

 Page 1 of 9

Results and Code for a Software-based Implementation of ECDSA for

Control System Data Authentication and Verification

Kenneth A. Fischer

Code 955, NSWCCD-SSES

1000 Kitty Hawk Avenue, Philadelphia PA 19112

Kenneth.a.fischer@navy.mil

Abstract— In previous works the need for control

system data authentication and verification was

discussed, and the use of the Elliptic Curve Digital

Signature Algorithm (ECDSA) was proposed as a

solution. Following up on that work, this paper

presents a software based implementation of ECDSA

utilizing ISaGRAF SoftPLCs running on both a virtual

machine configuration (test string 1) and on four

General Micro Systems VS 275 single board VME

computers (test string 2). The implementation is

primarily written in IEC 61131-3 ladder logic using

specialized function blocks developed in C utilizing the

OpenSSL library. The four SoftPLCs were configured

in a round robin architecture in order to determine the

average time it takes to generate a message, sign it,

transmit it, receive it, and verify the signature. Test

string 1 gave an average time of 26-28ms with PLC

scan times of 22-24 ms. Test string 2 gave an average

time of 55-60ms with PLC scan times of 55-60 ms. As

expected, timing of the completed transmission is

linearly related to PLC scan time.

Index Terms—PLC, HMI, Stuxnet, Smart Grid,

NGIPS, ECDSA, Machinery Control System

1. INTRODUCTION
In previous works [1] the need for increased security for

control systems was discussed. The requirements for control

system security were surveyed and it was determined that a

method for verifying the authenticity and integrity of the

commands and data transmitted between PLCs was needed.

Specifically, it was proposed that the data traveling across

any controls network is first signed by the sending controller

at the application layer. The signature would then be

transmitted across the control network along with the data

and be subsequently verified by the receiving controller at

the application layer. This would allow the receiving

controller to verify both the authenticity and integrity of the

data and would allow both controllers to utilize any available

communications protocol to transmit. It was also noted that

signing and verifying the data at the application layer will

also allow intermediary controllers to relay data silently

without additional overhead that would impact transmission

time.

To accomplish this, the use of a digital signature

algorithm was proposed using a public key cryptography

system. A literature survey was performed of two major

cryptographic technologies used in digital signature

algorithms: RSA and Elliptic Curve Cryptography (ECC).

Figures 1 through 3 below show timing comparisons of the

two different algorithms based on the work performed by

Jansma and Arrendondo. The data showed that as higher

levels of security are needed ECC technology begins to

outperform RSA technologies. Given that the need for

security will only increase, the Elliptic Curve Digital

Signature Algorithm (ECDSA) was proposed as a solution

for control system data authentication and verification.

Figure 1. ECC vs RSA Key Generation [2]

Figure 2. ECC vs RSA Signature Generation [2]

Figure 3. ECC vs RSA Signature Verification [2]

 Page 2 of 9

After reviewing the mathematics of ECDSA and potential

variations of the algorithm, it was concluded that ECDSA is

a promising solution and that an IEC61131-3 compliant

implementation would be needed in order to use existing

PLC hardware and encourage widespread adoption by

control engineers. Unfortunately, such an implementation

would be extremely complicated and expensive to produce.

Furthermore, based on the timing data presented in [2], it

seemed uneconomical to commit the resources towards

development of such an implementation until the feasibility

of the approach could be more fully evaluated and

demonstrated.

SoftPLCs provide a unique opportunity to perform this

analysis by developing a prototype system that is

predominately written in IEC 61131-3 code but allows the

use of specialized custom function blocks written in other

high level languages. This allows the development of a

prototype implementation of a control system ECDSA

algorithm that is able to reuse existing software libraries in

order to avoid the expense of developing ladder logic

cryptographic functions. The prototype implementation,

being predominately written in ladder logic, can then be

reused for a full IEC611-31 implementation by simply

replacing the custom function blocks with IEC61131-3

versions. Furthermore, the large number of SoftPLCs

already existing in both Navy and industry applications

would be better suited by the prototype implementation than

the full IEC 61131-3 implementation.

This paper presents the source code, timing results, and

stability results for an ISaGRAF SoftPLC implementation of

ECDSA for control systems. ISaGRAF SoftPLCs are

currently in use on a wide range of industrial control

applications around the world, and are currently employed

by the Navy in two major programs: the Littoral Combat

Ship (LCS) Class and the Mobile Landing Platform (MLP)

Class for ship wide machinery control. The challenges and

solutions uncovered when developing the implementation

are discussed, and a path forward for converting the

prototype into a full IEC 61131-3 compliant implementation

is presented.

2. SYSTEM ARCHITECTURE

OVERVIEW
The primary goal of the prototype was to determine the

overhead the ECDSA implementation would have on control

system operation. In order to have effective control, the scan

times for the logic must be sufficiently low enough to

approximate real time operation (less than 100 ms and

ideally less than 50 ms). Additionally, for PLC to PLC

communications effective control requires that you are

transmitting and processing at least one set of actions every

300 ms or less (ideally every 100 ms or less). There are a

number of different things that can impact both scan times

and transmission times, particularly for SoftPLCs running on

a Windows OS, such as network latency and individual

hardware I/O access rates.

In order to obtain averages for scan times and

transmission times a simple “round robin” architecture was

chosen as shown in Figure 4 below. Four SoftPLCs, labelled

1 through 4, were configured so that each processes a piece

of data and then subsequently transmits it down the line,

repeating the process in an indefinite loop. The data

transmitted included a number of simulated signals,

including BOOL, INT, REAL, DATE, and STRING values

that were part of a small logic simulation routine. The

details of this are discussed in Section 6 below.

Figure 4. SoftPLC Round Robin Architecture Concept

The primary data point of interest for this system is a

DINT value called COUNT. COUNT is a number that is

initialized at 0 at the very start of the system. Each SoftPLC

receives COUNT as an input from its predecessor, verifies

the digital signature that came with the COUNT value, and if

verification is successful it increments the COUNT value by

1, generates a new message, and transmits the new message

to the next PLC in the loop. Figure 5 below illustrates the

count increment lifecycle within the PLC’s execution

processes. As can be seen, each value of count represents a

complete set of signature generation, data transmission, and

signature verification actions. Transmission time is then

synonymous with the timing of the COUNT lifecycle. In

order to determine an average time, the system was run until

it had reached a certain value of COUNT. The runtime was

then captured and the runtime divided by the COUNT gives

us the average transmission time.

Figure 5. SoftPLC Round Robin Architecture Concept

Please note that some SoftPLC products offer an

additional “WAIT” option as a step after the DATA

TRANSMISSION step in their PLC. This feature normally

works by predefining a PLC execution cycle time, like 100

ms, and essentially takes the 100 ms minus the time it took

to complete all of the above steps and then waits for that

time until it begins executing the next cycle. This is

normally used to add a bit more determinism to the SoftPLC

and provides a window of opportunity for the operating

 Page 3 of 9

system to execute tasks. Since the goal of this prototype to

determine loads by monitoring scan and transmission times

the WAIT feature was disabled.

The PLC scan times would be monitored by using built-in

tools that come with all major SoftPLC and regular PLC

packages. Scan time is not synonymous with transmission

time since the PLCs are not synchronized (as is typical with

industrial operations). Additionally, it is possible that a PLC

might receive an invalid signature in a data transmission due

to events like network transmission errors that have damaged

the data. Any COUNT with an invalid signature is

disregarded, making COUNT representative for only

successful transmissions with correct signature generation

and verification.

3. SOFTWARE ARCHITECTURE

BACKGROUND INFORMATION

3.1. SoftPLC Package

There are two popular SoftPLC packages currently in use

by the Navy: Rockwell Canada’s ISaGRAF package and

Siemens WinAC. Both packages can be used to develop

IEC 61131-3 ladder logic and include custom C function

blocks. The primary difference between the packages is that

Siemens WinAC includes additional functionality installed

on the target hardware that adds real-time determinism and

disables certain functions in Windows that could result in a

“blue screen of death” error. ISaGRAF, on the other hand, is

more comparable to Java in that it includes a simple

executable known as the ISaVM that in turn executes the

logic. Like Java, ISaGRAF has multiple ISaVM

implementations that allow the software to be used with

multiple platforms including both Linux and Windows.

Ultimately ISaGRAF was chosen for this implementation

because it used on more US Navy Ships than Siemens

WinAC and because Rockwell Canada was willing to

provide free licenses to support development of this

prototype.

The ISaVM executable lives with a collection of related

executables in a folder that is collectively referred to as the

“target”. The target is installed onto the hardware via a

simple copy operation which can be performed anywhere

within the file structure of the SoftPLC’s operating system.

The target includes a main program, “ISaGRAF.exe” that is

manually started by the user. This program then starts up the

subprograms including both ISaVM.exe and the default

Ethernet communications program “ETCP.exe”. The target

also includes a text file known as the “target definition” file

that describes details about the target such as what custom C

function blocks are available.

In order to develop custom C function blocks for

inclusion in the ladder logic a tool called TDBuild (Target

Definition Builder) is used to define the input and output

variables of the function blocks. The tool is then used to

auto-generate C code which essentially provides the API

between the ladder logic and the custom C code that was

developed as part of this prototype. TDBuild is also used to

update the target definition files, which are then read into the

main ISaGRAF program in order to allow the software to

include the specialized function blocks in the ladder logic.

For Windows-based targets the custom C code is

eventually compiled as a dynamic link library (DLL) which

is then copied and pasted into the target folder. This DLL,

combined with the target definition files discussed

previously, provide full runtime access to the custom C code

for program execution. Note that you do not have to register

the DLL with Windows which greatly simplifies the install.

3.2. OpenSSL

As stated previously, developing a custom IEC 61131-3

implementation of ECDSA is a complicated endeavour and a

prototype system that utilizes existing implementations is a

necessary first step. For this prototype the OpenSSL [3]

implementation has been chosen for both its efficiency and

its free and open source availability to all controls engineers.

There are three methods by which OpenSSL can be included

in a project:

1. By installing OpenSSL onto the target system and

using its command line interface.

2. By performing a fresh compile of OpenSSL as a

dynamic library which can then be copied onto the

target system and used after first properly registering

the DLL.

3. By performing a fresh compile of OpenSSL as a

static library which can then be included in your

application without having to first install OpenSSL

onto the target system or register any DLLs including

the DLL used by the ISaGRAF software itself.

For this prototype OpenSSL was compiled as a static

library in order to simplify the installation process onto the

target machines (i.e. to keep the ISaGRAF target install

down to a simple copy operation). The downside to this

option is that it does complicate the structure of the actual C

source code and increased development time of the

prototype. It was decided that the increase in development

time is justified by the increased ability to use the prototype

on existing Navy ship classes that are using SoftPLCs and do

not require a 100% IEC 61131-3 implementation, such as

LCS and MLP.

The following steps were performed to compile OpenSSL

as a static library on a Windows 7 machine:

1. Install Visual Studio 2010

2. Install Active Pearl 32-bit

3. Download the latest version of OpenSSL

4. Open the Visual Studio Command Prompt

5. Unzip OpenSSL to a directory such as C:\openssl-src-

32

6. CD to the directory

 Page 4 of 9

7. Run the command: perl Configure VC-WIN32 –

prefix=C:\Build-OpenSSL-VC-32

8. Run the command: ms\do_ms

9. Run the command: nmake –f ms\nt.mak

10. Run the command: nmake –f ms\nt.mak install

The compiled library will end up in the C:\Build-OpenSSL-

VC-32 directory.

3.3. Visual Studio 2010 Express

Visual Studio 2010 Express (a free product) was used to

develop and compile the custom C function blocks into a

DLL. Taking the C code and header files generated by

TDBuild and adding it to the Visual Studio project is a

simple matter, but there are additional steps that must be

taken in order to configure the compiler to properly utilize

the dependent libraries in order to generate the DLL. The

two critical steps required are:

1. Under Linker – General – Additional Library

Dependencies add the OpenSSL static library.

2. Under Linker – Input – Additional Dependencies add

the libeay32.lib and the ssleay32.lib.

3.4. Cryptographic Algorithms Used

As discussed in the previous work [1] performing a digital

signature requires the use of two different cryptographic

algorithms: a hash function and a public-key cryptography

function. The hash function is performed first in order to

process the arbitrarily long amount of data into a fixed

length tag. The cryptographic function then encrypts the

data using the private key, which can then be decrypted

using the public key by an agent desiring to verify the public

signature.

For this work the SHA-512 algorithm was used in

combination with the P-521 ECDSA algorithm. The goal

was to use the strongest measure of security possible at the

time of development, and it is worth noting that the weaker

P-384 ECDSA algorithm is considered valid for even TOP

SECRET data. OpenSSL includes implementations of both

algorithms in the static library that was compiled.

Using the SHA-512 algorithm was relatively trivial, but

the P-521 algorithm proved to be a bit tricker than originally

anticipated. The P-521 algorithm consists of 65 bytes of

data plus 1 bit. The extra bit, when true, results in an output

of 66 bytes. When the extra bit is false, the result is an

output of 65 bytes. As will be illustrated in the walkthrough

of the C code (and as is shown in the source code comments)

special considerations were needed to monitor the output of

the algorithm to ensure that the correct amount of data was

read.

3.5. Base64 Encoding / Decoding

Transmitting cryptographic keys and digital signatures

between PLCs is not a trivial manner. PLCs only include a

predefined number of data types such as BOOL, INT, DINT,

and STRING which can be transmitted between devices. All

of the data types except for STRING are therefore unsuitable

for transmitting the keys and signatures due to the

insufficient bit length.

In most PLC products, the STRING variable can consist

of any ASCII character array up to a length of 255 characters

according to the literature of the various vendors. This

would appear to give a data value of 2040 bits using ASCII

encoding, sufficiently long enough to transmit ECDSA keys

and signatures. Note that this length is still too short for the

use of RSA keys and digital signatures which is one of the

reasons why ECC technologies were chosen.

The problem is that the 255 character set is misleading,

since in ISaGRAF and in other PLC products 3 of the 255

characters are reserved to process the STRING. One of the

three character slots must be used for the NULL character

(which should indicate to the experienced C programmer

that the STRING data type is really a C-String and not the

more advanced string data type found in C++ or other high

level languages). Additionally, the STRING must begin

with an apostrophe and end with an apostrophe. The

“apostrophe” problem becomes our greatest concern. When

representing an ECDSA signature or key in ASCII it is

possible that the resulting ASCII string will output an

apostrophe in the middle of the key or signature. The PLC

will interpret the second apostrophe (and note that you must

always start with an apostrophe) as the end of the string and

subsequently cut off the remaining data.

In order to work around this problem, a different

character encoding must be used that maximizes the data

compression of the string representation. Hexadecimal

representation of the data was considered, but at only 4 bits

per character it was considered insufficient. A custom

variant of ASCII was considered that didn’t use the

apostrophe, but in the interests of conforming to widely

accepted standards this idea was dropped. Base64 encoding,

using 6 bits per character, became the most logical choice.

Base64 encoding allows the cryptographic keys to be

transmitted as a single string variable for each key. The

private key is represented by a 75 character string (plus 3 for

the null and the leading/lagging apostrophes). The public

key, which represents a point on an elliptic curve, is

represented by a 152 character string (plus 3). The digital

signature is represented by two values, SIG_R and SIG_S,

each with a length equivalent to the private key. These

values were transmitted as two separate strings to help

facilitate the need for possible future expansion.

Note that the STRING variables themselves which are

storing the data in the PLC ladder logic are required to be set

to a fixed length. This is a fairly standard requirement by

most PLC manufacturers. In order to facilitate the need for

future strong cryptography it was decided to set the length

for these variables in the ladder logic to the largest possible

 Page 5 of 9

value. As a consequence, the PLC STRING variables

include padded data in addition to the cryptographic keys or

digital signatures.

3.6. Self-Signing Keys

One of the largest areas of discussion with using a public-

key cryptography system for control system security has

been a concern about how to setup a public-key

infrastructure (PKI). In order for two systems to be able to

communicate securely, there needs to be some initial trust

relationship established so that a receiving system which

obtains a public key from a sending system knows that the

public key really belongs to that system. Put another way,

how does the receiver really know that the sender is who it

claims to be?

 In traditional information systems a Certificate Authority

(CA) is used to issue certificates to users. This certificate

contains the identity of the key pair owner, the owners

public key, and a digital signature of the Certificate

Authority. When users communicate securely, they receive

a copy of each other’s signed certificate (minus the private

key) and they establish trust in each other’s identity based on

the successful validation of the CA’s signature. Put another

way, they trust each other because someone else told them it

was okay. Ultimately, even trusting the digital signature of a

CA is based on the idea that some human ultimately made

the decision that the CA who issued the certificates is of

good repute.

This kind of complicated infrastructure is necessary in IT

systems, since two communicating systems may send a wide

range of different kinds of data with a wide disparity in both

timing and content. Furthermore, an IT system may

communicate only once with another system it never heard

of before and then never communicate to that system again.

This constant flux requires a PKI in order to establish trust

relationships with CAs and individual users. Unfortunately,

running a PKI system requires a significant amount of

processing power and adds significant complexity to a

control system. Significant research is ongoing to develop a

modified version of a PKI that can be executed on

operational technology platforms, however most of these are

simply slightly modified versions of the same technologies

used in IT systems.

It is the opinion of the author that implementing a PKI for

control systems is unnecessary. The two central problems

that a PKI system solves are 1) establishing a trust

relationship between two systems and 2) handling the large

amount of flux in data transmitted between control systems.

In Operational Technology systems, neither of these

problems really exists. OT systems are designed to

communicate in a very consistent and precise manner,

transmitting the same basic message structure at a consistent

interval to the exact same targets. The relationship between

these targets is established when the system is first

commissioned for operation (i.e. on the day of birth) and no

new communication partnerships are ever established

without significant software changes and a recommissioning

of the system.

Therefore, in designing this prototype, a different system

for establishing communications and updating keys was

created. During commissioning, each system is

preconfigured with a public / private key pair, and the public

keys of each part of the system are given to each of the other

parts. When an agent in the system decides to change its

public / private key pair (this decision is made at regular

intervals with the interval length configured at

commissioning) it first generates a new key pair and then

signs the new public key with the old private key. This

information is then transmitted to each of the other agents in

the system who then verify the key change message with the

old public key they currently have on file. If the digital

signature is valid, the new public key is accepted and the old

public key is disregarded.

In order to ensure that an adversary will not be able to

attack the system using the original preconfigured

public/private key pair each agent immediately changes its

key to a new random key pair at startup, before any other

logic is processed. Additionally, since there is no CA and

communications are highly deterministic there is little risk in

changing the key pairs at a much more frequent interval. In

the prototype, each of the four SoftPLC agents were

configured to change their key pairs at 53 minutes, 59

minutes, 61 minutes, and 67 minutes respectively.

As a result, this system effectively generates keys 175,000

to 265,000 times more often the PKI CA systems used in IT

applications and greatly weakens an adversaries capabilities

to brute force crack the system. Ultimately, this allows for

smaller key sizes to be used by OT systems and thus reduces

the required processing power and memory required to

effectively implement an ECDSA algorithm.

The major downside with this implementation is that an

agent in the control system which is powered down must

retain their current public/private key pair in memory and

resume use of that key pair upon startup (though it can

immediately change it). A agent which does not have this

capability may default back to the original pre-

commissioned key pair and will therefore be considered to

be a bad actor by the other agents in the system, requiring a

complete re-initialization of the entire system. Fortunately,

this problem is easily solved by adding the required memory

capabilities and is mitigated by the fact that these kinds of

systems are highly redundant and designed to run

uninterrupted for years without failures.

4. HARDWARE ARCHITECTURE
Two test strings were used in the development and testing

of the prototype, Test String 1 and Test String 2.

4.1. Test String 1

Test String 1 used four Windows 7 virtual machines

running on VMWare Player on top of a Windows 7 Pro 64-

bit machine. This system was primarily used for initial

 Page 6 of 9

development and testing. The ISaGRAF software was run on

the main machine in order to view the PLC code. The four

virtual machines were bridged to the host NIC card which

was then connected to a router. DHCP was used to assign IP

addresses to both the host and virtual machines.

The main machine had the following relevant hardware

specifications:

• I5-2500K processor, 4C, overclocked to 4.3 GHz,

with 4x256KB of L2 Cache and 6MB of L3 Cache

• 16 GB RAM

• 1 GB Hardwired NIC

• 1.5 TB SATA 3 HDD

4.2. Test String 2

Test String 2 used four General Micro System VS275

Single Board Computer VME boards in the same VME

chassis. No communications across the VME backplane

were used. Each board was running Windows XP

Professional, 32-bit, SP2. Figure X below shows the front

panel of the VS275.

Figure 6. SoftPLC Round Robin Architecture Concept

Each VS275 board had the following specifications:

• 2.16 GHz Core 2 Duo Processor, 4-MB L2 cache

• 3 GB of 667-MHz DDR-2 SDRAM

• 1 GB Hardwired NIC

• 64 GB SATA2 SSD

Hardwired Ethernet communications were used via the

ENET port on the front of the board. All four boards were

connected to an 8 port flat 10/100 MB hub that was in turn

connected to a 10/100/1000MB router. A development

station running ISaGRAF was connected to the router

directly in order to download the software to the boards and

to go online to the SoftPLCs. DHCP was used to assign IP

addresses to each of the boards and development station.

5. SOURCE CODE WALKTHROUGH

Copies of the source code developed for this prototype

with comments are available as appendices to this paper, and

key details and decisions made in designing the software

have been presented in the previous sections. This

subsection presents a high level description of each of the

modules that together make up the prototype, in an effort to

provide context for the source code modules.

Note that for the C code, the portions of the ISaGRAF

code generated by the TDBuild tool are not available as that

code is considered proprietary. Fortunately, the code not

shown simply serves as the API to the PLC ladder logic and

is specific to the ISaGRAF platform. Current users of

ISaGRAF will be able to use the same tools with the

information provide in this document to quickly regenerate

this code. Users of other SoftPLC products should be able to

develop their own variations using the information provided

in this paper.

5.1. C CODE Walkthrough

The subsections below describe the model and C code for

each of the custom function blocks that are used in the

IEC61131-3 ladder logic. A fully compliant IEC61131-3

implementation will replace the C code of these blocks with

a ladder logic version.

In developing the prototype, debug logic was added into

each of the function blocks. Two different mechanisms for

debug logic were included. The first is that each block

outputs an integer status variable, with a 1 indicating

successful operation and a negative number indicating a

failure. The code of the blocks is organized internally in

steps as shown in the source code and comments. A failed

step will output a negative number equal to the step number

(i.e. a fail on step 3 will output a -3 value for the status).

The second debug logic is normally turned off for full

operation and was only added for development. This logic

generates text files during operation that contain key status

variables useful for debugging the code. This adds overhead

to the program execution and creates a security risk, but is

extremely valuable for debugging. In order to turn the logic

on or off, the variable “ISaDEBUG” must be set true for on

or false for off. This variable is located in the “debug.h” file,

and a change in the status of the variable requires a

recompile of the DLL. All the timing results presented in

this paper are with the ISaDEBUG variable set to false.

5.1.1. MsgGen

Figures 7 and 8 below define the details of the MsgGen

block. In digital signature applications, the first step of an

algorithm is to hash the data to be signed into one single

value of fixed length, that will later be encrypted by the

private key. The MsgGen block generates that hash value

using the SHA-512 algorithm. The data to be signed is

inputted into the B#, I#, R#, and STRING fields. The DATE

and TIME fields should always be used for the current date

and time stamps of the message or the entire algorithm is

potentially subject to a replay attack. The block outputs the

hash as a hexadecimal string.

Creating one generic message generation block that can

be used in a wide range of applications is tricky, since one

application could only need a few Booleans and another

application could require 40 different real values. Therefore

the block was structured generically in order to allow the

widest range of possible inputs, and then a HASH_I value

was added that allows the user to chain multiple blocks

together. Readers familiar with the SHA-512 algorithm will

recognize that there is no loss in processing the data in this

manner, since the algorithm generates the hash in a “chain”

fashion naturally. This implementation simply extends the

 Page 7 of 9

chain, and there is no limit to the number of MsgGen blocks

that can be chained together.

The key for implementing this function is that the data to

be signed must have a hash generated on both the source

PLC and the destination PLC. Therefore, during system

design, it is critical that the layout of the MsgGen blocks is

the same on each endpoint or the signature will never verify

successfully.

Figure 7. Three MsgGen Blocks Connected Together

Variable

Name

I/O Type Description

DATE IN DATE Used to date the message in

order to prevent replay

attacks. Has resolution up

to the second.

TIME IN TIME Used to timestamp the

message in order to prevent

replay attacks occurring
within the last second. Has

resolution up to the

millisecond.

HASH_I IN STRING(252) Hash from previous

MsgGen. Used to string

multiple blocks together in
order to generate messages

containing large amounts of

data.

B1 Thru B8 IN BOOL Boolean data inputs.

I1 Thru I4 IN DINT Integer data inputs.

R1 Thru R4 IN REAL Real data inputs.

STRING IN STRING(252) String data inputs.

STATUS OUT INT Status of the computation.

HASH_Q OUT STRING(252) Hash of the message.

Figure 8. MsgGen Input / Output Structure

5.1.2. KeyGen

The KeyGen block generates an ECC-521 prime

public/private key pair. Ladder logic should be placed in the

application to only enable the block at specific intervals

when generation of a new key is desired. The new keys are

outputted as base64 encoded strings. Figures 9 and 10 below

define the details of the KeyGen block.

Figure 9. KeyGen Block

Variable Name I/O Type Description

PUBLIC_KEY OUT STRING(252) ECC 521 public key

PRIVATE_KEY OUT STRING(252) ECC 521 private key

STATUS OUT INT Status of the computation

Figure 10. KeyGen Input / Output Structure

5.1.3. KeyVerify

The KeyVerify block is used as an added check to verify

the integrity of the public/private key pair by using the

private key to first sign an internal dummy hash and then

using the public key to verify the signature. This block is

solely used in the prototype to verify that the system is

functioning correctly. As the maturity of the design

improves it is believed that this block can be removed, thus

reducing system overhead and improving communications

results. Figures 11 and 12 below define the details of the

KeyVerify block.

Figure 11. KeyVerify Block

Variable Name I/O Type Description

PUBLIC_KEY IN STRING(252) ECC 521 public key

PRIVATE_KEY IN STRING(252) ECC 521 private key

STATUS OUT INT Status of the computation

Figure 12. KeyVerify Input / Output Structure

5.1.4. SigGen

The SigGen block is the heart of the ECDSA

implementation, and takes the hash from the MsgGen block

and the PrivateKey from the KeyGen block to output an

ECDSA P-521 signature. The signature itself is composed

of two components, SIG_R and SIG_S, which are each a

base64 encoded string. Figures 13 and 14 below define the

details of the SigGen block.

 Page 8 of 9

Figure 13. SigGen Block

Variable Name I/O Type Description

PRIVATE_KEY IN STRING(252) ECC 521 private key

HASH IN STRING(252) Data hash to be signed

from the MsgGen block.

SIG_R OUT STRING(252) ECDSA P-521 signature,

R component.

SIG_S OUT STRING(252) ECDSA P-521 signature,

S component.

STATUS OUT INT Status of the computation

Figure 14. SigGen Input / Output Structure

5.1.5. SigVerify

The SigVerify block is used to verify that the validity of a

digital signature by the receiving agent. The receiving agent

first uses the MsgGen block to generate the same hash that

the original sender generated, and then uses the public key of

the sender along with the signature to determine if the

signature and the hash match. Figures 15 and 16 below

define the details of the SigGen block.

The SigVerify block is also used in the prototype system

on the sender side to ensure a signature is properly generated

before transmission. As the design matures it is believed

that this usage of the block can be eliminated, reducing

system overhead and improving communications results.

Figure 15. SigVerify Block

Variable Name I/O Type Description

PUBLIC_KEY IN STRING(252) ECC 521 public key

HASH IN STRING(252) Data hash to be verified

from the MsgGen block.

SIG_R IN STRING(252) ECDSA P-521 signature,

R component.

SIG_S IN STRING(252) ECDSA P-521 signature,

S component.

STATUS OUT INT Status of the computation

Figure 16. SigGen Input / Output Structure

5.2. LADDER LOGIC WALKTHROUGH

For the prototype system, the ladder logic for each of the

four SoftPLC agents is structured identically, and execution

of the logic commences in the following order:

1. ECDSA_D#_I – process digital signatures for

incoming data transmissions, including the validation

of new public keys sent to the SoftPLC

2. MAIN – general logic such as determining current

date, setting ALWAYS_ON and ALWAYS_OFF bits,

and incrementing the counter value received during

ECDSA_D#_I

3. SIM_BOOL and SIM_REAL – generic simulation

routines that fill the place for where actual PLC logic

would normally occur

4. ECDSA_KeyCntrl – controls the generation and

validation of the SoftPLC’s own private / public key

pair

5. ECDSA_Q – generates digital signatures for the

outgoing data transmissions

6. RESULTS AND FUTURE WORK

The prototype implementation was run on both test

strings for periods ranging from several days to several

weeks. COUNT values, reflecting the number of

completed message transmissions (including both the

signature generation and signature verification

components) ranged from 10,000 to 4 million. In all

scenarios the timing results were independent of the

count length for values over 10,000. Test String 1 gave

an average time of 26-28ms with PLC scan times of

22-24 ms. Test string 2 gave an average time of 55-

60ms with PLC scan times of 55-60 ms. As expected,

timing of the completed transmission is linearly related

to PLC scan time.

Values under 10,000 counts gave slightly higher

results (1-5 ms increase). During the first scan of the

PLCs when the system is initializing there is an

additional load on the system to establish TCP

communications resulting in an increased scan time

and transmission time for that cycle. For low COUNT

values this initial time has a stronger effect on the

average. As a result, for approximately the first 10

minutes of system runtime the average transmission

time gradually decreased until the system settled at the

values stated above.

7. CONCLUSION

It is believed that the timing results are the worst

case scenario given that no real-time modifications

 Page 9 of 9

were added to the operating system (which would be

untypical for a SoftPLC control system). Since the

entire timing cycle is in the order of tens of

milliseconds (as opposed to seconds as published by

[2]) future development of a fully IEC 61131-3

compliant prototype is justified.

REFERENCES

[1] Fischer, K., “Control System Data Authentication

and Verification Using Elliptic Curve Digital

Signature Algorithm.” Presented at ASNE

Intelligent Ships Symposium X, May 22-23, 2013,

Philadelphia, PA.

[2] Jansma, N., Arrendondo, B. (2004). “Performance

Comparison of Elliptic Curve and RSA Digital

Signatures.”

(http://nicj.net/files/performance_comparison_of_

elliptic_curve_and_rsa_digital_signatures.pdf)

Accessed: 12
th
 July 2012

[3] OpenSSL. http://www.openssl.org/ Accessed: 24

February 2014

ACKNOWLEDGEMENTS

The author would like to thank Dr. Richard Perry,

Villanova Unversity, Associate Professor of Electrical

and Computer Engineering, for his support, technical

review, and mentorship in this work.

The author would like to thank Stefan Mizera,

Rockwell Automation Canada – ISaGRAF, for his

company’s support in providing free ISaGRAF licenses

and technical support for this work.

Kenneth A. Fischer, received a BS in Chemical

Engineering from the University of Delaware and is

pursuing an MS in Computer Engineering from

Villanova University. Mr. Fischer has over 10 years of

automation and controls experience in pharmaceutical,

power generation, food and beverage, specialty

chemical, and naval applications. He is currently

employed with NSWCCD-SSES Code 955 providing

engineering support to the INLS, ENFMC, LCS, and

DDG1000 programs.

“The views expressed herein are the personal opinions

of the author and are not necessarily the official views

of the Department of Defense or any military

department thereof.”

 Page A.1 of 21

APPENDIX A – C SOURCE CODE SAMPLE

*NOTE: Only the parts of the C Source Code written by the author are included in this Appendix. Auto-

generated code from TD Build will not be included. Also note that header files not included indicate that the

file is completely the result of auto-generated code. Presence of auto-generated code in the source files below

will be indicated by the tag ---autocode---.

A.1 - MsgGen

/**

File: msggen.c

Author: kfischer

Creation date: 05/11/2013 - 19:52

POU name: MsgGen
***/

---autocode---

//START OF CUSTOM CODE HEADERS

#include <debug.h>
#include <stdio.h>

#include <stdlib.h>

#include <openssl/sha.h> //for SHA512

//END OF CUSTOM CODE HEADERS

---autocode---

 //START OF CUSTOM CODE

 //--Declarations

 /*debug variables*/

 #if ISaDEBUG

 FILE *fp;

 #endif

 /*string and hash variables*/
 #define P_PTR_HASH_I_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA->hash_i))+2)

 #define P_PTR_STRING_I_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA-

>string))+2)

 unsigned char digest[SHA512_DIGEST_LENGTH];

 char mdString[SHA512_DIGEST_LENGTH*2+1];

 char *hash_Q;
 const char *string;

 char *tstring;

 char str[STRLEN];

 char tstr[STRLEN/4];

 int i;

 /*base64 variables*/

 //--Logic

 /*STEP 0 - Initialization*/

 P_STATUS = 0;

 Page A.2 of 21

 memset(digest,0,SHA512_DIGEST_LENGTH);

 memset(mdString,0,SHA512_DIGEST_LENGTH*2+1);

 memset(str,0,STRLEN);
 memset(tstr,0,STRLEN/4);

 hash_Q = mdString;

 string = str;
 tstring = tstr;

 /*STEP 1 - build string for hashing*/

 strcpy(str, "DATE=");
 sprintf(tstring,"%u,",P_DATE);

 strcat(str,tstring);

 strcat(str, "TIME=");

 sprintf(tstring,"%u,",P_TIME);

 strcat(str,tstring);

 strcat(str, "HASH_I=");

 sprintf(tstring,"%s,",P_PTR_HASH_I_DATA);
 strcat(str,tstring);

 strcat(str,"P_B1=");

 sprintf(tstring,"%s,", (P_B1)?"TRUE":"FALSE");

 strcat(str,tstring);

 strcat(str,"P_B2=");
 sprintf(tstring,"%s,", (P_B2)?"TRUE":"FALSE");

 strcat(str,tstring);

 strcat(str,"P_B3=");

 sprintf(tstring,"%s,", (P_B3)?"TRUE":"FALSE");

 strcat(str,tstring);

 strcat(str,"P_B4=");

 sprintf(tstring,"%s,", (P_B4)?"TRUE":"FALSE");

 strcat(str,tstring);

 strcat(str,"P_B5=");

 sprintf(tstring,"%s,", (P_B5)?"TRUE":"FALSE");

 strcat(str,tstring);

 strcat(str,"P_B6=");
 sprintf(tstring,"%s,", (P_B6)?"TRUE":"FALSE");

 strcat(str,tstring);

 strcat(str,"P_B7=");

 sprintf(tstring,"%s,", (P_B7)?"TRUE":"FALSE");

 strcat(str,tstring);

 strcat(str,"P_B8=");

 sprintf(tstring,"%s,", (P_B8)?"TRUE":"FALSE");

 strcat(str,tstring);

 strcat(str,"P_I1=");

 sprintf(tstring,"%d,",P_I1);

 strcat(str,tstring);

 strcat(str,"P_I2=");

 sprintf(tstring,"%d,",P_I2);

 Page A.3 of 21

 strcat(str,tstring);

 strcat(str,"P_I3=");
 sprintf(tstring,"%d,",P_I3);

 strcat(str,tstring);

 strcat(str,"P_I4=");

 sprintf(tstring,"%d,",P_I4);

 strcat(str,tstring);

 strcat(str,"P_R1=");

 sprintf(tstring,"%f,",P_R1);

 strcat(str,tstring);

 strcat(str,"P_R2=");

 sprintf(tstring,"%f,",P_R2);

 strcat(str,tstring);

 strcat(str,"P_R3=");
 sprintf(tstring,"%f,",P_R3);

 strcat(str,tstring);

 strcat(str,"P_R4=");

 sprintf(tstring,"%f,",P_R4);

 strcat(str,tstring);

 strcat(str, "P_STRING = ");

 sprintf(tstring,"%s,",P_PTR_STRING_I_DATA);

 strcat(str,tstring);

 if (NULL == str)

 {

 P_STATUS = -1; /*failed to create string*/
 }

 else

 {
 /*STEP 2 - hash string*/

 SHA512_CTX ctx;

 SHA512_Init(&ctx);

 SHA512_Update(&ctx, string, strlen(string));

 SHA512_Final(digest, &ctx);

 for(i = 0; i < SHA512_DIGEST_LENGTH; i++)

 {

 sprintf(&mdString[i*2], "%02x", (unsigned int)digest[i]);

 }

 if (NULL == mdString)

 {
 P_STATUS = -2; /*failed to create hash*/

 }

 else

 {

 /*STEP 3 - output result*/

 strcpy(P_HASH_Q,hash_Q);

 HASH_Q_MAXLEN = 128;
 HASH_Q_CURLEN = 128;

 P_STATUS = 1;

 }

 Page A.4 of 21

 }

 /*debug logic*/

 #if ISaDEBUG
 fp = fopen("debug-message.txt", "w");

 if (fp == NULL) {

 P_STATUS = 666;

 exit(0);
 }

 fprintf(fp, "string = %s\n", string);
 fprintf(fp, "digest = %s\n", digest);

 fprintf(fp, "mdString = %s\n", mdString);

 fprintf(fp, "\n\nDATE = %u\n", P_DATE);

 fprintf(fp, "HASH_I = %s\n", P_PTR_HASH_I_DATA);
 fprintf(fp, "BOOL1 = %s\n", (P_B1)?"TRUE":"FALSE");

 fprintf(fp, "BOOL2 = %s\n", (P_B2)?"TRUE":"FALSE");

 fprintf(fp, "BOOL3 = %s\n", (P_B3)?"TRUE":"FALSE");

 fprintf(fp, "BOOL4 = %s\n", (P_B4)?"TRUE":"FALSE");

 fprintf(fp, "BOOL5 = %s\n", (P_B5)?"TRUE":"FALSE");

 fprintf(fp, "BOOL6 = %s\n", (P_B6)?"TRUE":"FALSE");

 fprintf(fp, "BOOL7 = %s\n", (P_B7)?"TRUE":"FALSE");
 fprintf(fp, "BOOL8 = %s\n", (P_B8)?"TRUE":"FALSE");

 fprintf(fp, "INT1 = %i\n", P_I1);

 fprintf(fp, "INT2 = %i\n", P_I2);
 fprintf(fp, "INT3 = %i\n", P_I3);

 fprintf(fp, "INT4 = %i\n", P_I4);

 fprintf(fp, "REAL1 = %f\n", P_R1);

 fprintf(fp, "REAL2 = %f\n", P_R2);
 fprintf(fp, "REAL3 = %f\n", P_R3);

 fprintf(fp, "REAL4 = %f\n", P_R4);

 fclose(fp);

 #endif

 //END OF CUSTOM CODE

}

/* eof **/

 Page A.5 of 21

A.2 – KeyGen

/**

File: keygen.c
Author: kfischer

Creation date: 15/06/2013 - 20:02

POU name: KeyGen

***/

---autocode---

//START OF CUSTOM CODE HEADERS

#include <debug.h>

#include <stdio.h>
#include <stdlib.h>

#include <openssl/ec.h> // for EC_GROUP_new_by_curve_name, EC_GROUP_free,

EC_KEY_new, EC_KEY_set_group, EC_KEY_generate_key, EC_KEY_free

#include <openssl/obj_mac.h> // for NID_secp384r1
#include <openssl/bn.h> // for BIGNUM conversions

#include <openssl/bio.h>

#include <openssl/evp.h> // for base64 conversions
#include <openssl/buffer.h>

#include <math.h>

#include <base64.h> // for base64 conversions

//END OF CUSTOM CODE HEADERS

---autocode---

 //START OF CUSTOM CODE

 //--Declarations

 /*debug variables*/
 #if ISaDEBUG

 FILE *fp;

 FILE *fpa;
 FILE *fpb;

 int i,j;

 #endif

 /*status variables*/

 const int set_group_success = 1;

 const int gen_success = 1;

 int set_group_status;

 int gen_status;

 /*key and base 64 variables*/

 const BIGNUM *PrivateKeyBN;

 BIGNUM *PublicKeyBN;

 const EC_POINT *PublicKeyPoint;

 EC_KEY *eckey;

 EC_GROUP *ecgroup;

 unsigned char *PublicKeyBinaryUnsigned, PublicKeyBinaryUnsignedArray[250];

 unsigned char *PrivateKeyBinaryUnsigned, PrivateKeyBinaryUnsignedArray[250];

 int encodedSize;

 Page A.6 of 21

 char *buffer, BufferArray[250];

 unsigned char *PrivateKeyBase64, PrivateKeyBase64Array[250];

 int encodedSize_b;

 char *buffer_b, BufferArray_b[250];

 unsigned char *PublicKeyBase64, PublicKeyBase64Array[250];

 //--Logic

 /*STEP 0 - Initialization*/

 P_STATUS = 0;

 memset(PrivateKeyBinaryUnsignedArray,0,250);

 PrivateKeyBinaryUnsigned = PrivateKeyBinaryUnsignedArray;

 memset(PublicKeyBinaryUnsignedArray,0,250);

 PublicKeyBinaryUnsigned = PublicKeyBinaryUnsignedArray;

 memset(PrivateKeyBase64Array,0,250);

 PrivateKeyBase64 = PrivateKeyBase64Array;

 memset(PublicKeyBase64Array,0,250);

 PublicKeyBase64 = PublicKeyBase64Array;

 memset(BufferArray,0,250);
 buffer = BufferArray;

 memset(BufferArray_b,0,250);

 buffer_b = BufferArray_b;

 /*STEP 1 - create key object*/

 eckey=EC_KEY_new();

 if (NULL == eckey)
 {

 P_STATUS = -1; /*failed to create key object*/

 }
 else

 {

 /*STEP 2 - create EC_GROUP object*/

 //ecgroup = EC_GROUP_new_by_curve_name(NID_secp384r1); --worked for 384

ECDSA, will want to come back and add an option to turn this on and off

 ecgroup = EC_GROUP_new_by_curve_name(NID_secp521r1);
 if (NULL == ecgroup)

 {

 P_STATUS = -2; /*failed to create new EC Group*/

 }

 else

 {

 /*STEP 3 - associate key with group*/
 set_group_status = EC_KEY_set_group(eckey,ecgroup);

 if (set_group_success != set_group_status)

 {

 P_STATUS = -3; /*failed to associate key with group*/

 }

 else

 {
 /*STEP 4 - create PRIVATE and PUBLIC keys*/

 gen_status = EC_KEY_generate_key(eckey);

 if (gen_success != gen_status)

 Page A.7 of 21

 {

 P_STATUS = -4; /*failed to generate EC Key*/

 }
 else

 {

 /*STEP 5 - extract PRIVATE keys*/
 PrivateKeyBN = EC_KEY_get0_private_key(eckey);

 if (PrivateKeyBN == NULL)

 {

 P_STATUS = -5; /*failed to extract PRIVATE
key*/

 }

 else
 {

 /*STEP 6 - extract PUBLIC KEY*/

 PublicKeyPoint =

EC_KEY_get0_public_key(eckey);

 if (PublicKeyPoint == NULL)

 {
 P_STATUS = -6; /*failed to extract

PUBLIC key*/

 }

 else

 {

 /*STEP 7a - Private Key convert from

BN to binary and then encode as base64*/

 BN_bn2bin(PrivateKeyBN,PrivateKeyBinaryUnsigned);
 encodedSize =

EVP_EncodeBlock(PrivateKeyBase64,PrivateKeyBinaryUnsigned,89);

 /*STEP 7b - Public Key convert from
Point to BN to binary and then encode as base64*/

 PublicKeyBN = BN_new();

 EC_POINT_point2bn(ecgroup,PublicKeyPoint,POINT_CONVERSION_UNCOMPRESSED,PublicKe

yBN,NULL);

 BN_bn2bin(PublicKeyBN,PublicKeyBinaryUnsigned);

 encodedSize_b =
EVP_EncodeBlock(PublicKeyBase64,PublicKeyBinaryUnsigned,179);

 /*STEP 7c - set outputs*/

 buffer = (char*) PrivateKeyBase64;
 buffer_b = (char*) PublicKeyBase64;

 strcpy(P_PRIVATE_KEY_BUFADD, buffer);

 PRIVATE_KEY_MAXLEN = 250;

 PRIVATE_KEY_CURLEN = encodedSize;

 strcpy(P_PUBLIC_KEY_BUFADD, buffer_b);

 PUBLIC_KEY_MAXLEN = 250;

 PUBLIC_KEY_CURLEN = encodedSize_b;

 Page A.8 of 21

 P_STATUS = 1; /*success*/

/*debug logic*/
#if ISaDEBUG

 fpb = fopen("debug-keygen-BIGNUM.txt", "w");

 fprintf(fpb, "PublicKeyBigNumber = ");
 BN_print_fp(fpb, PublicKeyBN);

 fprintf(fpb, " \n");

 fprintf(fpb, " \n");

 fprintf(fpb, "PrivateKeyBigNumber = ");
 BN_print_fp(fpb, PrivateKeyBN);

 fclose(fpb);

 fp = fopen("debug-keygen-Private.txt", "w");

 fprintf(fp, "hello world\n");

 fprintf(fp,"encodedSize = %i\n", encodedSize);

 fprintf(fp,"encodedSize_b = %i\n", encodedSize_b);

 fprintf(fp,"array dump = ");

 for (i = 0; i<250; i++)
 {

 fprintf(fp, "%c", PrivateKeyBinaryUnsignedArray[i]);

 }

 fprintf(fp, " \n");

 fprintf(fp,"PrivateKeyBinaryUnsigned = %s\n", PrivateKeyBinaryUnsigned);

 fprintf(fp,"PrivateKeyBase64 = %s\n", PrivateKeyBase64);

 fprintf(fp,"buffer = %s\n", buffer);
 fclose(fp);

#endif

 }
 }

 }

 }

 }
 }

 //END OF CUSTOM CODE

}

/* eof **/

 Page A.9 of 21

A.3 – KeyVerify

/**
File: keyverify.c

Author: kfischer

Creation date: 15/06/2013 - 13:53
POU name: KeyVerify

***/

---autocode---

//START OF CUSTOM CODE HEADERS

#include <debug.h>
#include <stdio.h>

#include <stdlib.h>

#include <openssl/ec.h> // for EC_GROUP_new_by_curve_name, EC_GROUP_free,

EC_KEY_new, EC_KEY_set_group, EC_KEY_generate_key, EC_KEY_free

#include <openssl/ecdsa.h> // for ECDSA_do_sign, ECDSA_do_verify

#include <openssl/obj_mac.h> // for NID_secp384r1

#include <openssl/bn.h> // for BIGNUM conversions
#include <openssl/bio.h>

#include <openssl/evp.h>

#include <openssl/buffer.h>

#include <math.h>

#include <base64.h> // for base64 conversions

//END OF CUSTOM CODE HEADERS

---autocode---

 //START OF CUSTOM CODE

 //--Declarations

 /*debug variables*/

 #if ISaDEBUG
 FILE *fp;

 FILE *fpa;

 FILE *fpb;

 int i, j;

 #endif

 /*status variables*/

 #define P_PTR_PUBLIC_KEY_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA-

>public_key))+2)

 #define P_PTR_PRIVATE_KEY_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA-

>private_key))+2)

 const int set_group_success = 1;
 const int gen_success = 1;

 const int set_public_success = 1;

 const int set_private_success = 1;

 const int verify_success = 1;

 int set_group_status;

 int set_public_status;
 int set_private_status;

 Page A.10 of 21

 int verify_status;

 unsigned char hash[] = "c7fbca202a95a570285e3d700eb04ca2";

 /*base64 variables*/

 EC_KEY *eckey;
 EC_GROUP *ecgroup;

 EC_POINT *PublicKeyPoint;

 BIGNUM *PrivateKeyBN;

 BIGNUM *PublicKeyBN;
 ECDSA_SIG *signature;

 unsigned char *buffer;
 unsigned char *buffer_b;

 unsigned char *PublicKeyBinaryUnsigned, PublicKeyBinaryUnsignedArray[250];

 unsigned char *PrivateKeyBinaryUnsigned, PrivateKeyBinaryUnsignedArray[250];

 const unsigned char *PublicKeyBinaryConst;
 const unsigned char *PrivateKeyBinaryConst;

 //--Logic

 P_STATUS = 0;

 memset(PrivateKeyBinaryUnsignedArray,0,250);

 PrivateKeyBinaryUnsigned = PrivateKeyBinaryUnsignedArray;

 memset(PublicKeyBinaryUnsignedArray,0,250);

 PublicKeyBinaryUnsigned = PublicKeyBinaryUnsignedArray;

 /*STEP 1 - create key object*/

 eckey=EC_KEY_new();

 if (NULL == eckey)
 {

 P_STATUS = -1; /*failed to create key object*/

 }

 else

 {

 /*STEP 2 - create EC_GROUP object*/
 ecgroup = EC_GROUP_new_by_curve_name(NID_secp521r1);

 if (NULL == ecgroup)

 {

 P_STATUS = -2; /*failed to create new EC Group*/

 }

 else

 {
 /*STEP 3 - associate key with group*/

 set_group_status = EC_KEY_set_group(eckey,ecgroup);

 if (set_group_success != set_group_status)

 {

 P_STATUS = -3; /*failed to associate key with group*/

 }

 else
 {

 /*STEP 4 - set public key*/

 PublicKeyPoint = EC_POINT_new(ecgroup);

 Page A.11 of 21

 PublicKeyBN = BN_new();

 buffer_b = (unsigned char*) P_PTR_PUBLIC_KEY_DATA;

 EVP_DecodeBlock(PublicKeyBinaryUnsigned,buffer_b,240);

 PublicKeyBinaryConst = (const unsigned char*)

PublicKeyBinaryUnsigned;

 BN_bin2bn(PublicKeyBinaryConst,133,PublicKeyBN);

 EC_POINT_bn2point(ecgroup,PublicKeyBN,PublicKeyPoint,NULL);

 set_public_status =

EC_KEY_set_public_key(eckey,PublicKeyPoint);

 if (set_public_success != set_public_status)

 {
 P_STATUS = -4; /*failed to set public key*/

 }

 else

 {

 /*STEP 5 - set private key*/

 PrivateKeyBN = BN_new();

 buffer = (unsigned char*) P_PTR_PRIVATE_KEY_DATA;

 EVP_DecodeBlock(PrivateKeyBinaryUnsigned,buffer,120);

 PrivateKeyBinaryConst = (const unsigned char*)
PrivateKeyBinaryUnsigned;

/*521 ECDSA is unique due to the extra bit resulting in a length of 65.125 bytes,

which means that when converting from bin to bn we will alternatively be converting 66
or 65 bytes depending on if the extra bit is a 1 or not. The presence of the

extra bit is encoded in the in the first base64 characters. The byte 0000 0001 will be

broken in base64 to a pair of 0000000 and 1XXXXXX, which will result in the key having
a leading A character representing the 0000000. However, the byte 0000 0000 will not

be encoded at all, which will result in the key not having a leading A. Detection of

the leading A is therefore critical to properly convert the bin to BN.*/

 if (P_PTR_PRIVATE_KEY_DATA[0] == 'A')

 {

 BN_bin2bn(PrivateKeyBinaryConst,66,PrivateKeyBN);

 }

 else

 {

 BN_bin2bn(PrivateKeyBinaryConst,65,PrivateKeyBN);
 }

 set_private_status =

EC_KEY_set_private_key(eckey,PrivateKeyBN);

 if (set_private_success != set_private_status)

 {

 P_STATUS = -5; /*failed to set private key*/
 }

 else

 {

 Page A.12 of 21

 /*STEP 6 - create signature on dummy hash*/

 signature = ECDSA_do_sign(hash,32,eckey);

 if (NULL == signature)
 {

 P_STATUS = -6; /*failed to generate

signature*/
 }

 else

 {

 /*STEP 7 - verify signature*/
 verify_status =

ECDSA_do_verify(hash,32,signature,eckey);

 if (verify_success != verify_status)
 {

 P_STATUS = -7; /*verification

failed*/

 }

 else

 {
 P_STATUS = 1; /*keys verified*/

 }

 }

 }

 }

 }

 }
 }

 /*CLEANUP - Release memory structures to prevent memory leaks*/
 EC_KEY_free(eckey); /*frees EC_KEY memory allocation*/

 EC_GROUP_clear_free(ecgroup); /*destroys any sensitive data in the group and

then frees the memory*/

 EC_POINT_free(PublicKeyPoint); /*frees EC_POINT memory allocation*/
 BN_clear_free(PrivateKeyBN); /*overwrites the BN before returning memory to

the system*/

 BN_clear_free(PublicKeyBN);
 ECDSA_SIG_free(signature); /*frees ECDSA_SIG memory allocation*/

/*debug logic*/

#if ISaDEBUG

 fpa = fopen("debug-keyverify-public.txt", "w");
 fprintf(fpa, "hello world \n");

 fprintf(fpa, "P_PTR_PUBLIC_KEY_DATA = %s\n", P_PTR_PUBLIC_KEY_DATA);

 fprintf(fpa, " \n");

 fprintf(fpa, " \n");

 fprintf(fpa, "Public Key Array dump = ");

 for (j = 0; j<250; j++)

 {
 fprintf(fpa, "%c", PublicKeyBinaryUnsignedArray[j]);

 }

 fprintf(fpa, " \n");

 fprintf(fpa, " \n");

 fclose(fpa);

 fp = fopen("debug-keyverify-private.txt", "w");
 fprintf(fp, "hello world\n");

 fprintf(fp, "P_PTR_PRIVATE_KEY_DATA = %s\n", P_PTR_PRIVATE_KEY_DATA);

 fprintf(fp, "P_PTR_PRIVATE_KEY_DATA[0] = %c\n", P_PTR_PRIVATE_KEY_DATA[0]);

 Page A.13 of 21

 fprintf(fp, "Private Key Array dump = ");

 for (i = 0; i<250; i++)

 {
 fprintf(fp, "%c", PrivateKeyBinaryUnsignedArray[i]);

 }

 fprintf(fp, " \n");
 fclose(fp);

 fpb = fopen("debug-keyverify-BIGNUM.txt", "w");
 fprintf(fpb, "PublicKeyBigNumber = ");

 BN_print_fp(fpb, PublicKeyBN);

 fprintf(fpb, " \n");
 fprintf(fpb, " \n");

 fprintf(fpb, "PrivateKeyBigNumber = ");

 BN_print_fp(fpb, PrivateKeyBN);

 fprintf(fpb, " \n");

 fprintf(fpb, " \n");

 fprintf(fpb, "bnlen = %i\n", bnlen);
 fclose(fpb);

#endif

 //END OF CUSTOM CODE

}

/* eof **/

 Page A.14 of 21

A.4 – SigGen

/**
File: siggen.c

Author: kfischer

Creation date: 10/07/2013 - 22:27
POU name: SigGen

***/

---autocode---

//START OF CUSTOM CODE HEADERS

#include <debug.h>
#include <stdio.h>

#include <stdlib.h>

#include <openssl/ec.h> // for EC_GROUP_new_by_curve_name, EC_GROUP_free,

EC_KEY_new, EC_KEY_set_group, EC_KEY_generate_key, EC_KEY_free

#include <openssl/ecdsa.h> // for ECDSA_do_sign, ECDSA_do_verify

#include <openssl/obj_mac.h> // for NID_secp384r1
#include <openssl/bn.h> // for BIGNUM conversions

#include <openssl/bio.h>

#include <openssl/evp.h>
#include <openssl/buffer.h>

#include <math.h>

#include <base64.h> // for base64 conversions

//END OF CUSTOM CODE HEADERS

---autocode---

 //START OF CUSTOM CODE

 //--Declarations

 /*debug variables*/

 #if ISaDEBUG

 FILE *fp;

 int i;

 #endif

 /*status variables*/

 #define P_PTR_PRIVATE_KEY_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA-

>private_key))+2)

 #define P_PTR_HASH_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA->hash))+2)

 const int set_group_success = 1;

 const int gen_success = 1;

 const int set_public_success = 1;
 const int set_private_success = 1;

 const int verify_success = 1;

 int set_group_status;

 int set_private_status;

 unsigned char hash[128];

 Page A.15 of 21

 /*EC Variables*/

 EC_KEY *eckey;

 EC_GROUP *ecgroup;
 ECDSA_SIG *signature;

 /*base64 variables for decomposing private key*/
 BIGNUM *PrivateKeyBN;

 unsigned char *buffer;

 unsigned char *PrivateKeyBinaryUnsigned, PrivateKeyBinaryUnsignedArray[250];

 const unsigned char *PrivateKeyBinaryConst;

 /*base64 variables for encoding SIG_R and SIG_S*/

 int SIG_R_EncodedSize;

 unsigned char *SIG_R_BinaryUnsigned, SIG_R_BinaryUnsignedArray[250];

 unsigned char *SIG_R_Base64, SIG_R_Base64Array[250];

 int SIG_S_EncodedSize;

 unsigned char *SIG_S_BinaryUnsigned, SIG_S_BinaryUnsignedArray[250];

 unsigned char *SIG_S_Base64, SIG_S_Base64Array[250];

 char *SIG_R_Buffer, SIG_R_BufferArray[250];

 char *SIG_S_Buffer, SIG_S_BufferArray[250];

 //--Logic

 /*STEP 0 - Initialization*/
 P_STATUS = 0;

 memcpy(hash,P_PTR_HASH_DATA,128);

 memset(PrivateKeyBinaryUnsignedArray,0,250);

 PrivateKeyBinaryUnsigned = PrivateKeyBinaryUnsignedArray;

 memset(SIG_R_BinaryUnsignedArray,0,250);

 SIG_R_BinaryUnsigned = SIG_R_BinaryUnsignedArray;

 memset(SIG_R_Base64Array,0,250);
 SIG_R_Base64 = SIG_R_Base64Array;

 memset(SIG_R_BufferArray,0,250);

 SIG_R_Buffer = SIG_R_BufferArray;

 memset(SIG_S_BinaryUnsignedArray,0,250);

 SIG_S_BinaryUnsigned = SIG_S_BinaryUnsignedArray;
 memset(SIG_S_Base64Array,0,250);

 SIG_S_Base64 = SIG_S_Base64Array;

 memset(SIG_S_BufferArray,0,250);

 SIG_S_Buffer = SIG_S_BufferArray;

 /*STEP 1 - create key object*/

 eckey=EC_KEY_new();
 if (NULL == eckey)

 {

 P_STATUS = -1; /*failed to create key object*/

 }

 else

 {

 /*STEP 2 - create EC_GROUP object*/
 ecgroup = EC_GROUP_new_by_curve_name(NID_secp521r1);

 if (NULL == ecgroup)

 {

 Page A.16 of 21

 P_STATUS = -2; /*failed to create new EC Group*/

 }

 else
 {

 /*STEP 3 - associate key with group*/

 set_group_status = EC_KEY_set_group(eckey,ecgroup);
 if (set_group_success != set_group_status)

 {

 P_STATUS = -3; /*failed to associate key with group*/

 }
 else

 {

 /*STEP 4 - set private key*/
 PrivateKeyBN = BN_new();

 buffer = (unsigned char*) P_PTR_PRIVATE_KEY_DATA;

 EVP_DecodeBlock(PrivateKeyBinaryUnsigned,buffer,120);

 PrivateKeyBinaryConst = (const unsigned char*)
PrivateKeyBinaryUnsigned;

/*521 ECDSA is unique due to the extra bit resulting in a length of 65.125 bytes,

which means that when converting from bin to bn we will alternatively be converting 66

or 65 bytes depending on if the extra bit is a 1 or not. The presence of the

extra bit is encoded in the in the first base64 characters. The byte 0000 0001 will be

broken in base64 to a pair of 0000000 and 1XXXXXX, which will result in the key having
a leading A character representing the 0000000. However, the byte 0000 0000 will not

be encoded at all, which will result in the key not having a leading A. Detection of

the leading A is therefore critical to properly convert the bin to BN.*/

 if (P_PTR_PRIVATE_KEY_DATA[0] == 'A')

 {

 BN_bin2bn(PrivateKeyBinaryConst,66,PrivateKeyBN);
 }

 else

 {
 BN_bin2bn(PrivateKeyBinaryConst,65,PrivateKeyBN);

 }

 set_private_status =

EC_KEY_set_private_key(eckey,PrivateKeyBN);

 if (set_private_success != set_private_status)
 {

 P_STATUS = -4; /*failed to set private key*/

 }

 else

 {

 /*STEP 5 - create signature on dummy hash*/

 signature = ECDSA_do_sign(hash,128,eckey);
 if (NULL == signature)

 {

 P_STATUS = -5; /*failed to generate

signature*/

 }

 else

 {
 /*STEP 6 - base64 encode SIG_R and SIG_S and

output result*/

 Page A.17 of 21

 BN_bn2bin(signature->r,SIG_R_BinaryUnsigned);

 SIG_R_EncodedSize =

EVP_EncodeBlock(SIG_R_Base64,SIG_R_BinaryUnsigned,89);

 BN_bn2bin(signature->s,SIG_S_BinaryUnsigned);

 SIG_S_EncodedSize =
EVP_EncodeBlock(SIG_S_Base64,SIG_S_BinaryUnsigned,89);

 SIG_R_Buffer = (char *) SIG_R_Base64;

 SIG_S_Buffer = (char *) SIG_S_Base64;

 strcpy(P_SIG_R_BUFADD,SIG_R_Buffer);

 SIG_R_MAXLEN = 250;
 SIG_R_CURLEN = SIG_R_EncodedSize;

 strcpy(P_SIG_S_BUFADD,SIG_S_Buffer);

 SIG_S_MAXLEN = 250;

 SIG_S_CURLEN = SIG_S_EncodedSize;

 P_STATUS = 1; /*success*/

 }

 }

 }

 }

 }

 ///*CLEANUP - Release memory structures to prevent memory leaks*/

 EC_KEY_free(eckey); /*frees EC_KEY memory allocation*/

 EC_GROUP_clear_free(ecgroup); /*destroys any sensitive data in the group and
then frees the memory*/

 BN_clear_free(PrivateKeyBN); /*overwrites the BN before returning memory to

the system*/

 ECDSA_SIG_free(signature); /*frees ECDSA_SIG memory allocation*/

/*debug logic*/
#if ISaDEBUG

 fp = fopen("debug-siggen.txt", "w");

 fprintf(fp, "hello world\n");

 fprintf(fp, " \n");

 fprintf(fp, "PrivateKeyBigNumber = ");

 BN_print_fp(fp, PrivateKeyBN);
 fprintf(fp, " \n");

 fprintf(fp, "signature->r = ");

 BN_print_fp(fp, signature->r);

 fprintf(fp, " \n");

 fprintf(fp, "signature->s = ");

 BN_print_fp(fp, signature->s);

 fprintf(fp, " \n");
 fclose(fp);

#endif

 //END OF CUSTOM CODE

}

/* eof **/

 Page A.18 of 21

A.5 – SigVerify

/**

File: sigverify.c

Author: kfischer
Creation date: 12/07/2013 - 18:52

POU name: SigVerify

***/

---autocode---

//START OF CUSTOM CODE HEADERS
#include <debug.h>

#include <stdio.h>

#include <stdlib.h>
#include <openssl/ec.h> // for EC_GROUP_new_by_curve_name, EC_GROUP_free,

EC_KEY_new, EC_KEY_set_group, EC_KEY_generate_key, EC_KEY_free

#include <openssl/ecdsa.h> // for ECDSA_do_sign, ECDSA_do_verify

#include <openssl/obj_mac.h> // for NID_secp384r1
#include <openssl/bn.h> // for BIGNUM conversions

#include <openssl/bio.h>

#include <openssl/evp.h>

#include <openssl/buffer.h>

#include <math.h>

#include <base64.h> // for base64 conversions

//END OF CUSTOM CODE HEADERS

---autocode---

 //START OF CUSTOM CODE

 //--Declarations

 /*debug variables*/
 #if ISaDEBUG

 FILE *fp;

 int i;

 #endif

 /*status variables*/

 #define P_PTR_PUBLIC_KEY_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA-
>public_key))+2)

 #define P_PTR_HASH_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA->hash))+2)

 #define P_PTR_SIG_R_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA->sig_r))+2)

 #define P_PTR_SIG_S_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA->sig_s))+2)

 const int set_group_success = 1;

 const int gen_success = 1;

 const int set_public_success = 1;

 const int set_private_success = 1;

 const int verify_success = 1;

 int set_group_status;

 int set_public_status;
 int verify_status;

 unsigned char hash[128];

 Page A.19 of 21

 /*EC Variables*/

 EC_KEY *eckey;

 EC_GROUP *ecgroup;
 EC_POINT *PublicKeyPoint;

 ECDSA_SIG *signature;

 /*base64 variables for decoding public key*/

 BIGNUM *PublicKeyBN;

 unsigned char *buffer;
 unsigned char *PublicKeyBinaryUnsigned, PublicKeyBinaryUnsignedArray[250];

 const unsigned char *PublicKeyBinaryConst;

 /*base64 variables for decoding SIG_R key*/

 BIGNUM *SIG_R_BN;

 unsigned char *SIG_R_buffer;

 unsigned char *SIG_R_BinaryUnsigned, SIG_R_BinaryUnsignedArray[250];

 const unsigned char *SIG_R_BinaryConst;

 /*base64 variables for decoding SIG_S key*/

 BIGNUM *SIG_S_BN;

 unsigned char *SIG_S_buffer;

 unsigned char *SIG_S_BinaryUnsigned, SIG_S_BinaryUnsignedArray[250];

 const unsigned char *SIG_S_BinaryConst;

 //--Logic
 P_STATUS = 0;

 memcpy(hash,P_PTR_HASH_DATA,128);

 memset(PublicKeyBinaryUnsignedArray,0,250);

 PublicKeyBinaryUnsigned = PublicKeyBinaryUnsignedArray;

 memset(SIG_R_BinaryUnsignedArray,0,250);

 SIG_R_BinaryUnsigned = SIG_R_BinaryUnsignedArray;

 memset(SIG_S_BinaryUnsignedArray,0,250);

 SIG_S_BinaryUnsigned = SIG_S_BinaryUnsignedArray;

 /*STEP 1 - create key object*/

 eckey=EC_KEY_new();

 if (NULL == eckey)
 {

 P_STATUS = -1; /*failed to create key object*/

 }

 else

 {

 /*STEP 2 - create EC_GROUP object*/

 ecgroup = EC_GROUP_new_by_curve_name(NID_secp521r1);
 if (NULL == ecgroup)

 {

 P_STATUS = -2; /*failed to create new EC Group*/

 }

 else

 {

 /*STEP 3 - associate key with group*/
 set_group_status = EC_KEY_set_group(eckey,ecgroup);

 if (set_group_success != set_group_status)

 {

 Page A.20 of 21

 P_STATUS = -3; /*failed to associate key with group*/

 }

 else
 {

 /*STEP 4 - set public key*/

 PublicKeyPoint = EC_POINT_new(ecgroup);
 PublicKeyBN = BN_new();

 buffer = (unsigned char*) P_PTR_PUBLIC_KEY_DATA;

 EVP_DecodeBlock(PublicKeyBinaryUnsigned,buffer,240);

 PublicKeyBinaryConst = (const unsigned char*)
PublicKeyBinaryUnsigned;

 BN_bin2bn(PublicKeyBinaryConst,133,PublicKeyBN);

 EC_POINT_bn2point(ecgroup,PublicKeyBN,PublicKeyPoint,NULL);

 set_public_status =

EC_KEY_set_public_key(eckey,PublicKeyPoint);

 if (set_public_success != set_public_status)

 {
 P_STATUS = -4; /*failed to set public key*/

 }

 else

 {

 /*STEP 5 - convert Base64 SIG_R and SIG_S into BN

and set signature values*/

 signature = ECDSA_SIG_new();

 SIG_R_BN = signature->r;

 SIG_S_BN = signature->s;

 SIG_R_buffer = (unsigned char*) P_PTR_SIG_R_DATA;

 EVP_DecodeBlock(SIG_R_BinaryUnsigned,SIG_R_buffer,120);
 SIG_R_BinaryConst = (const unsigned char*)

SIG_R_BinaryUnsigned;

 if (P_PTR_SIG_R_DATA[0] == 'A')
 {

 BN_bin2bn(SIG_R_BinaryConst,66,SIG_R_BN);

 }

 else

 {

 BN_bin2bn(SIG_R_BinaryConst,65,SIG_R_BN);
 }

 SIG_S_buffer = (unsigned char*) P_PTR_SIG_S_DATA;

 EVP_DecodeBlock(SIG_S_BinaryUnsigned,SIG_S_buffer,120);

 SIG_S_BinaryConst = (const unsigned char*)

SIG_S_BinaryUnsigned;
 if (P_PTR_SIG_S_DATA[0] == 'A')

 {

 BN_bin2bn(SIG_S_BinaryConst,66,SIG_S_BN);

 }

 else

 {

 BN_bin2bn(SIG_S_BinaryConst,65,SIG_S_BN);
 }

 if (NULL==signature)

 Page A.21 of 21

 {

 P_STATUS = -5;

 }
 else

 {

 /*STEP 6 - Verify Signature*/
 verify_status =

ECDSA_do_verify(hash,128,signature,eckey);

 if (verify_success != verify_status)

 {
 P_STATUS = -6; /*verification failed*/

 }

 else
 {

 P_STATUS = 1; /*signature verified*/

 }

 }

 }

 }
 }

 }

 /*CLEANUP - Release memory structures to prevent memory leaks*/

 EC_KEY_free(eckey); /*frees EC_KEY memory

allocation*/
 EC_GROUP_clear_free(ecgroup); /*destroys any sensitive data in the

group and then frees the memory*/

 EC_POINT_free(PublicKeyPoint); /*frees EC_POINT memory allocation*/
 BN_clear_free(PublicKeyBN); /*overwrites the BN before returning

memory to the system*/

 ECDSA_SIG_free(signature); /*frees ECDSA_SIG memory allocation*/

/*debug logic*/
#if ISaDEBUG

 fp = fopen("debug-sigverify.txt", "w");

 fprintf(fp, "hello world\n");

 fprintf(fp, " \n");

 fprintf(fp, "PublicKeyBigNumber = ");

 BN_print_fp(fp, PublicKeyBN);
 fprintf(fp, " \n");

 fprintf(fp, "signature->r = ");

 BN_print_fp(fp, signature->r);

 fprintf(fp, " \n");

 fprintf(fp, "signature->s = ");

 BN_print_fp(fp, signature->s);

 fprintf(fp, " \n");
 fclose(fp);

#endif

}

/* eof **/

 Page B.1 of 12

APPENDIX B – LADDER LOGIC CODE

B.1 – Solution Explorer

 Page B.2 of 12

B.2 – Bindings Sample

 Page B.3 of 12

B.3 – ECDSA_D4_I

 Page B.4 of 12

 Page B.5 of 12

 Page B.6 of 12

B.4 – MAIN

 Page B.7 of 12

Note: Rungs 8 and 9 are only used for the main routine of Device 1 to initialize the device

and to trap the number elapsed time and cycle counts. The other devices have a rung similar

to rung 8 but without the FS XIC latch.

 Page B.8 of 12

B.5 – SIM_BOOL

 Page B.9 of 12

B.6 – SIM_REAL

 Page B.10 of 12

B.7 – ECDSA_KeyCntrl

 Page B.11 of 12

 Page B.12 of 12

B.8 – ECDSA_Q

