 

        { 
   /*STEP 3 - associate key with group*/ 

            set_group_status = EC_KEY_set_group(eckey,ecgroup); 

            if (set_group_success != set_group_status) 

            { 

    P_STATUS = -3; /*failed to associate key with group*/ 

            } 

            else 
   { 

    /*STEP 4 - set public key*/ 

    PublicKeyPoint = EC_POINT_new(ecgroup); 
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    PublicKeyBN = BN_new(); 

 

    buffer_b = (unsigned char*) P_PTR_PUBLIC_KEY_DATA; 
 

    EVP_DecodeBlock(PublicKeyBinaryUnsigned,buffer_b,240); 

 
    PublicKeyBinaryConst = (const unsigned char*) 

PublicKeyBinaryUnsigned; 

 

    BN_bin2bn(PublicKeyBinaryConst,133,PublicKeyBN);  
     

   

 EC_POINT_bn2point(ecgroup,PublicKeyBN,PublicKeyPoint,NULL); 
 

 

    set_public_status = 

EC_KEY_set_public_key(eckey,PublicKeyPoint); 

    if (set_public_success != set_public_status) 

    { 
     P_STATUS = -4; /*failed to set public key*/ 

    } 

    else 

    { 

     /*STEP 5 - set private key*/ 

     PrivateKeyBN = BN_new(); 

     buffer = (unsigned char*) P_PTR_PRIVATE_KEY_DATA; 
    

 EVP_DecodeBlock(PrivateKeyBinaryUnsigned,buffer,120); 

     PrivateKeyBinaryConst = (const unsigned char*) 
PrivateKeyBinaryUnsigned; 

 

/*521 ECDSA is unique due to the extra bit resulting in a length of 65.125 bytes, 

which means that when converting from bin to bn we will alternatively be converting 66 
or 65 bytes depending on if the extra bit is a 1 or not. The presence of the 

extra bit is encoded in the in the first base64 characters. The byte 0000 0001 will be 

broken in base64 to a pair of 0000000 and 1XXXXXX, which will result in the key having 
a leading A character representing the 0000000.  However, the byte 0000 0000 will not 

be encoded at all, which will result in the key not having a leading A.  Detection of 

the leading A is therefore critical to properly convert the bin to BN.*/ 

      

     if (P_PTR_PRIVATE_KEY_DATA[0] == 'A')  

     { 
     

 BN_bin2bn(PrivateKeyBinaryConst,66,PrivateKeyBN); 

     } 

     else 

     { 

     

 BN_bin2bn(PrivateKeyBinaryConst,65,PrivateKeyBN); 
     } 

 

     set_private_status = 

EC_KEY_set_private_key(eckey,PrivateKeyBN); 

     if (set_private_success != set_private_status) 

     { 

      P_STATUS = -5; /*failed to set private key*/ 
     } 

     else 

     { 
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      /*STEP 6 - create signature on dummy hash*/ 

      signature = ECDSA_do_sign(hash,32,eckey); 

      if (NULL == signature) 
      { 

       P_STATUS = -6; /*failed to generate 

signature*/ 
      } 

      else 

      { 

       /*STEP 7 - verify signature*/ 
       verify_status = 

ECDSA_do_verify(hash,32,signature,eckey); 

       if (verify_success != verify_status) 
       { 

        P_STATUS = -7; /*verification 

failed*/ 

       } 

       else 

       { 
        P_STATUS = 1; /*keys verified*/ 

       } 

      } 

     } 

    } 

   } 

  } 
 } 

 

 /*CLEANUP - Release memory structures to prevent memory leaks*/ 
 EC_KEY_free(eckey);    /*frees EC_KEY memory allocation*/ 

 EC_GROUP_clear_free(ecgroup);   /*destroys any sensitive data in the group and 

then frees the memory*/ 

 EC_POINT_free(PublicKeyPoint);  /*frees EC_POINT memory allocation*/ 
 BN_clear_free(PrivateKeyBN);    /*overwrites the BN before returning memory to 

the system*/ 

 BN_clear_free(PublicKeyBN); 
 ECDSA_SIG_free(signature);  /*frees ECDSA_SIG memory allocation*/ 

 

 

/*debug logic*/ 

#if ISaDEBUG 

 fpa = fopen("debug-keyverify-public.txt", "w"); 
 fprintf(fpa, "hello world \n"); 

 fprintf(fpa, "P_PTR_PUBLIC_KEY_DATA = %s\n", P_PTR_PUBLIC_KEY_DATA); 

 fprintf(fpa, " \n"); 

 fprintf(fpa, " \n"); 

 fprintf(fpa, "Public Key Array dump = "); 

 for (j = 0; j<250; j++) 

 { 
  fprintf(fpa, "%c", PublicKeyBinaryUnsignedArray[j]); 

 } 

 fprintf(fpa, " \n"); 

 fprintf(fpa, " \n"); 

 fclose(fpa); 

 

 fp = fopen("debug-keyverify-private.txt", "w"); 
 fprintf(fp, "hello world\n"); 

 fprintf(fp, "P_PTR_PRIVATE_KEY_DATA = %s\n", P_PTR_PRIVATE_KEY_DATA); 

 fprintf(fp, "P_PTR_PRIVATE_KEY_DATA[0] = %c\n", P_PTR_PRIVATE_KEY_DATA[0]); 
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 fprintf(fp, "Private Key Array dump = "); 

 for (i = 0; i<250; i++) 

 { 
  fprintf(fp, "%c", PrivateKeyBinaryUnsignedArray[i]); 

 } 

 fprintf(fp, " \n"); 
 fclose(fp); 

 

 

 fpb = fopen("debug-keyverify-BIGNUM.txt", "w"); 
 fprintf(fpb, "PublicKeyBigNumber = "); 

 BN_print_fp(fpb, PublicKeyBN); 

 fprintf(fpb, " \n"); 
 fprintf(fpb, " \n"); 

 fprintf(fpb, "PrivateKeyBigNumber = "); 

 BN_print_fp(fpb, PrivateKeyBN); 

 fprintf(fpb, " \n"); 

 fprintf(fpb, " \n"); 

 fprintf(fpb, "bnlen = %i\n", bnlen); 
 fclose(fpb); 

#endif 

 

 

 

 

   //END OF CUSTOM CODE 
 

 

} 
 

/* eof ********************************************************************/ 
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A.4 – SigGen 

 
/************************************************************************** 
File:               siggen.c 

Author:             kfischer 

Creation date:      10/07/2013 - 22:27 
POU name:           SigGen 

***************************************************************************/ 

 

---autocode--- 

 

//START OF CUSTOM CODE HEADERS 

#include <debug.h> 
#include <stdio.h> 

#include <stdlib.h> 

#include <openssl/ec.h>      // for EC_GROUP_new_by_curve_name, EC_GROUP_free, 

EC_KEY_new, EC_KEY_set_group, EC_KEY_generate_key, EC_KEY_free 

#include <openssl/ecdsa.h>   // for ECDSA_do_sign, ECDSA_do_verify 

#include <openssl/obj_mac.h> // for NID_secp384r1 
#include <openssl/bn.h>   // for BIGNUM conversions 

#include <openssl/bio.h> 

#include <openssl/evp.h> 
#include <openssl/buffer.h> 

#include <math.h> 

#include <base64.h>    // for base64 conversions 

//END OF CUSTOM CODE HEADERS 
 

---autocode--- 

 
   //START OF CUSTOM CODE 

         

 

   //--Declarations 

 

   /*debug variables*/ 

 #if ISaDEBUG 

 FILE *fp; 

 int i; 

 #endif 

 

   /*status variables*/ 

  
 #define P_PTR_PRIVATE_KEY_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA-

>private_key))+2) 

 #define P_PTR_HASH_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA->hash))+2) 
 

 const int set_group_success = 1; 

 const int gen_success = 1; 

 const int set_public_success = 1; 
 const int set_private_success = 1; 

 const int verify_success = 1; 

 

 int set_group_status; 

 int set_private_status; 

 

 

 unsigned char hash[128]; 
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   /*EC Variables*/ 

 EC_KEY *eckey; 

 EC_GROUP *ecgroup; 
 ECDSA_SIG *signature; 

 

   /*base64 variables for decomposing private key*/ 
 BIGNUM *PrivateKeyBN; 

 unsigned char *buffer; 

    unsigned char *PrivateKeyBinaryUnsigned, PrivateKeyBinaryUnsignedArray[250]; 

 const unsigned char *PrivateKeyBinaryConst; 
 

   /*base64 variables for encoding SIG_R and SIG_S*/ 

 
 int SIG_R_EncodedSize; 

 unsigned char *SIG_R_BinaryUnsigned, SIG_R_BinaryUnsignedArray[250]; 

    unsigned char *SIG_R_Base64, SIG_R_Base64Array[250]; 

 int SIG_S_EncodedSize; 

 unsigned char *SIG_S_BinaryUnsigned, SIG_S_BinaryUnsignedArray[250]; 

    unsigned char *SIG_S_Base64, SIG_S_Base64Array[250];    
 

 char *SIG_R_Buffer, SIG_R_BufferArray[250]; 

 char *SIG_S_Buffer, SIG_S_BufferArray[250]; 

 

   //--Logic 

 

 /*STEP 0 - Initialization*/ 
 P_STATUS = 0; 

 

 memcpy(hash,P_PTR_HASH_DATA,128); 
  

 memset(PrivateKeyBinaryUnsignedArray,0,250); 

 PrivateKeyBinaryUnsigned = PrivateKeyBinaryUnsignedArray; 

 
 memset(SIG_R_BinaryUnsignedArray,0,250); 

 SIG_R_BinaryUnsigned = SIG_R_BinaryUnsignedArray; 

 memset(SIG_R_Base64Array,0,250); 
 SIG_R_Base64 = SIG_R_Base64Array; 

 memset(SIG_R_BufferArray,0,250); 

 SIG_R_Buffer = SIG_R_BufferArray; 

 

 memset(SIG_S_BinaryUnsignedArray,0,250); 

 SIG_S_BinaryUnsigned = SIG_S_BinaryUnsignedArray; 
 memset(SIG_S_Base64Array,0,250); 

 SIG_S_Base64 = SIG_S_Base64Array; 

 memset(SIG_S_BufferArray,0,250); 

 SIG_S_Buffer = SIG_S_BufferArray; 

 

 /*STEP 1 - create key object*/ 

 eckey=EC_KEY_new(); 
    if (NULL == eckey) 

    { 

        P_STATUS = -1;  /*failed to create key object*/ 

    } 

    else 

    { 

  /*STEP 2 - create EC_GROUP object*/ 
  ecgroup = EC_GROUP_new_by_curve_name(NID_secp521r1); 

        if (NULL == ecgroup) 

        { 
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            P_STATUS = -2; /*failed to create new EC Group*/ 

        } 

        else 
        { 

   /*STEP 3 - associate key with group*/ 

            set_group_status = EC_KEY_set_group(eckey,ecgroup); 
            if (set_group_success != set_group_status) 

            { 

    P_STATUS = -3; /*failed to associate key with group*/ 

            } 
            else 

   { 

    /*STEP 4 - set private key*/ 
    PrivateKeyBN = BN_new(); 

 

    buffer = (unsigned char*) P_PTR_PRIVATE_KEY_DATA; 

    EVP_DecodeBlock(PrivateKeyBinaryUnsigned,buffer,120); 

    

    PrivateKeyBinaryConst = (const unsigned char*) 
PrivateKeyBinaryUnsigned; 

 

/*521 ECDSA is unique due to the extra bit resulting in a length of 65.125 bytes, 

which means that when converting from bin to bn we will alternatively be converting 66 

or 65 bytes depending on if the extra bit is a 1 or not. The presence of the 

extra bit is encoded in the in the first  base64 characters. The byte 0000 0001 will be 

broken in base64 to a pair of 0000000 and 1XXXXXX, which will result in the key having 
a leading A character representing the 0000000.  However, the byte 0000 0000 will not 

be encoded at all, which will result in the key not having a leading A.  Detection of 

the leading A is therefore critical to properly convert the bin to BN.*/ 
      

    if (P_PTR_PRIVATE_KEY_DATA[0] == 'A')  

    { 

     BN_bin2bn(PrivateKeyBinaryConst,66,PrivateKeyBN); 
    } 

    else 

    { 
     BN_bin2bn(PrivateKeyBinaryConst,65,PrivateKeyBN); 

    } 

 

    set_private_status = 

EC_KEY_set_private_key(eckey,PrivateKeyBN); 

    if (set_private_success != set_private_status) 
    { 

     P_STATUS = -4; /*failed to set private key*/ 

    } 

    else 

    { 

     /*STEP 5 - create signature on dummy hash*/ 

     signature = ECDSA_do_sign(hash,128,eckey); 
     if (NULL == signature) 

     { 

      P_STATUS = -5; /*failed to generate 

signature*/ 

     } 

     else 

     { 
      /*STEP 6 - base64 encode SIG_R and SIG_S and 

output result*/ 
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      BN_bn2bin(signature->r,SIG_R_BinaryUnsigned); 

      SIG_R_EncodedSize = 

EVP_EncodeBlock(SIG_R_Base64,SIG_R_BinaryUnsigned,89); 
 

      BN_bn2bin(signature->s,SIG_S_BinaryUnsigned); 

      SIG_S_EncodedSize = 
EVP_EncodeBlock(SIG_S_Base64,SIG_S_BinaryUnsigned,89); 

 

      SIG_R_Buffer = (char *) SIG_R_Base64; 

      SIG_S_Buffer = (char *) SIG_S_Base64; 
 

      strcpy(P_SIG_R_BUFADD,SIG_R_Buffer); 

      SIG_R_MAXLEN = 250; 
      SIG_R_CURLEN = SIG_R_EncodedSize; 

 

      strcpy(P_SIG_S_BUFADD,SIG_S_Buffer); 

      SIG_S_MAXLEN = 250; 

      SIG_S_CURLEN = SIG_S_EncodedSize; 

 
      P_STATUS = 1; /*success*/ 

     } 

    } 

   } 

  } 

 } 

 
 ///*CLEANUP - Release memory structures to prevent memory leaks*/ 

 EC_KEY_free(eckey);    /*frees EC_KEY memory allocation*/ 

 EC_GROUP_clear_free(ecgroup);   /*destroys any sensitive data in the group and 
then frees the memory*/ 

 BN_clear_free(PrivateKeyBN);    /*overwrites the BN before returning memory to 

the system*/ 

 ECDSA_SIG_free(signature);  /*frees ECDSA_SIG memory allocation*/ 
 

 

/*debug logic*/ 
#if ISaDEBUG 

 fp = fopen("debug-siggen.txt", "w"); 

 fprintf(fp, "hello world\n"); 

 fprintf(fp, " \n"); 

 fprintf(fp, "PrivateKeyBigNumber = "); 

 BN_print_fp(fp, PrivateKeyBN); 
 fprintf(fp, " \n"); 

 fprintf(fp, "signature->r = "); 

 BN_print_fp(fp, signature->r); 

 fprintf(fp, " \n"); 

 fprintf(fp, "signature->s = "); 

 BN_print_fp(fp, signature->s); 

 fprintf(fp, " \n"); 
 fclose(fp); 

 

#endif 

 

   //END OF CUSTOM CODE 

 

} 
 

/* eof ********************************************************************/ 
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A.5 – SigVerify 
 
/************************************************************************** 

File:               sigverify.c 

Author:             kfischer 
Creation date:      12/07/2013 - 18:52 

POU name:           SigVerify 

***************************************************************************/ 

 

---autocode--- 

 

//START OF CUSTOM CODE HEADERS 
#include <debug.h> 

#include <stdio.h> 

#include <stdlib.h> 
#include <openssl/ec.h>      // for EC_GROUP_new_by_curve_name, EC_GROUP_free, 

EC_KEY_new, EC_KEY_set_group, EC_KEY_generate_key, EC_KEY_free 

#include <openssl/ecdsa.h>   // for ECDSA_do_sign, ECDSA_do_verify 

#include <openssl/obj_mac.h> // for NID_secp384r1 
#include <openssl/bn.h>   // for BIGNUM conversions 

#include <openssl/bio.h> 

#include <openssl/evp.h> 

#include <openssl/buffer.h> 

#include <math.h> 

#include <base64.h>    // for base64 conversions 

//END OF CUSTOM CODE HEADERS 

 

---autocode--- 

 

   //START OF CUSTOM CODE 

         

 

   //--Declarations 

 

   /*debug variables*/ 
 #if ISaDEBUG 

 FILE *fp; 

 int i; 

 #endif 

 

 /*status variables*/ 

 #define P_PTR_PUBLIC_KEY_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA-
>public_key))+2) 

 #define P_PTR_HASH_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA->hash))+2) 

 #define P_PTR_SIG_R_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA->sig_r))+2) 

 #define P_PTR_SIG_S_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA->sig_s))+2) 

 

 const int set_group_success = 1; 

 const int gen_success = 1; 

 const int set_public_success = 1; 

 const int set_private_success = 1; 

 const int verify_success = 1; 

 

 int set_group_status; 

 int set_public_status; 
 int verify_status; 

 

 unsigned char hash[128]; 
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    /*EC Variables*/ 

 EC_KEY *eckey; 

 EC_GROUP *ecgroup; 
 EC_POINT *PublicKeyPoint; 

 ECDSA_SIG *signature; 

 
 

    /*base64 variables for decoding public key*/ 

 BIGNUM *PublicKeyBN; 

 unsigned char *buffer; 
    unsigned char *PublicKeyBinaryUnsigned, PublicKeyBinaryUnsignedArray[250]; 

 const unsigned char *PublicKeyBinaryConst; 

 
 /*base64 variables for decoding SIG_R key*/ 

 BIGNUM *SIG_R_BN; 

 unsigned char *SIG_R_buffer; 

    unsigned char *SIG_R_BinaryUnsigned, SIG_R_BinaryUnsignedArray[250]; 

 const unsigned char *SIG_R_BinaryConst; 

 
 /*base64 variables for decoding SIG_S key*/ 

 BIGNUM *SIG_S_BN; 

 unsigned char *SIG_S_buffer; 

    unsigned char *SIG_S_BinaryUnsigned, SIG_S_BinaryUnsignedArray[250]; 

 const unsigned char *SIG_S_BinaryConst; 

 

   //--Logic 
 P_STATUS = 0; 

 

 memcpy(hash,P_PTR_HASH_DATA,128); 
 

 memset(PublicKeyBinaryUnsignedArray,0,250); 

 PublicKeyBinaryUnsigned = PublicKeyBinaryUnsignedArray; 

 
 memset(SIG_R_BinaryUnsignedArray,0,250); 

 SIG_R_BinaryUnsigned = SIG_R_BinaryUnsignedArray; 

 
 memset(SIG_S_BinaryUnsignedArray,0,250); 

 SIG_S_BinaryUnsigned = SIG_S_BinaryUnsignedArray; 

 

 /*STEP 1 - create key object*/ 

 eckey=EC_KEY_new(); 

    if (NULL == eckey) 
    { 

        P_STATUS = -1;  /*failed to create key object*/ 

    } 

    else 

    { 

  /*STEP 2 - create EC_GROUP object*/ 

  ecgroup = EC_GROUP_new_by_curve_name(NID_secp521r1); 
        if (NULL == ecgroup) 

        { 

            P_STATUS = -2; /*failed to create new EC Group*/ 

        } 

        else 

        { 

   /*STEP 3 - associate key with group*/ 
            set_group_status = EC_KEY_set_group(eckey,ecgroup); 

            if (set_group_success != set_group_status) 

            { 
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    P_STATUS = -3; /*failed to associate key with group*/ 

            } 

            else 
   { 

    /*STEP 4 - set public key*/ 

    PublicKeyPoint = EC_POINT_new(ecgroup); 
    PublicKeyBN = BN_new(); 

    buffer = (unsigned char*) P_PTR_PUBLIC_KEY_DATA; 

    EVP_DecodeBlock(PublicKeyBinaryUnsigned,buffer,240); 

    PublicKeyBinaryConst = (const unsigned char*) 
PublicKeyBinaryUnsigned; 

    BN_bin2bn(PublicKeyBinaryConst,133,PublicKeyBN);  

  
   

 EC_POINT_bn2point(ecgroup,PublicKeyBN,PublicKeyPoint,NULL); 

    set_public_status = 

EC_KEY_set_public_key(eckey,PublicKeyPoint); 

    if (set_public_success != set_public_status) 

    { 
     P_STATUS = -4; /*failed to set public key*/ 

    } 

    else 

    { 

     /*STEP 5 - convert Base64 SIG_R and SIG_S into BN 

and set signature values*/ 

 
     signature = ECDSA_SIG_new(); 

     SIG_R_BN = signature->r; 

     SIG_S_BN = signature->s; 
 

     SIG_R_buffer = (unsigned char*) P_PTR_SIG_R_DATA; 

    

 EVP_DecodeBlock(SIG_R_BinaryUnsigned,SIG_R_buffer,120); 
     SIG_R_BinaryConst = (const unsigned char*) 

SIG_R_BinaryUnsigned; 

     if (P_PTR_SIG_R_DATA[0] == 'A')  
     { 

      BN_bin2bn(SIG_R_BinaryConst,66,SIG_R_BN); 

     } 

     else 

     { 

      BN_bin2bn(SIG_R_BinaryConst,65,SIG_R_BN); 
     } 

 

     SIG_S_buffer = (unsigned char*) P_PTR_SIG_S_DATA; 

    

 EVP_DecodeBlock(SIG_S_BinaryUnsigned,SIG_S_buffer,120); 

     SIG_S_BinaryConst = (const unsigned char*) 

SIG_S_BinaryUnsigned; 
     if (P_PTR_SIG_S_DATA[0] == 'A')  

     { 

      BN_bin2bn(SIG_S_BinaryConst,66,SIG_S_BN); 

     } 

     else 

     { 

      BN_bin2bn(SIG_S_BinaryConst,65,SIG_S_BN); 
     } 

      

     if (NULL==signature) 
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     { 

      P_STATUS = -5; 

     } 
     else 

     { 

      /*STEP 6 - Verify Signature*/ 
      verify_status = 

ECDSA_do_verify(hash,128,signature,eckey); 

      if (verify_success != verify_status) 

      { 
       P_STATUS = -6; /*verification failed*/ 

      } 

      else 
      { 

       P_STATUS = 1; /*signature verified*/ 

      } 

     } 

    } 

   } 
  } 

 } 

 

 /*CLEANUP - Release memory structures to prevent memory leaks*/ 

 

  EC_KEY_free(eckey);    /*frees EC_KEY memory 

allocation*/ 
  EC_GROUP_clear_free(ecgroup);   /*destroys any sensitive data in the 

group and then frees the memory*/ 

  EC_POINT_free(PublicKeyPoint);  /*frees EC_POINT memory allocation*/ 
  BN_clear_free(PublicKeyBN);    /*overwrites the BN before returning 

memory to the system*/ 

  ECDSA_SIG_free(signature);  /*frees ECDSA_SIG memory allocation*/ 

 
 

 

/*debug logic*/ 
#if ISaDEBUG 

 fp = fopen("debug-sigverify.txt", "w"); 

 fprintf(fp, "hello world\n"); 

 fprintf(fp, " \n"); 

 fprintf(fp, "PublicKeyBigNumber = "); 

 BN_print_fp(fp, PublicKeyBN); 
 fprintf(fp, " \n"); 

 fprintf(fp, "signature->r = "); 

 BN_print_fp(fp, signature->r); 

 fprintf(fp, " \n"); 

 fprintf(fp, "signature->s = "); 

 BN_print_fp(fp, signature->s); 

 fprintf(fp, " \n"); 
 fclose(fp); 

 

#endif 

 

 

 

} 
 

/* eof ********************************************************************/ 
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APPENDIX B – LADDER LOGIC CODE 

 

B.1 – Solution Explorer 
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B.2 – Bindings Sample 
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B.3 – ECDSA_D4_I 
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  Page B.6 of 12  

 

B.4 – MAIN 
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Note:  Rungs 8 and 9 are only used for the main routine of Device 1 to initialize the device 

and to trap the number elapsed time and cycle counts.  The other devices have a rung similar 

to rung 8 but without the FS XIC latch. 
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B.5 – SIM_BOOL 
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B.6 – SIM_REAL 
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B.7 – ECDSA_KeyCntrl 
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B.8 – ECDSA_Q 

 

 

 
 


