
Control System Data Integrity using a Variable-round
Message Authentication Code with an Elliptic Curve Key
Exchange Protocol

By

Kenneth Alan Fischer

Control System Data Integrity using a Variable-round Message
Authentication Code with an Elliptic Curve Key Exchange

Protocol

By

Kenneth Alan Fischer

Dissertation
Submitted to Department of Electrical and Computer Engineering

College of Engineering
Villanova University

in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

In

Computer Engineering

November, 2017

Villanova, Pennsylvania

Page 1 of 188

Copyright © 2017 by Kenneth Alan Fischer

All Rights Reserved

Page 2 of 188

Control System Data Integrity using a Variable-round Message
Authentication Code with an Elliptic Curve Key Exchange

Protocol

By

Kenneth Alan Fischer

Approved:

Dr. Richard Perry
Associate Professor, Department of Electrical and Computer Engineering
Primary Advisor

Approved:
Dr. Bijan Mobasseri
Chair, Department of Electrical and Computer Engineering

Approved:
Dr. Gary A. Gabriele
Drosdick Endowed Dean of Engineering, College of Engineering

A copy of this dissertation is available for research purposes

At Falvey Memorial Library.

Page 3 of 188

 STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at Villanova University, and is deposited in the University Library to be

made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission,

provided that accurate acknowledgment of source is made. Requests for permission for

extended quotation from or reproduction of this manuscript in whole or in part may be

granted by the head of the major department or the Associate Dean for Graduate Studies

and Research of the College of Engineering when in his or her judgment the proposed use

of the material is in the interests of scholarship. In all other instances, however,

permission must be obtained from the author.

Page 4 of 188

 ACKNOWLEDGEMENTS

This dissertation is the result of my Ph.D studies at Villanova University, which took

place over a period of over 6 years while I worked full time at the Naval Surface Warfare

Center, Philadelphia Division (NSWCPD). First, I would like to thank my advisor, Dr.

Richard Perry and the members of my PhD committee for sharing their time, experience,

and wisdom during my research. I also thank my supervisors, subordinates, and

colleagues at NSWCPD, particularly within the Cybersecure Machinery Control Systems

and Networks Department, who took the time to listen to my ideas and share with me

their own insights and experiences in the field of Control System, Network, and

Cybersecurity Engineering. Particular thanks go out to Michael Iacovelli, Jeff Cohen,

and Paul Gucciardi for their mentorship, ideas, challenges, and assistance in testing the

implementation. I also want to thank the wonderful engineers at Rockwell Automation,

particularly Nick Yiantsos, for their assistance and loans of equipment and software.

I worked on this dissertation over a period of several years, often under severe stress

from working full time and trying to raise a family. I want to thank my parents, Alan and

Debi Marteney, my mentors Dr. Gary and Mindy Salkind, and again Dr. Perry for the

assistance and encouragement during some of the more “trying” moments. There were a

few times I definitely was about to crack under the pressure! I also want to thank Dr.

Anderson and Dr. Mastro in particular for some of their own “war stories” that they

shared. The humor that helped ease some of my own internal frustrations when I

struggled to figure something out.

 Lastly and most importantly, I would like to thank my wife, Ana Fischer, for all the

extra work she did in taking care of me and our four children while I pursued this work.

Page 5 of 188

There were many long nights where she would sit with me as I would stare at my white

board trying to solve some issue, or at a computer screen wondering why something

wasn’t working properly. Throughout this work she joked that she should be getting an

honorary degree for having to listen to me talk thru things out loud over the years. I’ve

lost count of the number of times she tried to stop the children from running around the

house causing all sorts of mayhem so I could focus. She usually failed, but with small

children you cannot expect much.

Page 6 of 188

 DEDICATION

I dedicate this dissertation to my children,

Whose insatiable curiosity in the world

Inspires me to learn daily

And to the men and women of our armed forces

Who deserve our best

As they defend us around the world

And finally to Congregation Beth Yeshua

For helping me to remember the things that truly matter in life

Page 7 of 188

TABLE OF CONTENTS

Section Page

STATEMENT BY AUTHOR ... 3

ACKNOWLEDGEMENTS .. 4

DEDICATION .. 6

TABLE OF CONTENTS .. 7

TABLE OF FIGURES .. 13

ABSTRACT .. 16

CHAPTER 1: INTRODUCTION .. 17

1.1 Overview .. 17

1.2 Background .. 19

1.3 Fundamental Objectives ... 22

1.3.1 NIST SGiP .. 23

1.4 Traditional Solutions for Information / Corporate Systems 25

1.4.1 Symmetric-key Cryptography ... 26

1.4.2 Public-key Cryptography .. 27

1.5 Industry Solutions .. 34

CHAPTER 2: ELLIPTIC CURVE CRYPTOGRAPHY ... 36

2.1 Background .. 36

2.2 Mathematical Foundations ... 37

2.2.1 Finite Fields .. 37

2.2.2 Elliptic Curves .. 41

2.2.3 Projective Coordinates .. 45

Page 8 of 188

2.2.4 Point Multiplication .. 47

2.3 Domain Parameters .. 48

2.3.1 Prime Field Elliptic Curves ... 49

2.3.2 Binary Field Elliptic Curves ... 49

2.3.3 Standardized Versus Random Curves ... 50

2.4 Known Attack Mechanisms against ECC .. 51

2.4.1 Naïve Method.. 51

2.4.2 Pohlig-Hellman Attack ... 52

2.4.3 Pollard’s rho Attack .. 52

2.4.4 Index-Calculus Attacks ... 53

2.4.5 Isomorphism Attacks .. 53

2.5 Cryptographic Protocols Useful for Control Systems .. 53

2.5.1 Key Generation ... 54

2.5.2 Elliptic Curve Digital Signature Algorithm (ECDSA) 56

2.5.3 Supported Secure Hash Algorithms .. 58

2.6 Comparing RSA Signatures to ECDSA ... 59

2.7 Edward’s Curves .. 62

2.7.1 Key Generation ... 63

2.7.2 Signature Generation .. 64

2.7.3 Signature Verification ... 65

2.7.4 Special Curves .. 66

CHAPTER 3: TECHNICAL CONSTRAINTS AND SOLUTIONS 68

3.1 Introduction .. 68

Page 9 of 188

3.2 Random Number Generation ... 68

3.3 BigIntegers ... 70

3.4 Processing Speed .. 74

3.5 Multicast ... 79

3.6 Lack of Proper Time Synchronization ... 84

3.7 Message Structures and Send Rates ... 85

3.8 Proof of Concept Implementation Overview ... 86

CHAPTER 4: VMAC... 89

4.1 Introduction .. 89

4.2 Cryptographic Details .. 89

4.3 Attack Vectors .. 93

4.3.1 Length Extension Attacks ... 94

4.3.2 Collision Attacks ... 95

4.3.3 Key Reversal Attacks .. 96

4.4 Implementation Details .. 100

4.4.1 Outgoing Messages ... 102

4.4.2 Incoming Messages ... 104

CHAPTER 5: COMPLEX MATH OPERATIONS ... 108

5.1 Introduction .. 108

5.2 Custom Data Types .. 109

5.2.1 C DataType ... 110

5.2.2 D Data Type .. 110

5.2.3 E Data Type .. 110

Page 10 of 188

5.2.4 POINT Data Type ... 111

5.3 Sequencers .. 111

5.4 Temp Data .. 113

5.5 AOIs ... 113

5.5.1 B256_MODPOW .. 114

5.5.2 B256_MODINV ... 115

5.5.3 B256_MODL .. 116

5.5.4 POINT_MUL .. 116

5.5.5 POINT_ENC ... 118

5.5.6 POINT_DEC ... 118

5.5.7 SHA512_SEQ ... 119

5.5.8 Ed25519_SIGN ... 120

5.5.9 Ed25519_VERIFY .. 122

5.5.10 PRNG .. 123

CHAPTER 6: KEY EXCHANGE PROTOCOL ... 126

6.1 Introduction .. 126

6.2 KEP Message Structure .. 131

6.3 Listener ... 133

6.4 Processor .. 135

6.4.1 State 0: Power On .. 137

6.4.2 State 1: Server Check ... 139

6.4.3 State 2: Ks’ Req Check .. 141

6.4.4 State 3: EdDH Keys ... 142

Page 11 of 188

6.4.5 State 4: Sign message... 144

6.4.6 State 5: Check for new message .. 146

6.4.7 State 6: Gen Kp, Encrypt Ke.. 148

6.4.8 State 7: Create new Ks’ .. 149

6.4.9 State 8: Set Ks = Ks’ .. 150

6.4.10 State 9: Gen Kp, Decrypt Ke ... 151

6.5 Typical Operation ... 152

CHAPTER 7: RESULTS AND FUTURE WORK .. 158

APPENDIX A. VMAC ANALYSIS ... 167

A.1 Testing SHA-256 .. 167

A.2 Cracking 16-Rounds ... 170

APPENDIX B. GRAPHICAL VMAC IMPLEMENTATION 174

B.1 Controller Organizer .. 174

B.2 VO_NODE1 ... 175

B.2 VI_NODE2 ... 176

APPENDIX C. SOURCE CODE .. 179

C.1 Custom Data Types .. 179

C.2 Add-On Instructions ... 179

C.3 VMAC and IO_Mapping ... 179

C.4 KEP Program.. 179

APPENDIX D. SEQUENCER CHARTS ... 180

D.1 Ed25519_SIGN .. 180

D.2 Ed25519_VERIFY ... 181

Page 12 of 188

D.3 B256_MODINV ... 182

D.4 B256_MODL ... 183

D.5 B256_MODPOW ... 184

D.6 POINT_DEC .. 185

D.7 POINT_ENC .. 186

D.8 POINT_MUL ... 187

D.9 PRNG ... 188

D.10 SHA512_SEQ .. 188

APPENDIX E. KEY SCRIPTS ... 189

E.1 keygen.py ... 189

Page 13 of 188

TABLE OF FIGURES

Figure 1: Binary Finite Field Reduction Polynomials .. 40

Figure 2: Sample Elliptic Curves [10] .. 41

Figure 3: Geometric Representation of Point Addition and Point Doubling [10] 42

Figure 4: Group Law for E(Fp): y2=x3+ax+b, char(K) ≠2,3 [10] 44

Figure 5: Group Law for non-supersingular E(F2m): y2+xy=x3+ax2+b [10] 44

Figure 6: Group Law for supersingular E(F2m): y2+cy=x3+ax+b [10] 45

Figure 7: Operation Counts on y2 = x3 - 3x+b [10] ... 47

Figure 8: ECC vs RSA Comparable Key Sizes (in bits) [29] 60

Figure 9: ECC vs RSA Key Generation [29] .. 60

Figure 10: ECC vs RSA Signature Generation [29] ... 60

Figure 11: ECC vs RSA Signature Verification [29].. 60

Figure 12: EdDSA Key Generation .. 64

Figure 13: EdDSA Signature Generation ... 65

Figure 14: EdDSA Signature Verification .. 66

Figure 15: TRNG 9815 Device ... 69

Figure 16: VMAC Add-On Instruction... 91

Figure 17: VMAC Timing Results (in ms) ... 93

Figure 18: SHA256 Reduced Round Test Results .. 96

Figure 19: SHA Intermediary Hash Values .. 97

Figure 20: B256_MODPOW Add-On Instruction .. 114

Figure 21: B256_MODINV Add-On Instruction ... 115

Figure 22: B256_MODL Add-On Instruction .. 116

Page 14 of 188

Figure 23: POINT_MUL Add-On Instruction .. 117

Figure 24: POINT_ENC Add-On Instruction ... 118

Figure 25: POINT_DEC Add-On Instruction ... 119

Figure 26: SHA512_SEQ Add-On Instruction ... 119

Figure 27: Ed25510_SIGN Add-On Instruction ... 121

Figure 28: Ed25519_VERIFY Add-On Instruction .. 123

Figure 29: PRNG Add-On Instruction .. 124

Figure 30: KEP Message Flags ... 133

Figure 31: Processor State Machine Diagram .. 136

Figure 32: Processor State 0 Sequence Chart ... 138

Figure 33: Processor State 1 Sequence Chart ... 139

Figure 34: Processor State 2 Sequence Chart ... 141

Figure 35: Processor State 3 Sequence Chart ... 143

Figure 36: Processor State 4 Sequence Chart ... 145

Figure 37: Processor State 5 Sequence Chart ... 147

Figure 38: Processor State 6 Sequence Chart ... 149

Figure 39: Processor State 7 Sequence Chart ... 150

Figure 40: Processor State 8 Sequence Chart ... 151

Figure 41: Processor State 9 Sequence Chart ... 152

Figure 42: LEFT: A generating Ks’ and Ks, RIGHT: B thru D requesting Ks’ 153

Figure 43: LEFT: A in Idle, RIGHT: B thru D in Idle but Exchange in Progress .. 154

Figure 44: LEFT: A encrypting Ks’, RIGHT: B thru D decrypting Ks’ 155

Figure 45: Client Has Ks and Decrypting new Ks’ .. 156

Page 15 of 188

Figure 46: RIGHT: Client updating Ks = Ks’ .. 156

Figure 47: Client or Server in Idle Cycle with Ks = Ks’ .. 157

Page 16 of 188

 ABSTRACT

The challenge of securing industrial control systems is significant, and the need to

provide authentication and verification services for control system commands and data

has been well established. There is currently a lack of options for the control systems

engineer, and the options that do exist mainly involve purchasing additional hardware.

Additionally, these solutions disrupt the use of some real time communications products

such as the Profinet/iMap combination used on Siemens Programmable Logic Controllers

(PLCs).

There are a number of challenges to implementing control system data authentication

and verification in a PLC, including performing mathematical operations on BigIntegers;

generating and distributing keys; generating cryptographically secure hash values;

implementing random number generation; and ensuring that the operations can be

performed without impacting normal operation / scan times. In this work a generic

solution to these problems is presented along with a proof-of-concept implementation

written for Rockwell ControlLogix PLCs and tested using 1756-L83 controllers.

The solution is based on two new algorithms: Variable-round Message

Authentication Code (VMAC) and the Key Exchange Protocol (KEP). VMAC is based

on SHA256 and uses a symmetric key to generate message codes for data authentication

and verification. KEP is a protocol that allows PLCs to securely generate and distribute

the symmetric key used in VMAC. KEP is capable of being configured in a multiple tree

configurations to increase the efficiency of key distribution, but also provides for

redundancy in case the root node is taken offline. KEP was shown to have an average

scan time impact of 10ms with a maximum impact of 20ms during a key exchange.

Page 17 of 188

CHAPTER 1: INTRODUCTION

1.1 Overview

This document will present the challenges facing industrial control systems today,

particularly in protecting against Man-in-the-Middle (MITM) attacks that can severely

compromise a system. Control systems are used for a wide variety of electrical and

mechanical systems, such as gas turbine generators, electrical distribution, producing

food and drug products, and cooling for critical machinery such as a nuclear reactor.

Therefore a compromise of the control system can have immediate impacts including

damage to machinery, damage to critical infrastructure, and injury/death to operators of

equipment or individuals who are dependent on the continual operation of the equipment.

This document will present a new cryptographic system for providing control system data

authentication and verification.

 At the heart of this system are two new cryptographic algorithms developed by the

author which are designed to work within the constraints of a control system, such as the

inability to perform BigInteger calculations, the inability to generate random numbers,

and the need for 24x7 operation over a period of years. The algorithms are:

1. Variable-round Message Authentication Code (VMAC)

2. A control system Key Exchange Protocol (KEP)

Note that the VMAC algorithm proposed here is not to be confused with the VMAC

algorithm proposed by Ted Krovetz and Wei Dai in April 2007 [38], which shares a

similar name but is based on an entirely different construction to meet a different set of

requirements.

Page 18 of 188

The fundamental mathematical theory and security is based on existing cryptographic

algorithms such as the Secure Hash Algorithms (SHA), the Hash Message Authentication

Code (HMAC) algorithms, the Elliptic Curve Diffie-Hellman Key Exchange algorithm,

and a unique variant of an Elliptic Curve Cryptography (ECC) algorithm known as the

Edward’s Curve Digital Signature Algorithm (EdDSA). Each of these algorithms in of

themselves is insufficient for use in an industrial control system for a range of reasons

that will be described in this document.

 Chapter 1 of this document provides introductory and background information for

this work. Chapter 2 describes the mathematical theories and benefits of Elliptic Curve

Cryptography which are necessary for understanding KEP, ending with a description of

Edward’s curves and the unique benefits they provide in addressing the challenges

described in Chapter 3. Chapter 3 describes the limitations of industrial control systems

in designing a data authentication and verification scheme and provides an overview of

the proposed solution. This section also provides a high level overview of the solutions

to these limitations that were developed as part of this work and defined in detail in the

later sections. It concludes by describing the “proof of concept” implementation that was

developed as part of this work. Chapter 4 describes the VMAC algorithm and provides

details of the VMAC portion of the “proof of concept” implementation. Chapter 5

expands on the BigInteger and processing speed limitations presented in Chapter 3 by

defining the various instructions that were developed as part of this work to perform

complex operations such as modular arithmetic and point multiplication. Ultimately the

concepts presented in Chapters 4 and 5 form the backbone required to understand the

KEP algorithm presented in Chapter 6, which dynamically creates the key used by the

Page 19 of 188

VMAC algorithm described in Chapter 4. Chapter 7 concludes by presenting information

on testing results and describing areas of future work.

1.2 Background

 Increasing demands in all sectors of an industrial society have led to an ever

increasing need for more sophisticated controls and monitoring equipment and software.

Control systems, once consisting of simple transmitters and relays, have evolved into

complex systems containing dozens of controllers communicating with each other, each

containing tens of thousands of lines of code, for even the simplest processes. Complex

Human-Machine Interface (HMI) mechanisms designed to give system owners and

operators enhanced capabilities to remotely operate, maintain, and troubleshoot

equipment are being developed and deployed. At the core of most modern control

systems is the Programmable Logic Controller (PLC), a device whose power lies in the

ability of a Control System Engineer to quickly and easily implement complex control

schemes at minimal cost. As a result, PLCs (originally designed to replace relay panels)

have become prevalent in virtually every industrial environment from pharmaceutical

plants to electrical power distribution systems.

 Automation using PLCs and other embedded devices has become more prevalent

in recent years. Virtually every aspect of our nation’s critical infrastructure is controlled

using these devices, most prevalently in the areas of electrical generation, oil and gas

production, transportation systems, water and water treatment systems, food production

systems, chemical production systems, and heating systems. Baggage handling systems,

for example, are increasingly being controlled by PLCs to provide automated distribution

Page 20 of 188

at luggage at airports and other mass transit facilities. The new “Smart Grid”, as it

commonly called, will be characterized by a two-way flow of electricity and information

creating a widely distributed energy network. The control system required to support this

energy network will be of an unheard of scale, the design of which will introduce

significant challenges never before addressed.

 The use of PLCs and embedded controllers has grown exponentially in

Department of Defense systems, especially in the U.S. Navy. The USS Arleigh Burke-

class destroyers (DDG 51) first commissioned in 1991 uses a VME based control system

with approximately 4,000 I/O points. By comparison, the new USS Zumwalt (DDG

1000) class destroyers use a PLC based control system with approximately 37,000 I/O

points and roughly 1/3rd the crew. In related efforts, the US Navy has been rapidly

migrating to ship designs with propulsion, auxiliary, and weapons systems with

significantly higher energy requirements than in the past. Both classes of ships also use a

wide range of various embedded controllers produced by different Original Equipment

Manufacturers (OEMs) that must be integrated together in order to fulfill the ship’s

missions.

 Implementing control systems on a large, highly integrated scale introduces

significant challenges partly because control system networks were not designed with

security being primarily in mind. Historically, control system networks were designed to

be completely physically isolated from other networks and therefore securing those

control system networks seemed unnecessary. Instead, control system networks were

designed to have maximum throughput with minimal to nonexistent data loss. In recent

years though control systems have gradually been getting connected to the Internet,

Page 21 of 188

mostly via corporate network systems, in order to meet business and maintenance

requirements. In order to secure networks, IT administrators have been applying

traditional security measures in order to prevent attackers from gaining access to the

corporate networks thus protecting control system networks. The mentality was one of

“security by obscurity”, since it was thought that PLCs were only capable of running a

specific type of software that was not susceptible to viruses and other types of malware.

This mentality was eventually shattered by the rise of Advanced Persistent Threats

(APTs) and customized malware such as Stuxnet that was specifically designed to target

PLCs and other industrial control devices.

 Control systems do have some features providing security, mainly in the areas of

protecting the running software on a PLC to prevent an attacker from changing the

algorithms running on the PLC that provide the automation. This has improved

significantly in the wake of Stuxnet. However control systems still remain extremely

vulnerable to Man-in-the-Middle attacks where an attacker issues false commands to a

system causing it to take actions that should normally not be taken. The most common is

to shut down or start up machinery systems in such a way that will compromise the

systems and lead to a range of consequences including property damage and injury/death

to human beings. Attackers have also been studying the various protocols used by

control systems to communicate internally, such as Profinet and Modbus, and found that

they are relatively trivial to spoof. Control systems inherently have little to no data

authentication and validation capabilities, typically placing all the restrictions in a

Human-Machine Interface (HMI). However if an attacker were to go around the HMI

Page 22 of 188

and spoof a packet then all the control system security protections would be bypassed,

allowing an attacker to easily issue false commands to the control system.

 There are some lightweight cryptographic algorithms that exist such as Photon

[34] which are specifically targeted towards more limited devices. However these

lightweight algorithms are only useful for small data messages in the 5-100 byte range.

Control systems typically send messages closer to 250-1500 bytes at an interval of every

50-250ms depending on the application. Therefore a new approach to solving control

system message authentication is required that accounts for the limitations of the

equipment and the size and frequency of the data messages, and is robust enough to meet

failover and redundancy requirements of control systems. The approach must allow for

multiple vendors of different equipment to be able to integrate their systems into a

comprehensive approach that is both platform and protocol independent.

1.3 Fundamental Objectives

Within the field of cryptography, there are multiple solutions providing various

degrees of secure communication. In order to be effectively used to establish secure

communications these solutions have the following fundamental objectives:

• Confidentiality – ensuring that the data can only be read by those authorized to

see it

• Integrity – ensuring that the data has not been modified by unauthorized means

• Availability – ensuring that the data can be read when necessary to meet

performance requirements

Page 23 of 188

• Data Origin Authentication – ensuring that the data supposedly sent by a source

actually originated with that source

• Entity Authentication – ensuring that an entity participating in a data transfer is

who it claims to be

• Non-repudiation – ensuring that a source of data is unable to later deny sending

the data

Information / Corporate systems are concerned with meeting each of the above

objectives. Control systems are also equally concerned with the above objectives, with

confidentiality to a significantly lesser degree, but also have unique requirements not

present in information systems. When an information system receives a piece of data

through insecure means, it can disregard the information with reasonably low risk.

Control systems, on the other hand, need to make critical decisions with the information

at hand. If the data received is insecure, the control system is placed in a position of

having to make critical decisions about the operation of real world machinery without

knowing which decision to take. Unfortunately, the control system will be regularly in

the position where it must take some critical action or shut down the equipment, with

each scenario resulting in possible equipment damage and injury/death to personnel

operating that equipment.

1.3.1 NIST SGiP

 In response to the number of concerns related to the Smart Grid and Cyber

Security, NIST established the Smart Grid Interoperability Panel (SGiP) Cyber Security

Working Group which published NISTIR 7628 (2010) [1]. This document decomposed

Page 24 of 188

the various kinds of communications that would be prevalent in a full international Smart

Grid system into a number of categories such as “Category 10 – Interface between

Control Systems and Non-Control / Corporate Systems”. SGiP then identifies the unique

security requirements for each of these categories, focusing on the three areas of

confidentiality, integrity, and availability.

 Most, but not all of the categories identified by SGiP are directly or indirectly

applicable to control systems (some that have little to no bearing such as categories 13

through 18 are not shown here) operating in the Smart Grid and are shown in the list

below:

• Category 1: Interface between control systems and equipment with high

availability, and with compute and/or bandwidth constraints

• Category 2: Interface between control systems and equipment without high

availability, but with compute and / or bandwidth constraints

• Category 3: Interface between control systems and equipment with high

availability, without compute or bandwidth constraints

• Category 4: Interface between control systems and equipment without high

availability, without compute or bandwidth constraints

• Category 5: Interface between control systems within the same organization

• Category 6: Interface between control systems in different organizations

• Category 10: Interface between control systems and non-control / corporate

systems

• Category 12: Interface between sensor networks and control systems

• Category 19: Interface between operations decision support systems

Page 25 of 188

• Category 20: Interface between engineering / maintenance systems and control

equipment

• Category 21: Interface between control systems and their vendors for standard

maintenance and service

• Category 22: Interface between security / network / system management consoles

and all networks and systems

 In reviewing the categories, it becomes obvious that all of them have significant

overlap with next generation integrated power system efforts as well as industrial control

systems in general. On looking through the requirements of these categories as identified

by SGiP, it is seen that the primary concern in these categories is that of data integrity

and authentication. Data encryption can be useful in some circumstances, but it is not as

critical as the other two requirements.

1.4 Traditional Solutions for Information / Corporate Systems

While traditional solutions for Information / Corporate Systems will not be feasible

for implementation in Control Systems due to the different requirements and

architectures, it is important to establish an understanding of current solutions used in

Information Systems. There are essentially two main categories of cryptographic

solutions, symmetric-key cryptography and public-key cryptography.

Page 26 of 188

1.4.1 Symmetric-key Cryptography

Symmetric-key Cryptography includes schemes such as the Data Encryption Standard

(DES) (now obsolete), RC4, and the Advanced Encryption Standard (AES) to achieve

confidentiality. They may also be used with a message authentication code (MAC)

algorithm such as HMAC to achieve data integrity and data origin authentication. In a

typical symmetric-key cryptography scheme two parties already share a secret key k that

has been communicated to the parties by some other means (typically a physical secure

channel such as a trusted courier, or by using a public-key cryptography scheme to

negotiate a shared secret key). Party A wishing to transmit to B uses one of the

previously mentioned schemes to compute a ciphertext c = ENCk(m) to be sent to B. B

then receives the message and uses the same k (and knowing the same scheme used to

encrypt m used by A) to recover the plaintext message m = DECk(c).

If data integrity and data origin authentication are desired, then the same principles

apply however instead of encrypting the message m into ciphertext c a tag t is first

computed where t =MACk(m) of the plaintext message using a MAC algorithm (of which

there are many) and the key. The plaintext message and the tag are both transmitted, and

the receiver can use the plaintext message to compute its own tag t’. If t = t’ then the

receiver can accept the message as having originated from the source.

While symmetric-key cryptography can be very efficient, the key distribution and key

management problems tend to render it ineffective for large scale systems

communicating to multiple partners. In a network of N entities, each entity may have to

maintain keying material with each of the other N-1 entitites. Some symmetric-key

systems attempt to alleviate this problem by using an online trusted third party that

Page 27 of 188

distributes the keys as required, however for control systems this creates a single critical

point of failure that will be unacceptable as control systems become more and more

distributed and de-centralized. Additionally, while key distribution in symmetric-key

cryptography may be possible through a physical courier on a ship it will not be practical

for large scale systems such as the Smart Grid.

1.4.2 Public-key Cryptography

Public-key cryptography began in 1975 [35] to address the aforementioned

limitations in symmetric-key cryptography. Unlike symmetric-key schemes, public-key

schemes require the keying material that is exchanged to only be authentic, but not secret.

Additionally, instead of each pair of entities sharing a secret key, each entity selects a

single pair of keys (e, d) consisting of a public key e and a related private key d. The

entity keeps the private key a secret from all other entities and shares the public key with

all other entities. The keys are mathematically related but it is computationally infeasible

to determine the private key solely from knowledge of the public key. Deriving the

private key from the public key is equivalent to solving a computational problem that is

believed to be intractable.

1.4.2.1 RSA

The most commonly used public-key cryptography scheme is RSA, named after its

inventors Rivest, Shamir, and Adleman [3]. It was first proposed in 1977 shortly after the

discovery of public-key cryptography. In RSA, the public key consists of a pair of

integers (n, e) where n is the modulus. The modulus is a product of two randomly

Page 28 of 188

generated (and secret) primes p and q which are of the same bitlength. Algorithm 1

below shows how to generate an RSA key pair. RSA encryption and signature schemes

use the fact that med = m (mod n). Algorithm 2 and Algorithm 3 show how basic RSA

encryption and decryption work respectively. The hardness in breaking RSA is based on

the integer factorization problem, i.e. determining the secret primes p and q from the

public key for large values of bitlength l.

The RSA signature generation and signature verification algorithms are shown in

Algorithm 4 and Algorithm 5. As in all signature schemes, the signer first generates a

cryptographic hash H which acts in a similar manner as the tag in symmetric-key

encryption. The signer then generates the signature and transmits the message m along

with the signature s to a verifying party.

In order to increase the efficiency of RSA, smaller exponents can be selected. In

practice, the most commonly chosen values are e = 3 and e = 65537 for encryption and

signature verification [3]. Note that there is no known attack against using small public

exponents as long as proper padding is used. Decryption and signature generation always

use the exponent d (the private key) which is the same bitlength as n. Thus RSA

encryption and signature verification with small values of e are significantly faster than

RSA decryption and signature generation.

Algorithm 1. [3] – Generating RSA Key Pair

 INPUT: bitlength l

OUTPUT: RSA public key (n, e) and private key d

1. Randomly select two primes p and q of the same bitlength l / 2

Page 29 of 188

2. Compute n = pq and Φ = (p-1)(q-1)

3. Select an arbitrary integer e with 1 < e < Φ and gcd(e, Φ) = 1

4. Compute the integer d satisfying 1 < d < Φ and ed ≡ 1 (mod Φ)

5. Return (n, e, d)

Algorithm 2. [3] – RSA Encryption

 INPUT: RSA public key (n, e), plaintext m ϵ [0, n-1]

OUTPUT: Ciphertext c

1. Compute c = me mod n

2. Return (c)

Algorithm 3. [3] – RSA Decryption

 INPUT: RSA public key (n, e), RSA private key d, ciphertext c

OUTPUT: Plaintext m

1. Compute m = cd mod n

2. Return (m)

Algorithm 4. [3] – RSA Signature Generation

 INPUT: RSA public key (n, e), RSA private key d, message m

OUTPUT: Signature s

1. Compute h = H(m) where H is a cryptographic hash function

2. Compute s = hd mod n

3. Return (s)

Page 30 of 188

Algorithm 5. [3] – RSA Signature Verification

 INPUT: RSA public key (n, e), message m, signature s

OUTPUT: Acceptance or rejection of the signature

1. Compute h = H(m) where H is the same cryptographic hash function used by the

signing party

2. Compute h’ = se mod n

3. If h = h’ then accept the signature, else reject

1.4.2.2 Digital Signature Algorithm

 In 1976 Diffie and Hellman proposed developing a key agreement protocol based

on the discrete logarithm problem (DLP) [2], which like the integer factorization problem

used in RSA is computationally infeasible to solve. Discrete logarithms are group-

theoretic analogues of ordinary logarithms. For example, an ordinary logarithm loga(b) is

a solution of the equation ax = b for x. In a discrete logarithm, you have a group G which

consists of a range of integer values from 0 to n-1. If a and b are elements in the group

then a solution of x of the equation ax = b is called a discrete logarithm to the base a of b

in the group G. In a discrete logarithm public-key cryptography system a key pair is

associated with a set of domain parameters (p, q, g). Algorithm 6 shows how these

domain parameters are generated, and Algorithm 7 shows how to generate corresponding

key pairs.

 In 1984 ElGamal described discrete logarithm public-key encryption and

signature schemes, and since then many different variants have been proposed leading up

Page 31 of 188

to the establishment of the Digital Signature Algorithm (DSA) [2]. DSA was proposed in

August 1991 by the U.S. National Institute of Standards and Technology (NIST) and was

specified in a U.S. Government Federal Information Processing Standard (FIPS 186),

adopted in 1993. A minor revision was issued in 1996 as FIPS 186-1, which was

expanded further in 2000 as FIPS 186-2 and again in 2009 as FIPS 186-3 [4]. Algorithm

8 and Algorithm 9 shown below give the procedures respectively for DSA signature

generation and verification.

Algorithm 6. [2] – Discrete Logarithm Domain Parameter Generation

 INPUT: Parameters l and t

OUTPUT: Discrete logarithm domain parameters (p, q, g)

1. Select a t-bit prime q and an l-bit prime p such that q divides p-1

2. Select an element g of order q

a. Select arbitrary h ϵ [1, p-1] and compute g = h(p-1)/q mod p

b. If g = 1 then repeat 2.a.

3. Return (p, q, g)

Algorithm 7. [2] – Discrete Logarithm Key Pair Generation

 INPUT: Discrete logarithm domain parameters (p, q, g)

OUTPUT: Public key y and private key x

1. Select x ϵR [1, q-1]

2. Compute y = gx mod p

3. Return (y, x)

Page 32 of 188

Algorithm 8. [2] – DSA Signature Generation

 INPUT: Discrete logarithm domain parameters (p, q, g), private key x, message m

OUTPUT: Signature (r, s)

1. Select k ϵR [1, q-1]

2. Compute T = gk mod p

3. Compute r = T mod q, if r = 0 then go to step 1

4. Compute h = H(m), where H is a cryptographic hash function

5. Compute s = k-1(h+xr) mod q, if s = 0 then go to step 1

6. Return (r, s)

Algorithm 9. [2] – DSA Signature Verification

 INPUT: Discrete logarithm domain parameters (p, q, g), public key y, message m,

signature (r, s)

OUTPUT: Acceptance or rejection of the signature

1. Verify that r and s are integers in the interval [1, q-1], if either verification fails

then reject the signature

2. Compute h = H(m), where H is the same cryptographic hash function used by the

signing party

3. Compute w = s-1 mod q

4. Compute u1 = hw mod q and u2 = rw mod q

5. Compute T = gu1 yu2 mod p

6. Compute r’ = T mod q

Page 33 of 188

7. If r’ = r then accept the signature, else reject

1.4.2.3 Limitations Using Public-Key Cryptography

 In cryptography, the security of an algorithm cannot exceed its key length

(measured in bits) since any algorithm can be cracked by brute force. A key therefore

should be sufficiently large enough such that a brute force attack is infeasible – i.e. it

would take too long to execute. If there is some indicator that an attack may exist to

feasibly break a key for a particular algorithm in an efficient manner for some bit length,

then the size of the key is increased to provide additional security. The key size to

security level ratio is not the same for all categories of algorithms.

 As of 2003 [5] RSA Security claims that 1024-bit RSA keys are equivalent in

strength to 80-bit symmetric keys, 2048-bit RSA keys to 112-bit symmetric keys and

3072-bit RSA keys to 128-bit symmetric keys. RSA claims that 2048-bit keys are

sufficient until 2030. An RSA key length of 3072 bits should be used if security is

required beyond 2030. NIST key management guidelines further suggest that 15360-bit

RSA keys are equivalent in strength to 256-bit symmetric keys [5]. These key lengths,

while implementable in Information / Corporate systems, are infeasible in Control

Systems where processing power and data storage is limited. Therefore an alternative

public-key algorithm is needed that provides the benefits of algorithms such as RSA and

DSA without the excessive key lengths required by these algorithms.

Page 34 of 188

1.5 Industry Solutions

In the last year PLC and embedded controller vendors have begun to offer a range of

various proprietary solutions for data authentication and verification. These solutions

typically rely on proprietary algorithms designed to work solely within the vendor’s

product sphere and do not integrate with 3rd party devices. Since the algorithms are

proprietary it is not possible to evaluate them from a security perspective.

1.6 Summary

Control systems are a major component of daily life, and the safe operation of these

systems is necessary, however they are radically different than traditional IT systems and

require special considerations. For example, the use of the RSA algorithm in public key

cryptography is common when purchasing products online, but control systems are

unable to manage keys of this size and the processors are generally too slow to perform

the necessary math in a reasonable time frame. Symmetric-key cryptography will also

not work due to the challenges in managing key distribution. The use of Elliptic Curve

Cryptography has offered a number of opportunities such as smaller key sizes that can be

leveraged in this work and is described in the following section. The recent introduction

of Edward’s Curves offers further opportunities which are just starting to be leveraged in

traditional IT systems, with RFC8032 being published in January of this year [27].

There are a number of challenges and constraints that need to be addressed when

designing a system to provide control system data integrity. This work describes the

challenges in Chapter 3 in detail and begins to outline the solutions to these challenges.

These solutions are further refined in Chapters 4 thru 6 with the introduction of two new

Page 35 of 188

algorithms, VMAC and KEP, which provide a communication protocol independent

solution for providing control system data integrity.

Page 36 of 188

CHAPTER 2: ELLIPTIC CURVE CRYPTOGRAPHY

2.1 Background

 Elliptic curve public key cryptosystems were first independently proposed by V.S.

Miller (1985) [6] and by N. Koblitz (1987) [7]. They have only recently begun to be

used in commercial systems, and adoption has been slow. This is primarily due to

concerns about intellectual property, as a number of optimizations and special algorithms

used to increase efficiency have been patented in recent years. Despite these concerns,

elliptic curve cryptography (ECC) has grown resulting in its inclusion in standards by

accredited standards organizations such as ANSI (American National Standards Institute)

[8, 9], IEEE (Institute of Electrical and Electronics Engineers) [10], ISO (International

Standards Organization [11, 12], and NIST (National Institute of Standards and

Technology [13].

 The most prominent group for the standardization and propagation of ECC

technology is SECG (Standards for Efficient Cryptography Group) [14]. They have

published numerous and detailed works on the subject, including documents on how to

implement ECC and on recommended elliptic curve domain parameters [15, 16]. The

SECG consists of a number of organizations including NIST and key industrial partners

such as VISA, Fujitsu, and Certicom. Certicom, which is a wholly owned subsidiary of

Research in Motion (RIM), is the main industrial leader in ECC, with over 350 patents

and patents pending worldwide covering key aspects of the technology [17].

 In order to promote the use of ECC technology, NIST has licensed 26 patents held

by Certicom with the right to grant sublicenses for free to industrial vendors for

developing products used for protecting national security information [1]. NIST has also

Page 37 of 188

identified a subset of key ECC technologies for use in Smart Grid and related

applications, such as the Elliptic Curve Digital Signature Algorithm as part of its NSA

Suite B collection of approved encryption, key exchange, digital signature, and hashing

protocols. It is also worth noting that ECC implementation strategies based on the

fundamental algorithms of ECC, which were published prior to filing dates of many

patents can be found in the IETF Memo “Fundamental Elliptic Curve Cryptography

Algorithms.” [18]

2.2 Mathematical Foundations

This section presents an overview of the mathematical techniques and concepts

required for an intermediary level of understanding of elliptic curve cryptography. This

material is sufficient for engineering purposes to develop ECC systems using

standardized existing mathematic implementations and standardized elliptic curve

domain parameters. The works of Koblitz [7], Miller [6], Hankerson et al. [2], and the

SECG [15] can be referred to for more advanced mathematical concepts that may be

helpful should the need arise for development of new implementations or the use of

random elliptic curve domain parameters.

2.2.1 Finite Fields

A finite field Fqm consists of a finite set of objects called field elements together with

the description of two operations – addition and multiplication – that can be performed on

pairs of field elements. Subtraction and division within a finite field are defined in terms

of an additive inverse and multiplicative inverse, respectively. In ECC there are two

Page 38 of 188

kinds of fields that are primarily used: prime finite fields Fp with q=p and m=1, with q

being prime; and binary fields F2m where q=2 for some m ≥ 1. A third type of field less

commonly used is known is Optimal Extension Fields (OEF). The general idea in OEFs

is to select values of q and m, along with a reduction polynomial to more closely match

underlying hardware characteristics [2]. At this time there are no recommended

implementations of ECC by SECG that utilize OEFs, and therefore they are only

mentioned here for completeness.

Equations involving finite fields do not explicitly denote the mod p operation, but it is

understood to be implicit.

2.2.1.1 Prime Finite Fields [15]

Elements in a prime finite field Fp should be represented by the set of integers:

{0, 1, …, p-1}

Operations on prime finite fields are defined as follows:

• Addition: If a, b ϵ Fp, then a + b = r in Fp, where r ϵ [0, p-1] is the remainder

when the integer a + b is divided by p.

• Multiplication: If a, b ϵ Fp, then ab = s in Fp where s ϵ [0, p-1] is the remainder

when the integer ab is divided by p.

• Additive inverse: If a ϵ Fp, then the additive inverse (-a) of a in Fp is the unique

solution to the equation a + x ≡ 0 mod p.

• Multiplicative inverse: If a ϵ Fp, a ≠ 0, then the multiplicative inverse a-1 of a in

Fp is the unique solution to the equation ax ≡ 1 mod p.

Page 39 of 188

In order to increase efficiency and to facilitate interoperability, prime finite fields

using the NIST primes should be use. These finite fields have:

[log2p] ϵ {192, 224, 256, 384, 521]

Except for 521, p is aligned with word size to increase efficiency in computation and

communication. 521 is an anomaly that is often included to align with the U.S.

government’s recommended elliptic curve domain parameters.

2.2.1.2 Binary Finite Fields [15]

Elements of a binary finite field F2m should be represented by the set of binary

polynomials of degree m-1 or less:

{am-1x
m-1 + am-2x

m-2+ … + a1x + a0 : ai ϵ {0,1} }

and an irreducible polynomial f(x). Operations on binary finite fields are defined as

follows:

• Addition: If a = am-1x
m-1+am-2x

m-2+…+ a0, b = bm-1x
m-1+bm-2x

m-2+…+ b0 ϵ F2m,

then a + b = r in F2m where r = rm-1x
m-1+rm-2x

m-2+…+ r0 with ri ≡ ai +bi mod 2

• Multiplication: If a = am-1x
m-1+am-2x

m-2+…+ a0, b = bm-1x
m-1+bm-2x

m-2+…+ b0 ϵ

F2m, then ab = s in F2m where s = sm-1x
m-1+sm-2x

m-2+…+ s0 is the remainder when

the polynomial ab is divided by f(x) with all coefficient arithmetic performed

modulo 2.

• Additive inverse: If a ϵ F2m, then the additive inverse (-a) of a in F2m is the unique

solution to the equation a + x ≡ 0 in F2m.

Page 40 of 188

• Multiplicative inverse: If a ϵ F2m, a ≠ 0, then the multiplicative inverse a-1 of a in

F2m is the unique solution to the equation ax ≡ 1 in F2m.

In order to increase efficiency and interoperability, the characteristic binary finite

fields used should have:

m ϵ {163, 233, 239, 283, 409, 571]

These fields were chosen in order to construct a suitable Koblitz curve whose order is 2

or 4 times a prime over F2m. The field with m = 239 is an anomaly shown here because it

has already been widely used in practice. The field with m = 283 is an anomaly that is

often included to align with the U.S. government’s recommended elliptic curve domain

parameters.

Multiplication should be performed using one of the irreducible binary polynomials

of degree m in the figure below. These polynomials enable efficient calculation of field

operations, except for the polynomial with m = 239 which is an anomaly shown here

because it has been widely deployed.

Field Reduction Polynomial(s)

F2163 f(x) = x163+x7+x6+x3+1

F2233 f(x) = x233+x74+1

F2239 f(x) = x239+x36+1 or x239+x158+1

F2283 f(x) = x283+x12+x7+x5+1

F2409 f(x) = x409+x87+1

F2571 f(x) = x571+x10+x5+x2+1

Figure 1: Binary Finite Field Reduction Polynomials

Page 41 of 188

2.2.2 Elliptic Curves

Elliptic curves are most commonly shown in the form of the simplified Weierstrass

equation in the form of:

y2 = x3 + ax +b

where

4a3 + 27b2 ≠ 0

This condition is critical to ensure that the elliptic curve is “smooth”, i.e. that there are no

points at which the curve has two or more distinct tangent lines. The curves shown in the

figure below illustrate examples of elliptic curves satisfying this condition.

Figure 2: Sample Elliptic Curves [2]

The security of ECC is based on the elliptic curve discrete logarithm problem

(ECDLP), which arises when elliptic curves are used over finite fields. The ECDLP is

[2]: given an elliptic curve E defined over a finite field Fq, a point P ϵ E(Fq) of order n,

Page 42 of 188

and a point Q ϵ <P>, find the integer l ϵ [0, n-1] such that Q = lP, where <P> is the

subgroup generated by P. The integer l is called the discrete logarithm of Q to the base P,

denoted l = logPQ. The elliptic curve domain parameters for cryptographic schemes

should be carefully chosen in order to resist all known attacks on the ECDLP. However,

since the methods for computing solutions to the ECDLP are much less efficient then

methods used for computing solutions to integer factorization (used in RSA) ECC can

provide the same level of security as RSA with smaller key lengths, and ECC scales

much better at higher levels of security than RSA.

When an elliptic curve E is defined over a field (call it K) there exist rules for adding

two points in E(K) to give a third point in E(K). This operation is commonly known as

point addition. Furthermore, there also exist rules for doubling a point as to obtain

another point, an operation commonly known as point doubling. The figure below shows

a geometric representation of both of these rules.

Figure 3: Geometric Representation of Point Addition and Point Doubling [2]

Page 43 of 188

Algebraic formulas for these operations can be derived from the geometric

representation. The exact formulas themselves (the group law) will vary depending on

whether you are using a simplified Weierstrass form or the complete form. They will

also vary depending on the characteristic q of the underlying field [2]. We consider these

cases:

• The characteristic of the underlying field K is not 2 or 3 (e.g. K = Fp where p > 3

is a prime)

• The curve E is non-supersingular of the form over K = F2m

• The curve E is supersingular of the form over K = F2m

The easiest group law to understand is for that of the simplified Weierstrass form for

char(K)≠2,3, shown in Figure 4. Group laws for the simplified Weierstrass form for

char(K)=2 are shown in Figure 5 and Figure 6 for non-supersingular and supersingular

curves respectively.

Page 44 of 188

Figure 4: Group Law for E(Fp): y2=x3+ax+b, char(K) ≠2,3 [2]

Figure 5: Group Law for non-supersingular E(F2m): y2+xy=x3+ax2+b [2]

Page 45 of 188

Figure 6: Group Law for supersingular E(F2m): y2+cy=x3+ax+b [2]

2.2.3 Projective Coordinates

The group laws shown above illustrate that the formulas for point addition and point

doubling require field inversions and field multiplications. These are complex operations

for the very large fields typically used in cryptographic applications. If inversion in a

field K is significantly more expensive than multiplication (and it typically has a cost of

roughly 80 field multiplications [2]), then the use of a technique known as projective

coordinates may be advantageous to use.

Projective coordinates essentially work by defining an equivalence relationship

between a field K and a set K3\{0,0,0}. The relationship is obtained by replacing x with

X/Zc and y with Y/Zd, and clearing the denominators. We end up with a 1-1 relationship

between the affine points that lie on E and the projective points on E. There are a number

of different versions of projective coordinates, with varying values of c and d.

Page 46 of 188

In the “standard projective coordinates” c and d are both set to one. Another form of

projective coordinates known as “Jacobian coordinates” sets c=2 and d=3. This changes

the simplified Weierstrass equation from:

y2 = x3 + ax +b

to the projective form:

Y2 = X3 + aXZ4 + bZ6

The result of this change allows a new group law to be formed in which point doubling

can be computed using six field squarings and four field multiplications [2]. The use of

field inversions is now no longer required. Algorithms also exist to perform point

multiplication between points in different coordinate systems, such as affine and

Jacobian. Jacobian coordinates yield the fastest point doubling, while mixed Jacobian-

affine coordinates yield the fastest point addition.

A third type of coordinate system is “Chudnovsky coordinates”. In Chudnovsky

coordinates Jacobian coordinates (X:Y:Z) are represented as (X:Y:Z:Z2:Z3). There are

some point multiplication algorithms that make use of the redundancy in Chudnovsky

coordinates and use mixed Jacobian-Chudnovsky and mixed Chudnovsky-affine

coordinates for point addition. The figure below gives some example operation counts for

using projective coordinates in point addition. In the figure A represents affine

coordinates, P represents standard projective coordinates, J represents Jacobian

coordinates, and C represents Chudnovsky coordinates. The mathematical operations of

field inversion, field multiplication, and field squaring are representated as I, M, and S

respectively.

Page 47 of 188

Doubling General addition Mixed coordinates
2A A 1 I, 2M, 2S A + A A 1 I, 2M, 1 S J + A J 8M, 3S
2P P 7M, 3S P + P P 12 M, 2 S J + C J 11M, 3S
2J J 4M, 4S J + J J 12 M, 4 S C + A C 8M, 3S

2C C 5M, 4S C + C C 11 M, 3 S

Figure 7: Operation Counts on y2 = x3 - 3x+b [2]

2.2.4 Point Multiplication

In cryptographic applications point multiplication (the computation of kP where P is a

point on the curve and k is an integer) dominates the execution time of ECC schemes.

There are three cases where point multiplication occurs:

• kP where precomputation must be online

• kP for P known in advance and precomputation may be offline

• kP + lQ where only the precomputation for P may be done offline

The last two cases are motivated by the Elliptic Curve Digital Signature Algorithm

(ECDSA), where signature generation requires a calculation kP where P is fixed, and

signature verification requires a calculation kP + lQ where P is fixed and Q is known a

priori.

There are a number of mathematical techniques that can be used in order to increase

the efficiency of point multiplications. Some methods, such the “sliding-window

methods”, require that extra memory be available. Additionally, if the point P is fixed

and some storage is available, then the point multiplication kP can be accelerated by pre-

computing some of the data dependent on P using a type of fixed-base windowing

method such as that proposed by Brickell, Gordon, McCurley, and Wilson [2]. Shamir’s

Page 48 of 188

Trick is yet another method used specifically to speed up the calculation of kP + lQ by

performing simultaneous multiple point multiplication [2].

2.3 Domain Parameters

As stated previously, the elliptic curve domain parameters for cryptographic schemes

should be carefully chosen in order to resist all known attacks on the ECDLP. In general,

for elliptic curves over a finite field Fqm , the following domain parameters are required to

be specified:

D = (q, FR, S, a, b, P, n, h)

Where:

q – field order

FR – field representation

S – seed, used if the elliptic curve was generated randomly

a & b – coefficients in the field Fqm that define the equation over the field

P – the base point P=(xp, yp) ϵ Fqm that has prime order

n – the order of P

h – the cofactor h=#E(Fqm) / n

This section describes the domain parameters needed to generate curves for the prime and

binary finite fields used in ECC. We then go on to discuss the use of standardized special

curves and the generation of new random curves, discussing the pros and cons of each.

Page 49 of 188

2.3.1 Prime Field Elliptic Curves

For elliptic curve domain parameters over Fp the domain parameters are the sextuple:

D = (p, a, b, P, n, h)

They consist of an integer p specifying the finite field along with certain general domain

parameters defined above. Elliptic curve domain parameters over Fp precisely specify an

elliptic curve and a base point. This is necessary to define public-key cryptography

schemes based on ECC [16]. If the elliptic curve domain parameters are verifiably

random than they should be accompanied by the seed value S from which they are

derived [16].

2.3.2 Binary Field Elliptic Curves

For elliptic curve domain parameters over F2m the domain parameters are the

septuple:

D = (m, f(x), a, b, P, n, h)

They consist of an integer m specifying the finite field F2m, an irreducible binary

polynomial f(x) of degree m specifying the representation of F2m, along with certain

general domain parameters defined above. Elliptic curve domain parameters over F2m

precisely specify an elliptic curve and a base point. This is necessary to define public-

key cryptography schemes based on ECC [16]. If the elliptic curve domain parameters

are verifiably random than they should be accompanied by the seed value S from which

they are derived [16].

Page 50 of 188

2.3.3 Standardized Versus Random Curves

In order to increase efficiency of cryptographic implementations and to prevent all

known attacks, various standardized domain parameters have been developed for elliptic

curves over both prime and finite fields. These standardized, or “special”, curves have

been published by the SECG [16] and are recommended by NIST for use in U.S.

government applications. However, in order to guard against future attacks against these

curves one might decide to generate a new curve randomly but that has a validation

process that proves the new curve resists all known attacks on the ECDLP. Fortunately

algorithms exist to accomplish this very task [2]. The conventional wisdom of ECC has

been, as described by Koblitz [19]:

• For greatest security choose parameters as randomly as possible

• It is safest to choose the defining equation to have random coefficients

• It is okay to use special curves for reasons of efficiency if you insist, however that

choice may one day come back to bite you

Recent work on isogenies in elliptic curve cryptography has shown that there are

various scenarios in which a special curve is better than a random curve. Isogenies,

simply put, allow one to transport the discrete logarithm problem from one curve to

another. It is “random self-reducible” within a set of endomorphism classes with small

conductor gaps. Work in this area has shown that we need to assume that some version

of a Weil Descent attack or another approach someday will lead to a faster-than-sqrt

attack on a small but non-negligible portion of random curves [19].

It is unknown at this time whether random curves are truly more secure than special

curves. Therefore, for control systems for the Smart Grid and other next generation

Page 51 of 188

integrated power system following the NIST recommendation seems to be the most

prudent.

2.4 Known Attack Mechanisms against ECC

This section presents a basic overview of the theory behind various attacks against

ECC, focusing more on the implications of these attack methods and the countermeasures

to these attacks. Attacks against ECC focus on finding ways to solve the ECDLP in sub-

exponential time. It should be noted that using ECC technologies such as the Elliptic

Curve Digital Signature Algorithm (ECDSA) using any of the SECG recommended

elliptic curve domain parameters [16] will provide protection against all known attacks

(i.e. render these attacks computationally infeasible).

2.4.1 Naïve Method

The most naïve method for solving the ECDLP is to perform an exhaustive search

where one computes the sequence of points 1P, 2P, 3P,…lP until Q is encountered. On

average this will take n/2 steps. Therefore the naïve method can be circumvented by

selecting elliptic curve domain parameters with n being sufficiently large to represent an

infeasible number of calculations (e.g. n = 280) [2]. Therefore other methods of solving

the ECDLP must be sought.

The best general-purpose attack known on the ECDLP is the combination of the

Pohlig-Hellman algorithm and Pollard’s rho algorithm [2]. Even these attacks can have

an exponential running time depending on the selection of the domain parameters.

However, it should be noted that there exists no mathematical proof that there does not

Page 52 of 188

exist an efficient algorithm for solving the ECDLP. Some evidence for the intractability

of the ECDLP does exist and researchers have been studying the problem extensively

since 1985 when it was first proposed [2].

2.4.2 Pohlig-Hellman Attack

The Pohlig-Hellman attack uses an algorithm that reduces the computation of l =

logpQ to the computation of discrete logarithms in the prime order subgroups of <P>.

Therefore in order to maximize resistance to the attack domain parameters should be

selected such that the order n of P is divisible by a large prime so that the subgroup field

is large.

2.4.3 Pollard’s rho Attack

The idea of Pollard’s rho attack is to find distinct pairs (c’, d’) and (c’’, d’’) of

integers modulo n such that:

c’P + d’Q = c”P + d”Q

Hence l = logpQ can be obtained by computing

L = (c’-c”)(d’-d”)-1 mod n

This attack on its own takes roughly the same expected time as the naïve method but has

negligible storage requirements [2]. There are multiple ways of speeding up this attack,

including methods of parallelizing the attack to allow multiple processors to work

together to solve an ECDLP instance in which the speedup is linear to the number of

processors used. The processors also do not have to communicate to each other and

need only limited communications to a central server.

Page 53 of 188

2.4.4 Index-Calculus Attacks

Index-calculus algorithms are the most powerful methods known for computing

discrete logarithms in groups such as the multiplicative group of a finite field. The

question that naturally arises is whether these algorithms can be used to solve the ECDLP

in sub-exponential time. The problem for the ECDLP is that no one knows yet how to

efficiently lift points in E(Fp) to E(Q). Additionally, it has been proven under some

reasonable assumptions that the number of points of the small height required for these

algorithms is extremely small so that only an insignificant proportion of the points can be

lifted. Therefore, so far no one has found an index-calculus approach that yields a

general subexponential-time (or better) algorithm for the ECDLP [2].

2.4.5 Isomorphism Attacks

Isomorphism attacks essentially try to reduce the ECDLP to the DLP in groups for

which subexponential-time (or faster) algorithms are known. Consequently the ECDLP

for curves on which an isomorphism attack are found can be efficiently solved. Weil and

Tate pairing attacks and Weil descent attacks are examples of isomorphism attacks [2].

2.5 Cryptographic Protocols Useful for Control Systems

As discussed in section 1.3.1 the primary need for control systems is to verify data

integrity and authentication. This need is fulfilled in corporate / non-control systems

through the use of the Digital Signature Algorithm discussed above. However the use of

this algorithm is infeasible for control systems. Elliptic curves offer us an alternative

Page 54 of 188

path through the use of the Elliptic Curve Digital Signature Algorithm (ECDSA). There

are also a number of other alternative elliptic curve signature schemes, such as Elliptic

Curve ElGamal Signatures (ECES) and Abbreviated ECES Signatures (AECES). The

subsections below detail the algorithm, beginning with generating private and public keys

for use in ECDSA.

2.5.1 Key Generation

ECC key pairs are associated with the particular elliptic curve domain parameters

used in the generation of the key pair. The public key is a randomly selected point Q in

the group <P> generated by P. The private key that corresponds to the public key is the

solution to the ECDLP d = logpQ. The entity that is generating the key pair must have

the assurance that the domain parameters are valid (i.e. resistant to all known attacks),

and the association between the domain parameters and the public key must be verifiable

by all entities in the communication.

In non-control / corporate systems this would normally be done by a certification

authority that generates a certificate attesting to the association between a public key and

its domain parameters. Large scale control systems such as the Smart Grid will need to

perform the same function on some level. For smaller control systems, such as those

planned for use on US Navy ships for NGIPS, this association can be achieved by context

(i.e. all entities in the system use the same domain parameters).

Algorithm 10 below illustrates how to generate an ECC key pair assuming valid

domain parameters. It is critical that the number d generated be random, as in the

likelihood that any particular value of d would be chosen over any other value is so small

Page 55 of 188

that an adversary is unable to narrow down the search space for d. This is akin to the idea

that one should not select a password that includes their spouse’s name.

Algorithm 10. [2] – Generating ECC Key Pair

 INPUT: Domain Parameters D = (q, FR, S, a, b, G, n, h)

OUTPUT: Public key Q, Private key d

1. Randomly select d ϵR [1, n-1]

2. Compute Q = dP

3. Return (Q, d)

Entities that receive a public key Q and a set of associated domain parameters will

need to validate the public key to ensure that the private key actually exists and that the

keys lie on the curve. Failure to perform public key validation could allow an attacker to

try to get you to use the invalid public key in such a way that information about your

private key could be revealed. Algorithm 11 illustrates how to perform the required

validation.

Algorithm 11. [2] – ECC Public Key Validation

 INPUT: Domain Parameters D = (q, FR, S, a, b, G, n, h), public key Q

OUTPUT: Acceptance or rejection of the validity of Q

1. Verify that Q ≠ ∞

Page 56 of 188

2. Verify that xQ and yQ are properly represented elements of Fq (i.e. integers in the

interval [0, q-1] if the field is prime, and bit strings of length m bits if the field is

a binary field of order 2m)

3. Verify that Q satisfies the elliptic curve equation defined by a and b

4. Verify that nQ = ∞

5. If any verification fails then return invalid, else return valid

Note that the check is step 4 involves an expensive point multiplication. Faster

methods do exist for certain curves. For example, if the cofactor h of a prime field curve

is equal to 1 (which is usually the case in practice and for all of the SECG recommend

prime field curves [16]) then successful completion of the checks in steps 1 through 3

imply that nQ = ∞ [2].

2.5.2 Elliptic Curve Digital Signature Algorithm (ECDSA)

Algorithm 12 and Algorithm 13 below define how to generate and verify ECDSA

signatures, respectively. In these algorithms, H denotes some cryptographic hash

function whose outputs have bitlength no more than that of n. If this condition is not

satisfied though, the outputs of H can be truncated.

ECDSA uses a per-message secret k that if discovered by an adversary can be used to

recover the private key since:

d = r-1(ks-e) mod n where e = H(m)

Furthermore it has been shown that if an adversary obtains even a few consecutive bits of

the secret k then the adversary can easily compute the private key. It is therefore of

Page 57 of 188

utmost importance that k be randomly and securely generated, securely stored, and

securely destroyed after it has been used. The reason why k should be generated

randomly is to help ensure that k does not repeat. If the same per-message secret k was

used to generate ECDSA signatures (r, s1) and (r, s2) on two messages m1 and m2 then if

s1 ≠ s2 (which with overwhelming probability they will not be equal) it can be shown

that:

k ≡ (s1-s2)
-1(e1-e2) mod n where e1 = H(m1) and e2 = H(m2) [10]

Thus an adversary could determine k and then use it to determine the private key d.

Algorithm 12. [2] – ECDSA Signature Generation

INPUT: Domain Parameters D = (q, FR, S, a, b, P, n, h), private key d, message m

OUTPUT: Signature (r, s)

1. Randomly select k ϵR [1, n-1]

2. Compute kP = (x1, y1) and convert x1 to an integer x1

3. Compute r = x1 mod n and if r =0 go to step 1

4. Compute e = H(m)

5. Compute s = k-1(e + dr) mod n and if s = 0 go to step 1

6. Return (r, s)

Algorithm 13. [2] – ECDSA Signature Verification

INPUT: Domain Parameters D = (q, FR, S, a, b, P, n, h), public key Q, message m,

signature (r, s)

Page 58 of 188

OUTPUT: Acceptance or rejection of the signature

1. Verify that r and s are integers in the interval [1, n-1], if any verification fails then

reject the signature

2. Compute e = H(m)

3. Compute w = s-1 mod n

4. Compute u1 = ew mod n and u2 = rw mod n

5. Compute X = u1P + u2Q

6. If X = ∞ then reject the signature

7. Convert the x-coordinate x1 of X to an integer x1 ; compute v = x1 mod n

8. If v = r then accept the signature, else reject

2.5.3 Supported Secure Hash Algorithms

Cryptographic hash functions are used in many applications within ECC, including

verifiably random curve and base point generators, key derivation functions, and

ECDSA. According to the SECG [16] supported hash functions for ECC are:

• SHA-1

• SHA-224

• SHA-256

• SHA-384

• SHA-512

On October 2, 2012 NIST concluded a competition for a new SHA-3 algorithm,

selecting Keccak as the winner [36]. Future versions of SECG standards are likely to

allow use of the new SHA-3.

Page 59 of 188

The security level associated with a hash function depends on its application.

Collision resistance is generally needed for computing message digests in ECDSA, and

where collision resistance is needed the security level is at most half the output length (in

bits) of the hash function. Testing has shown that SHA-1 provides less than 80 bits of

collision resistance [15] and therefore should be used with ECDSA only when providing

backwards compatibility.

2.6 Comparing RSA Signatures to ECDSA

It has already been stated that ECDSA offers security equivalent to RSA using much

smaller key sizes which can lead to increased efficiency. Figure 8 below shows a chart of

comparable key sizes for equivalent levels of security. Figure 9 through Figure 11 below

show published literature execution times for ECDSA and RSA algorithms for key

generation, signature generation, and signature verification.

These times were taken from tests performed on an Intel Pentium 4 2.0 GHz machine

with 512MB of RAM, on a 100KB text file used as a message [20]. The authors used the

RSA Crypto++ Library 5.1™ and EC Borzoi 1.02 in their work. As discussed previously

though, the architecture for control system components such as PLCs is radically

different than that of an x86 architecture, and therefore these timings only provide a very

basic indication of what the performance of ECC might look like in control system

applications.

Page 60 of 188

Symmetric ECC RSA
80 163 1024
112 233 2240
128 283 3072
192 409 7680
256 571 15360

Figure 8: ECC vs RSA Comparable Key Sizes (in bits) [20]

Key Length Time (s)
ECC RSA ECC RSA
163 1024 0.08 0.16
233 2240 0.18 7.47
283 3072 0.27 9.80
409 7680 0.64 133.90
571 15360 1.44 679.06

Figure 9: ECC vs RSA Key Generation [20]

Key Length Time (s)
ECC RSA ECC RSA
163 1024 0.15 0.01
233 2240 0.34 0.15
283 3072 0.59 0.21
409 7680 1.18 1.53
571 15360 3.07 9.20

Figure 10: ECC vs RSA Signature Generation [20]

Key Length Time (s)
ECC RSA ECC RSA
163 1024 0.23 0.01
233 2240 0.51 0.01
283 3072 0.86 0.01
409 7680 1.80 0.01
571 15360 4.53 0.03

Figure 11: ECC vs RSA Signature Verification [20]

Page 61 of 188

The results show that ECC outperforms RSA significantly in key generation time, and

performs signature generation faster than RSA for higher key sizes. RSA outperforms

ECC in signature verification significantly for all key sizes. The times appear to show

that RSA signature verification time is fairly independent of key size and for practical

purposes this is true, however this is really just due to the resolution at which testing was

performed (for example RSA signature verification at 7680 bit key size should be

approximately 0.008 seconds while signature verification at 15360 bit key size should be

approximately 0.032 seconds). ECC signature verification grows linearly with an increase

in key size, however the times show that RSA significantly outperforms ECC in this area.

Signature verification is therefore of particular concern in looking at implementing ECC

signature algorithms for control systems. At stronger levels of security with larger key

sizes, ECDSA will outperform RSA for the total message transmission (including both

signature generation and verification) since ECC signature verification timing scales

linearly while RSA signature generation timing scales exponentially (due to the

exponential increase in key sizes) for equivalent levels of security.

A variant of ECDSA, known as the Elliptic Curve Korean Certificate-based Digital

Signature Algorithm (EC-KCDSA), is computationally more efficient than ECDSA. In

EC-KCDSA the signer’s private key is an integer d ϵR [1, n-1] as is in ECDSA, but the

public key is instead Q= d-1P (instead of dP). This allows for the design of signature

generation and verification procedures that do not require performing modular inversion

and therefore could potentially be more applicable in meeting control system needs. EC-

Page 62 of 188

KCDSA has been proven secure under the assumptions that the discrete logarithm

problem is intractable and that the hash function is a random function.

An alternative variant of ECDSA, proposed by Antipa et al (2005) [21], involves

reconstructing the ephermeral elliptic curve point R from the signature component r. In

other words one converts the ECDSA signature (r, s) over some message m to a new

ECDSA* signature (R, s). Antipa et al provide a general procedure for this change which

accepts the ECDSA signature as an input, performs the reconstruction/conversion, and

returns either acceptance or rejection of the signature. This speeds up ECDSA signature

verification by 35-40% at the cost of only a small number of bits appended to traditional

ECDSA signatures. Unfortunately, the EC-KCDSA algorithm and the ECDSA*

algorithms are non-compliant with any of the existing ECDSA standards.

2.7 Edward’s Curves

 In 2007 Harold Edwards introduced a new form for elliptic curves that is

birationally equivalent to an elliptic curve in the Weierstrass form described above.

Edwards showed that all elliptic curves over number fields could be transformed to the

shape x2 + y2 = c2 (1+x2y2) with (0,c) as a neutral element [24]. This work was further

expanded upon by Daniel Bernstein and Tanja Lange in [25] to demonstrate that the

elliptic curve “Curve25519”, which had previously set speed records for single-scalar

multiplication, could be transformed to Edwards curves over the same field. Their work

showed that this transformation would become the new speed leader for multi-scalar

multiplication. This work was further developed in 2011 to create the Edwards-curve

Digital Signature Algorithm (EdDSA) [27].

Page 63 of 188

 EdDSA promoted a number of benefits over ECDSA, including enhanced speed

in signature generation and batch verification, while at the same time providing a 128-bit

security level. However the primary advantages of EdDSA with respect to this work are

as follows [26]:

1. Foolproof session keys: Signatures are generated deterministically, so while key

generation consumes new randomness the generation of signatures does not.

2. Collision resilence: Hash-function collisions do not break this system. This adds

a layer of defense against the possibility of weakness in the selected hash

function.

3. Small signatures and keys: Signatures fit into 64 bytes and public keys consume

only 32 bytes. The signatures and keys are actually compressed versions of longer

signatures.

The details of EdDSA implementation are described in [27], however the sections

below provide an overview of key generation, signature generation, and signature

verification.

2.7.1 Key Generation

The figure below shows how key generation works in EdDSA. A random scalar is

created which becomes the private key. This value is then hashed which helps the

security of the key in the event that there a few bits of missing entropy in the generation

of the key. The hash is then split into two parts, with the left half of the hash going

through a series of bit manipulations to become the private scalar and the right half being

Page 64 of 188

saved. The private scalar is then multiplied by a base point through a point multiplication

operation to become the public key.

Figure 12: EdDSA Key Generation

Note that in Figure 12 the private key is run through the hash each time signature

creation and verification is required. It is possible to simply save the “Key Right Half”

and “Private Scalar” values, which doubles the amount of storage memory required to

save the private key but improves overall timing efficiency.

2.7.2 Signature Generation

 Figure 13 shows how signatures are generated in EdDSA. The “Private Key

Right Half” is concatenated with the message and run through a hash, the results of which

are intepreted as a scalar. The scalar then goes through a mod L operation to become r,

where L represents the order of the curve. The value r * B is then encoded as a point R

on an Edwards-curve, which is then concatenated with the message and the public key,

and then hashed together to create a new scalar. That scalar also goes thru a mod L

Page 65 of 188

operation in order to become k. The scalar k is then multiplied by the “Private Key

Scalar”, added to the scalar r, and then goes through a mod L operation to become a

scalar S. The point R and the scalar S together make up the EdDSA signature.

Figure 13: EdDSA Signature Generation

2.7.3 Signature Verification

 Figure 14 below shows how signatures are verified in EdDSA. The operations are

similar to Signature Generation, except that the Public Key and the Signature R values

are both points on an Edwards-curve represented by strings that must be decoded back

into points. These points are processed via two different point multiplication operations,

which makes signature verification more computationally expensive than signature

generation. Ultimately verification performs a check on the two different sides of the

equation to ensure that the values are equal. This check is done by encoding the two

different sides of the equation, both of which are points, into strings and then comparing

the encoded strings. This encoding is critical because the two different points (x,y) are

usually represented in extended coordinates (X, Y, Z, T), and a straight comparison

Page 66 of 188

between different (X, Y, Z, T) values is not an accurate way to compare the results and

determine if a signature is valid or not.

Figure 14: EdDSA Signature Verification

2.7.4 Special Curves

Reference [27] describes two special curves that have been developed for EdDSA.

The first is known as Ed25519, which is named after the prime number p defining the

underlying finite field (in this case 2255-19). This curve is fully defined in [27] and is

intended to operate at around the 128-bit security level. The second curve is Ed448,

again named after the prime number p defining the underlying finite field (in this case

2448 – 2224 – 1). Ed448 is provides security at around the 224-bit security level and is

intended for applications which require higher security and have reduced performance

requirements. Ed448 is sometimes known as “Goldilocks” or “Ed448-Goldilocks”, and

is especially useful when there is a desire to hedge against analytical attacks on elliptic

curves.

For control system applications, however, performance is the primary requirement as

long as security can be provided at the 128-bit security level, and reasonable projections

of classical computing capabilities have concluded that this curve is perfectly safe [27].

Page 67 of 188

Therefore the Ed25519 curve was chosen for this work. Additionally there are variants

of all of the EdDSA schemes known as PureEdDSA and HashEdDSA. The difference

between them is that PureEdDSA requires two passes over the input while HashEdDSA

only requires one, however PureEdDSA provides security even if it is possible for

someone to compute a collision for the hash function. Therefore it was decided to use the

PureEdDSA variant of Ed25519 (hereafter just known as Ed25519 vice the term

Ed25519ph use to designate the hash variant). This decision does not impact the timing

per scan cycle, but does increase the total time that it takes to compute and verify the

digital signatures.

Page 68 of 188

CHAPTER 3: TECHNICAL CONSTRAINTS AND SOLUTIONS

3.1 Introduction

There are a number of problems with implementing cryptography in Industrial

Control Systems (ICS), such as the inability to natively perform 64 bit operations. This

section presents the most significant challenges the author faced in developing a control

system cryptography solution. It concludes with an overview of the solution and the

proof of concept implementation, which will be further defined in the following chapters.

3.2 Random Number Generation

In cryptography, the ability to generate true random numbers is crucial and failure to

do so will result in a vulnerable system. In the prototype, every message was digitally

signed before being sent to a controller using the Elliptic Curve Digital Signature

Algorithm (ECDSA). ECDSA requires a random number to be generated for each

signature in order for the algorithm to be secure. While it is possible to use a pseudo-

random number generator (PRNG) for ECDSA, the PRNG has to be initialized with a

true random seed which is kept secret. The seed itself is partially consumed with each

use of the PRNG, eventually weakening to the point that the seed must be reinitialized to

a new true random number to maintain security. Since PLCs send a message anywhere

from 20 to 50 times a second, and each message in the prototype requires a digital

signature which consumes randomness, the seed would be too quickly consumed to

provide long term security.

Unfortunately, the creation of a true random number generator (TRNG) is a non-

trivial task which usually relies on some kind of quantum effect. The most common

Page 69 of 188

sources for TRNGs include radioactive sources, quantum effects in semiconductors, and

quantum effects in photon polarization detection. Sources that do not rely on quantum

effects usually rely on “human error” by asking a human to perform a task such as move

a mouse around randomly and calculate the deltas in time when the human moves the

mouse in a different direction. Software such as Veracrypt, for example, relies on this

“human error” approach.

At this time for most applications the only true reliable method of obtaining random

numbers is to install an external hardware-based random number generator. There are a

number of products on the market today that make the claim to be TRNG (evaluation of

such claims is beyond the scope of this paper). However most of those devices were

designed with a more standard computer in mind and are incompatible for use with a

PLC. An example is the TRNG9815 device commercially available at www.trng98.com

and shown in Figure 15 below. This device is based upon a Zeener diode noise source

which is then amplified to be read by a PC.

Figure 15: TRNG 9815 Device

Page 70 of 188

One problem with this device, and others like it, is that they usually rely on a USB

connection to a PC and external driver software to function properly. ICS devices like

PLCs do not have the capability to read USB devices let alone install driver software.

Additionally, many control engineers consider the presence of USB ports on ICS devices

to be a significant security risk.

The good news is that it is possible for ICS vendors to create a hardware based TRNG

using existing technologies with relative ease. Therefore, while a commercial product is

not available at this time to the best of the author’s knowledge, it is likely one will be

available in the near future. The bad news though, is that it takes time for a TRNG to

collect enough quantum data to generate a random number long enough to be

cryptographically usable. Given the high rate of PLC messages it is doubtful a TRNG

will be available in the near term that is fast enough for per-message authentication. We

will have to continue to use a PRNG with a TRNG to update the PRNG’s seed value.

Therefore this work proposes a solution that will significantly decrease our need for

random numbers from potentially 380+ million random bits a day to 256 random bits

every couple of months. This would allow us to use PRNGs to meet our application

needs in the short run and ultimately loosen the design constraints for an eventual

hardware based TRNG that can be used on a PLC.

3.3 BigIntegers

 There are a range of existing cryptographic algorithms used in Information

Technology (IT) systems that can provide authentication and validation for data streams

and packets. Open source libraries such as OpenSSL provide readily accessible

Page 71 of 188

implementations of these algorithms that can be included in software packages to provide

data authentication and verification services for almost every application. Unfortunately

none of these libraries are appropriate for use by PLCs and embedded controllers as they

run a unique software language known as “ladder logic” that is based on old electrical

relay diagrams.

 Ladder logic offers a number of benefits for control systems, primarily the benefit

of being easy to understand and implement. Additionally it offers the ability to watch the

code execute “live” to debug without the need of more advanced features such as

breakpoints which are common when performing debugging of a higher level language.

In many ways implementing a solution in ladder logic is much more similar to a

hardware based solution than a software based solution. Ultimately this means that the

PLCs can run for years without stopping, and it is not uncommon to find industrial

control systems that have been running non-stop for 10, 15, or even 20 years.

 The downside is that these controllers are unable to use existing implementations

of cryptographic algorithms such as those found in the OpenSSL library. Even basic

operations such as declaring an unsigned integer and a standard “for loop” are

dramatically more difficult than in a language like C/C++. This becomes especially

critical when looking at concepts such as BigIntegers which are essential for performing

cryptographic functions.

 A BigInteger is a data type that represents an arbitrarily large integer whose value

has no upper or lower bound. This is distinguished from a DINT or even a LINT, which

has an upper bound limited to the number of bits present in the data type (32 and 64

respectively). In RSA, a common cryptographic algorithm used to secure a wide range of

Page 72 of 188

systems, BigIntegers on the order of 2048 to 8192 bits are used. The use of ECC helps

reduce the scale of this problem by allowing us to use smaller BigIntegers to provide

solutions of equivalent strength at reduced bit sizes. For example, to provide security at

the 128-bit level (the common security level for data considered “secret”) RSA

BigIntegers need to contain 3072 bits according to NIST SP 800-57 [5]. ECC can

provide us the same security using BigIntegers of 256 bits, which dramatically improves

the scope of the problem but does not in itself provide us a solution to perform 256-bit

math in a PLC.

 Representing a 256-bit BigInteger can be done a number of ways, with the most

obvious being to simply take an array of 8 32-bit DINTs. The problem with this

approach is that when you perform operations such as addition and multiplication you

end up having to propagate the carries, and if you use an array of 8 32-bit DINTs you

have to perform a lot of work to propagate the carries which turns into a very long

sequence of bit operations. Bernstein on his blog [23] states “The standard NIST P-256

reduction procedure becomes even more painful if integers aren't represented in radix 232

(or 216 or 28): the word shuffling required for T,S1,S2,S3,S4,D1,D2,D3,D4 then turns into

a long sequence of bit manipulations. The reason this is important is that radix 232 isn't

the best way to carry out big-integer arithmetic on most CPUs. Even on CPUs where the

largest multiplier size is exactly 32 bits, it's almost always better to use a radix smaller

than 232, so that carries can be delayed.”

 Rockwell Automation has a data type in the RSLogix5000 series called LINT,

which is a 64-bit integer. However, the mathematical operations ADD, SUB, MUL, and

others which are usable on a 32-bit DINT data type cannot be used with the LINT.

Page 73 of 188

Rockwell does provide a series of Add-On Instructions (AOIs) that provide this

functionality. These AOIs essentially work by breaking the 64-bit LINT into 3 32-bit

DINTs, performing the math operation on the three different pieces and then reducing the

entire array of DINTs back into one LINT.

 Following a similar approach we determined that using twenty-two (22) 12-bit

pieces stored in DINT is the most efficient method for representing a 256-bit value for

the following reasons:

1. Splitting the value into 32-bit pieces significantly increases the number of bit

manipulations which decreases code efficiency

2. Splitting the value into 16-bit pieces works for addition and subtraction, but when

you perform multiplication the result in the intermediate steps would have 32-bit

pieces which would have to be added together introducing carries which then

require complex code to handle

 The result is that splitting the value into 12-bit pieces is the largest size that takes

up the least amount of space without introducing significant code complexity. In

particular, this allows you to be able to multiply two sums without having to perform a

reduction until the end of the multiplication. Smaller pieces increases the size of the

internal loops of the operations which increases overall run time. Thus twenty-two (22)

12-bit pieces is the optimal way for storing 256-bit BigIntegers on a PLC or on any

embedded controller device operating with a 32-bit processor.

Page 74 of 188

3.4 Processing Speed

The single biggest challenge in implementing cryptography in a PLC is the speed of

the processor. Over the years PLC processing speeds have increased dramatically, to the

point that control system engineers rarely have to even consider the possibility that their

application might actually run so slow on a PLC that it would fault the controller. On

average, the PLC programs developed in our offices have scan times between 20ms and

100ms for fairly large applications processing hundreds to thousands of I/O points. In

general, it is the opinion of the author that a control system program must have a scan

time at least twice as fast as the fastest response rate of a controlled physical I/O device

(i.e a valve or pump). This typically translates to a required scan time of less than 250ms,

and ideally less than 100ms. Additionally, we have found that scan times of greater than

500ms will actually cause a Rockwell 1756-L8x series processor (the latest available at

the time of writing) to have a major fault.

Modern computers have multi-core processors that run in the GHz range and typically

do not have real-time performance requirements (those that do can always have dedicated

cryptographic modules). PLCs on the other hand have strong real-time performance

requirements and have processors that run in the MHz range due to the lack of active

cooling. To illustrate this challenge a basic SHA-512 algorithm written completely in

ladder logic was developed. Running that algorithm in RSEmulate on a standard PC

running an Intel 2500K processor at 4.2 GHz for 104 bytes of data gave a scan time of

2ms. Running that same algorithm on a 1756-L8x series PLC gave a scan time of 26ms,

over an order of magnitude higher. While this may not seem like a lot, consider that

operations used in cryptography such as point multiplication and modular exponentiation

Page 75 of 188

are much more complex. Such operations could easily consume the entire available scan

time of a PLC and leave no real time to actually perform control work. Therefore a

solution is required that would allow us to perform these complex operations without

impacting scan time.

As an example, look at the case of an elliptic curve point multiplication, which is the

process of repeatedly adding a point along an elliptic curve to itself. This process creates

a trapdoor function, and the security of ECC is based on the intractability of determining

a multiplier n from the equation Q = n*P where Q and P are given points on the curve.

There are a number of approaches in performing point multiplication, such as the

sliding-window method and Montgomery ladder. If you follow the approach in RFC

8032 [27] then a single point addition requires nine 256-bit multiplications, four 256-bit

additions, and four 256-bit subtractions. Each of these operations must be repeated for

each bit in the multiplier in order to perform the point multiplication at constant time and

avoid a timing side channel attack.

The coding of such an algorithm into ladder logic is a challenge in of itself, but even

the most efficient implementation will not be able to run on the PLC. This is because, as

stated above, there is an already known optimally efficient way to store the 256-bit value,

which results in a known optimal number of standard ladder logic math instructions such

as ADD and MUL to perform a basic B256_ADD and B256_MUL.

For example, just looking at the number of standard RSLogix5000 MUL instructions

in one point multiplication gives the following result:

1 POINT_MUL = (8 B256_MUL + 1 POINT_ADD) per bit in n

1 POINT_ADD = 9 B256_MUL

Page 76 of 188

1 B256_MUL = 484 MUL

1 POINT_MUL = [(8 + 9) * 484] * 256 = 2,106,368 MUL

So essentially one point multiplication results in over two million ladder logic MUL

instructions alone, not including the additions, subtractions, shifts, and other loop

instructions required. The result is such a massive number of instructions that if you

attempt to run them all in one scan of a PLC it will negatively impact the overall scan

time and potentially even fault out the controller. This problem is compounded further

by the fact that the Ed25519 Digital Signature Algorithm and the ECDH algorithm

require multiple point multiplications, although not all at the same time.

In order to improve the execution rate of the processor per scan we looked at two

trade space areas. The first “classic” trade was memory space for time. Memory is much

more limited in a PLC than in a typical PC environment, with the PLC memory size

typically in the 2-8MB range, but some exceptions that have up to 32MB. However most

cryptographic algorithms require a relatively small memory space, and the typically PLC

application will only require 2-3 MB of memory for a controller with approximately 500

I/O points. As a result there is a significant opportunity to design a cryptographic system

that trades memory space for improved processing time.

The main way space for time trading is used in this design is the way the private key

is stored (discussed further in Chapter 6). For an Ed25519 Digital Signature Algorithm

the private key is normally stored as a 256 bit value, which is then hashed to generate a

512 bit value. Half of the bits from the hash are used as part of the key, while the

remaining 256 bits are then manipulated to form a private scalar. The details of this will

Page 77 of 188

be discussed in more depth later, but the point is that an initial 256 bit key ultimately

turns into two 256-bit parts via hashing and bit manipulations. Therefore you can save

some processing time and skip the hashing and bit manipulations if you double the

private key storage space from 256-bits to 512-bits.

The second trade space is a “trade longer total execution time for shorter scan times”.

Using this approach the operation of sophisticated mathematical operations such as point

multiplication are performed by breaking the operation into a series of sequential pieces,

so that only a small portion of the total algorithm is run in any given scan. This is similar

to a standard sequencer used in a batch control process, where the sequencer executes a

set of commands in each step and waits for a feedback from the process indicating that

step is complete before executing the next step. In the case of point multiplication, the

most obvious solution is to break up the algorithm so that each point addition is

performed on a separate scan. The sequencer waits for a confirmation that the point

addition is completed, stores the result in a temporary variable, and then uses that result

in the next scan for the next point addition. It should be noted that this approach also

utilizes the idea of trading space for time, since it takes additional memory to hold the

logic that controls the sequencing and execution of the different pieces of the operation.

Using this approach a point multiplication AOI was developed that can run on a

Rockwell 1756-L83 processor with only a 10ms impact to total scan time. The same

approach was used on all the other different pieces of the Ed25519 digital signature

algorithm such as SHA-512. Combining all the pieces into a master sequencer produces

a digital signature implementation capable of running on a PLC with a scan time of

impact of less than 10ms. There are downsides to this approach. The first is that the total

Page 78 of 188

time to produce a digital signature is significantly longer. Depending on the processor

and the amount of control code that has to run in a scan (that is not related to

cryptography) the entire operation could take a couple of minutes to complete. Testing

on the point multiplication showed that it took less than a minute to complete on a 1756-

L8x series processor. An entire Ed25519 digital signature took ~5 minutes to complete

on a Rockwell 1756-L8x series processor versus approximately 37 seconds on a Intel

2500K Quad Core Processor overclocked to 4.2 GHz running a generic and non-

optimized python implementation. Regardless, the system itself will be able to run

without impact during this time. The message traffic will continue to use the old key

until negotiation and verification of the new key is complete. The process can also be

performed during scheduled maintenance windows to reduce overall risk.

The second potential problem is that extending this algorithm across multiple scans

can potentially make the algorithm vulnerable to side channel attacks. To protect against

these attacks the following steps must be taken:

1. Ensure that the coding of the algorithm prevents a timing attack

2. Severely restrict users from being able to access and go online to the PLC

3. Use built in features of the PLC products to prevent users from being able to read

and write to the tags involved in the cryptographic operations

The final problem is that this approach is not usable for an HMAC implementation

because an HMAC must be calculated in its entirety on each scan. Otherwise you will

not be able to perform data authentication for each and every message to and from the

Page 79 of 188

controller. Therefore an alternative approach must be used for HMACs, which is

discussed in the following section.

3.5 Multicast

Historically control system data has been communicated between devices via unicast

messages. However as systems have grown and become more redundant the use of

multicast technologies has increased dramatically, particularly when having a large

number of different controllers talk to a large number of consoles. The benefits of

multicast are numerous for a networking perspective, particularly in being able to add

nodes to an already established infrastructure. From a controls engineering perspective,

this means that additional consoles can be added to a system without any impact to the

end controllers, significantly reducing the testing and validation efforts.

From a security perspective, however, multicast presents some unique challenges.

The cryptographic algorithms that exist today are designed for end-to-end security

between a pair of devices. Security between groups of devices typically relies on the

network infrastructure itself acting as a middle man to provide the security between the

various end points. For example, in a normal unicast security mechanism between 2 or

more nodes each node would have to send a unique unicast packet to each of the nodes

that is secured via some cryptographic algorithm. In a normal multicast security scenario

a node sends a secured packet to a switch, with the cryptographic algorithm securing the

data only between the node and the switch. The switch then needs to execute a separate

cryptographic algorithm to secure the packet being sent from the switch to a receiving

node, repeating the process for each individual node. The result is that the most

Page 80 of 188

significant part of the security burden is placed on the network itself, and the network

itself must be considered a trusted agent. If the network is somehow compromised, then

all nodes communicating via that network can be compromised as well.

Therefore a security solution must be designed that allows for multicast messages but

assumes that the network that is transmitting the data is hostile. Digitally signing each

packet from each node avoids problems with hostile networks, since the nodes only need

to know the public keys of each other. However as discussed previously, the limitations

of processing power prevent this solution from being feasible and thus we require some

kind of symmetric-key based solution such as an HMAC. This means that the set of

multicasting nodes needs to somehow securely generate and share a symmetric key with

each other.

One potential solution involves a modified ECDH key exchange, where a pair or pairs

of nodes perform an ECDH key exchange but then interpret the result as a new scalar to

use for a key exchange with another node or group of nodes. An example of this is

shown below for just three nodes:

Step 1, Node 1: q1*B = Q1

Step 2, Node 2: q2*B = Q2

Step 3, Node 1: q1*Q2= q12, interpret point as a little-endian scalar

Step 4, Node 1: q12*B = Q12

Step 5, Node 2: q2*Q1 = q12, interpret point as a little-endian scalar

Step 6, Node 2: q12*B = Q12

Step 7, Node 3: q3*B = Q3, q3*Q12 = Q123

Step 8, Node 1: q12*Q3 = Q123

Page 81 of 188

Step 9, Node 2: q12*Q3 = Q123

Ultimately the complexity of this process and the time it takes to perform increases

linearly as the number of nodes increases, assuming everything works perfectly and all

nodes are fully operational. Work proposed by Rodeh et al [32] follows this general

approach and improves the overall efficiency to Θ(log n) as well as proposes alternative

2-round and 3-round solutions. However the reality is that this process will have a high

error rate since each node must perfectly perform the mathematical operations in a

precise sequence in order for the group to arrive at the correct symmetric key. If an event

occurs that shuts down a node, such as a power loss, the computation of the symmetric

key could be easily compromised. This means that significant error handling logic would

be required to dynamically route the generation of the symmetric key in the event of a

node failure. Additionally a process would need to be implemented to add a node back

into the group when the node’s failure is resolved (i.e. power is restored). Ultimately the

result would be an algorithm with a greater than linear increase in processing time and

complexity as the number of nodes increase.

Most secure multicast schemes follow some variant of the Iolus Framework for

Secure Multicasting [30]. The framework essentially establishes a secure distribution

tree, designed to communicate a symmetric key between the nodes which is used to

secure the multicast data. It introduces the concept of different security subgroups, with

each group having a Group Security Controller (GSC) which manages the top level

subgroup and a Group Security Intermediary (GSI) which manages each of the other

subgroups. Both GSCs and GSIs are known as Group Security Agents (GSA). The idea

Page 82 of 188

is that these entities form subgroups which then work together to deliver the multicast

traffic to all of the subgroups in the overall group. At the root of the tree is the GSC

which is ultimately responsible for the entire group. Typically these kinds of frameworks

use a symmetric key called Kgroup to encrypt some new Kgroupnew, and then transmit

the new key.

In many ways this approach is similar to the Group Key Management Protocol

described in RFC 4046 [33], but since it is a tree it is potentially more scalable since all

of the nodes will not have a reason to contact the root GSC at the same time which can

cause an out-of-sync implosion. However, one of the issues with Iolus is that a node that

wishes to join the group would have to first locate a GSA, particularly in a scenario

where a GSA might be dynamic. Solutions that have been proposed to solve this problem

primarily involve the node performing some kind of lookup against a directory service,

however devices like PLCs do not have the processing power to perform such a lookup.

The framework also requires that when a member joins or leaves a group a rekeying of

the entire group will need to take place.

 Some proposals such as found in [31] involve creating a virtual binary tree from the

root node and only require rekeying between the end node and the path towards the root

node which improves the overall efficiency of the algorithm to O(log n). In general the

primary problem that these works are attempting to solve is how to keep the group secure

such that an old node can’t just access data within the group without properly joining the

group, and to effectively boot the node out of the group. As a result significant overhead

must be assigned towards joining and leaving the group to ensure security before the

nodes can talk. For an information technology system this makes sense, however for

Page 83 of 188

operational systems such as control systems this presents significant problems. A control

system needs to be able to communicate as fast as possible when it powers on, and delays

in that could have unintended operational consequences. Additionally, control system

nodes do not just go on and offline like a typical information system node. The control

systems are generally fairly static, and changes to them have to go thru rigorous testing

processes for Installation Qualifications (IQ), Operational Qualifications (OQ), and

finally Process Qualifications (PQ). Therefore if a node appears to be joining and leaving

a group rapidly it is likely due to either equipment or power failure and control system

operators will want to restore operation of the node as fast as possible.

The larger problem with the Iolus framework is that it does not account for damage to

the network, which could cause partitioning and prevent nodes from being able to contact

a GSA even though they are able to communicate with other nodes. This is especially

important for military applications, but in general all critical infrastructure systems need

to be robust enough to handle damage from all sources including natural disasters. The

problem is mitigated to some degree in that the nodes would currently have a shared key

and would be able to continue to talk for a limited time until the partitioned network is

restored. However since new keys in the Iolus framework are generated and transmitted

using the current symmetric key the shelf life of the keys is limited. The Iolus framework

even includes an expiration for the keys in the framework, requiring that nodes reach out

to a GSA to get an updated key.

The main purpose of the frequent key exchanges is to deal with a scenario where a

node leaves a multicast group. The idea is to change the key once a minute or so to avoid

having to change the key each time a node leaves the multicast group. This helps ensure

Page 84 of 188

that when a node leaves it must renegotiate with a GSA to rejoin the group, which can

take some time. For a control system, however, you want the exact opposite approach.

Control system nodes do not “come on and off” the network frequently, except in damage

or power loss scenarios. Therefore when the node is restored you want to let it be able to

rejoin the group as quickly as possible.

Finally, none of these proposals assume any kind of prior trust relationship between

the various nodes. This makes sense when considering applications like video

conferencing since the creation and membership of the group will vary wildly. However

for control systems the creation and group membership will be fairly static. An algorithm

tailored for control systems requires some kind of prior trust relationship between the

nodes to ensure that only intended nodes join the group. Therefore some kind of public-

private key pair and key infrastructure must be put into place so that a vendor can allow a

different vendor to have his control system equipment be capable of joining the

established group.

3.6 Lack of Proper Time Synchronization

Even when a message is authenticated by a cryptographic algorithm, it is still

potentially vulnerable to a replay attack, where an attacker saves a copy of a valid

message and then plays it again at a later time to cause systems to perform undesirable

behavior. Solving this problem usually involves embedding a timestamp into the

message, such that any message that comes in which is older than the last message that

was received is immediately rejected as a possible replay attack. Normally this

Page 85 of 188

mechanism requires all nodes to have proper time synchronization, which is typically

required by an IT system anyway to meet some other business or auditing requirement.

 Control systems typically do not have a requirement for time synchronization, and

typically do not even have clocks set to accurate times. Most commonly a PLC’s clock is

set whenever a program is downloaded into it based on the time of the PC that was used

to download the program. In large control systems where multiple vendors are working

to groom the system it is likely that the clocks of the vendors are not synchronized, and as

a result the control system nodes are unsynchronized as well. Most PLC vendors do have

a way of allowing a user to configure the PLC to be synchronized to an NTP server, but

the problem with that approach is that now you are reliant on your NTP server securely

and accurately updating the clocks of the controllers to avoid a replay attack. Therefore

an attacker could first compromise the NTP server, roll back the clocks of the PLCs, and

then use replay attacks in order to compromise the system.

3.7 Message Structures and Send Rates

One of the more unique differences between control system components and standard

IT components is the frequency and how messages are generated and sent. A typical PC

application that communicates across a network is capable of performing some kind of

logic, generating the message, sending the message, and then waiting for a response. The

application can then receive the response, process additional logic, and then generate a

new message, potentially with a different structure than the first message. An example of

this is the Transport Control Protocol (TCP) itself, which generates and sends messages

such as SYN, ACK, and FIN that are used to establish a connection.

Page 86 of 188

A PLC, and control system components in general, have a radically different

approach. A PLC is typically not capable of dynamically changing the message

structures without significant intervention on the part of a developer, and even then there

are many control system components which have no such capability. This means that if a

message is required to transmit or process a piece of data, such as a public Diffie-

Hellman value, that message structure will always carry that piece of data even if it is not

relevant at that time. Additionally the sending and receiving of messages is typically

asynchronous of the logic that is generating the contents of the message. This means that

even in something like a ECDH key exchange the public values used in the key exchange

will continue to be transmitted by the controllers at a regular interval long after the key

exchange has been completed. Even if the logic were to “zero-out” the value when the

key exchange is completed, the bits that held the values would still be part of the message

structure and would still be transmitted each and every scan.

3.8 Proof of Concept Implementation Overview

This section describes the high level concept of the design and the proof of concept

implementation, all of which will be elaborated in more detail in the chapters below. The

design consists of two parts. The first part is the Variable-round Message Authentication

Code (VMAC) algorithm, in which control system data between nodes is authenticated

using a shared secret key known by all of the nodes. Details of the VMAC are described

in Chapter 4, but at a high level the VMAC is a variant of an HMAC-SHA256 algorithm

but designed to run fast enough on a controller. Messages authenticated by VMAC can

be communicated using multicast or unicast schemes.

Page 87 of 188

The second part of the design is the Key Exchange Protocol (KEP), which is designed

to securely generate and transmit the key that will be used by the VMAC. KEP uses a

unicast based control message scheme between the nodes to generate and exchange the

VMAC symmetric key Ks’, and contains logic to handle errors such as nodes potentially

coming on and offline at various times. The KEP messages are not used for control data,

which is typically multicast and is authenticated by VMAC. The concept is that KEP will

be used to automatically update the VMAC keys in a fashion that provides a bumpless

transfer between the keys at a rate that far exceeds the requirement to actually change the

keys. In fact KEP could be configured to update the keys in a “non-stop” fashion,

meaning that once a new key is generated, shared, and in use by all nodes KEP

immediately could start working to generate a new set of keys. Such a rate would likely

be excessive though, with a more reasonable rate being closer to once per year, however

KEP does provide this capability. Note that throughout this paper there are two KEP

symmetric keys mentioned, Ks’ and Ks. Ks’ is the primary key that is generated and

transmitted by KEP, and generally represents the “latest and greatest” key that was

generated. Ks represents the last instance of Ks’ that was used by all nodes to generate

VMAC messages, and can be thought of as the backup to Ks’. Ks is ultimately set equal

to Ks’ at completion of the KEP algorithm.

The design uses EdDSA to securely sign and verify the messages used in KEP to

distribute the VMAC keys. Since EdDSA only consumes randomness during key

generation and not signature generation it is possible to significantly reduce the number

of random bits required by generating the EdDSA keys offline. A python script has been

developed that will generate and test the keys for ControlLogix (refer to “Appendix E”).

Page 88 of 188

The design is protocol independent, meaning that the underlying communication

mechanism between the nodes could be Ethernet, Modbus, Profibus, Profinet, EthernetIP,

or some other fieldbus protocol variant. A proof of concept was developed using

Rockwell Automation’s Studio 5000 software using IEC 61131-3 compliant ladder logic,

making it relatively easy to develop a hardware based solution or a solution for a

different PLC vendor. Testing between the nodes was done using four RSLogix1756-

L83 PLCs using produce/consume tags in a multicast configuration for the IO.

Page 89 of 188

CHAPTER 4: VMAC

4.1 Introduction

This section describes the details of the Variable-round Message Authentication Code

(VMAC) algorithm. The algorithm ultimately consists of two parts, the VMAC itself

which provides the cryptographic means for providing data authentication and validation,

and the VMAC implementation which provides context for error handling and provides

security against various forms of replay attacks. This chapter will begin discussing the

VMAC algorithm from a cryptographic perspective, and end with implementation details.

One point of note is that in theory the VMAC can be used without KEP in order to

provide data authentication and verification, assuming that the engineer or design agent

organization has control of every node and does not need to integrate with a third party

vendor. From a practical perspective this is unlikely, but there are instances where this

could be the case.

4.2 Cryptographic Details

VMAC is essentially a variant of an HMAC-SHA256 algorithm which was modified

to meet the following requirements:

1. The algorithm must be fast enough to create the message authentication code

without negatively impacting overall control system operation.

2. Any adversary with full knowledge of the software, the data, and matching

hardware would not be able to produce the message authentication code without

knowing the secret session key

3. Provide 128-bit level security (SHA-256 equivalent)

Page 90 of 188

4. For a single bit change in the input produce on average approximately 128 bit

changes in the output and no less than 50 bit changes in the output in the worst

case (equivalent of SHA-256)

5. Protect against common attacks such as the length extension attack and collision

attack

The standard HMAC algorithm for producing values at 128-bit security is HMAC-

SHA256 which is a Θ(n) algorithm. This algorithm was implemented and tested as part

of this work on a Rockwell 1756-L83 processor. The message size was 200 bytes. Initial

results indicated that such an algorithm would have a scan time of 50-100ms when used

in production. Considering that you would use two of them for both send and receive the

combined scan time impact could reach up to 200ms for only 200 bytes. This would

have detrimental impact on overall control system operation. Unfortunately, since the

entire operation would have to be performed per message per scan there is no way to

practically sequence the code in the same manner as was done for point multiplication or

other complex operations. Therefore a new HMAC was designed as a compromise

between security and performance using an alternative design approach as compared with

the sequencing approach used in performing point multplications described previously.

The standard HMAC-SHA-256 algorithm follows the following construction as

defined in RFC 2104 [22] :

HMAC(K, m) = H((K’ ⊕ opad) || H ((K’ ⊕ ipad) || m)))

Page 91 of 188

Where H represents the SHA256 algorithm being used twice, K’ represents the key, and

opad and ipad are constant values.

Figure 16: VMAC Add-On Instruction

The proposed Variable Round Message Authentication Code (VMAC) shown in

Figure 16 was created as a reduced round derivative of SHA-256, keyed in a specific

manner to avoid having to add an inner or outer pad and to avoid having to perform a

second hash. Specifically the number of internal rounds of SHA-256 is reduced from 64

to between 20 and 64 rounds as defined by the parameter “Inp_ROUNDS” and the key is

mixed into the scheduling of the message using the following formulas:

Step 1: Select one of the eight 32-bit portions of the 256-bit key to become the

IndexedKey using the algorithm below. Note that if each round from 0 to 63 is

designated by the parameter n, then the selected portion of the key is:

KeyIndex = n for n=0..7

KeyIndex = n-5 for n=8..12

KeyIndex = 1 for n=13

KeyIndex = 2 for n=14

Page 92 of 188

KeyIndex = 0 for n=15

KeyIndex = (63-n) mod 8 for n=16..63

IndexedKey = Inp_KEY(KeyIndex)

Note that the KeyIndex was specifically chosen to ensure that each of the 256-bits of the

output are impacted by each of the 256-bits of the key,

Step 2: Calculate the RotationIndex of the key, which causes a different rotation amount

to be applied each time an IndexedKey value is used:

RotationIndex =3*KeyIndex + (n>>3)

The RotationIndex ensures that the exact same order of a specific part of the key is

never used in more than one round when generating the hash.

Step 3: The key is then mixed into the scheduling process of the message using the

following formula:

W[n] = Fo[n] XOR ROTR (RotationIndex,IndexedKey)

Where Fo represents the original formula to calculate W[n] in the SHA-256. As a result

the key is mixed in recursively with the data when n is greater than 15. There is no ipad

or opad and the hash algorithm is only used once, which means that if the AOI was run at

64 rounds using a key of all zeros you would get the same output as standard SHA-256.

Note that Fo for each of the rounds 16 through 63 is a function of 4 previous values and

Page 93 of 188

the IndexedKey. The custom indexing of the key described in Step1 is necessary to

ensure that the final W value for 20 rounds or more is a function of all 256 bits of the

key.

The following table shows the timing results for processing the algorithm at different

byte lengths with varying numbers of rounds on a 1756-L83 processor. These results are

typical, as it has been shown in our testing that different processors within the same

family might produce slightly different timing results.

Rounds 200 Bytes 400 Bytes 800 Bytes
20 7.3 12.9 23.8
24 9.8 17.1 31.6
32 14.8 25.7 47.6
48 23.9 41.7 76.9
64 33.5 58.7 108.4

Figure 17: VMAC Timing Results (in ms)

4.3 Attack Vectors

In this section VMAC is evaluated against the most common attack vectors for hash

based message authentication codes in order to determine possible weaknesses that would

make VMAC impractical for control system use from a security perspective. Ultimately

it is concluded that the use of VMAC with 20 rounds is sufficiently secure for control

system message authentication purposes, with a recommendation of using 24 rounds or

more when operating on a single data block (less than 440 bits).

Page 94 of 188

4.3.1 Length Extension Attacks

The most common attack against a hash based message authentication code is the

length extension attack. The attack works when you hash a data set that looks like:

H (Key || Message) = Hash1

You can add more data to the message and generate a valid response (Hash2 below)

without knowing the key by taking:

H (Hash1 || FakeMessage) = Hash2

This is because

Key || Message || FakeMessage

Is indistinguishable from

Key || SomeDifferentLongerMessage

This assumes that you properly calculate enough padding at the end of the real

message before you append the fake data so that you fall on the next block. Thus the

construction of most HMACs based on the SHA2 family need to use two hashes that

essentially bound the length of the message. Note that SHA3 avoids this limitation by

using a sponge construction and avoids blocks altogether.

VMAC is based on the SHA2 family but doesn’t use a second hash function to bound

the length of the message. Therefore it would appear that VMAC might be vulnerable to

the length extension attack. VMAC avoids this attack vector because it does not prefix

the key as part of the first block of the message, it injects the key into every block of the

message. Thus adding an extension to the method would not generate the same result

Page 95 of 188

because the FakeMessage above would not have been processed in the context of the key.

This allows VMAC to avoid the second hash operation altogether and is thus capable of

running faster than the HMAC-SHA256 algorithm.

4.3.2 Collision Attacks

The improvement efficiency gained in VMAC by avoiding the second hash helps

improve overall timing of the algorithm, but given that the second hash is on a fixed

length block the time saved is not significant enough. The bulk of VMAC’s timing

efficiency is based on reducing the number of internal rounds. However, reducing the

number of rounds makes the algorithm weaker than a typical HMAC because it increases

the chance of collisions. For starters the first 16 rounds of SHA-256 do not utilize the

message expansion contained in the remaining rounds, so doing only 20 rounds means

that you are only using 4 rounds of expansion versus 48. Therefore testing was

conducted on reduced round SHA-256 to determine how reducing the rounds affected the

output result when you change one bit in the input. Python code used to test SHA-256

can be found in “Appendix A.1”. Standard NIST messages were used as the input, and

the table below gives results for changing each bit in the input sequentially over a range

of 512 trials per message per test.

Page 96 of 188

Test Rounds Low High Average
MSG_0 64 101 152 127.6855
MSG_8 64 103 149 128.1992
MSG_440 64 103 148 127.3574
MSG_0 24 101 147 128.0195
MSG_8 24 110 154 128.4765
MSG_440 24 100 152 128.2656
MSG_0 20 101 150 126.5820
MSG_8 20 96 151 126.9570
MSG_440 20 92 147 127.0371
MSG_0 18 38 149 119.7031
MSG_8 18 44 158 120.2480
MSG_440 18 42 155 120.1914
MSG_0 16 2 149 106.3164
MSG_8 16 2 149 105.8262
MSG_440 16 2 149 105.2089

Figure 18: SHA256 Reduced Round Test Results

The results of the test show that in general you will always have the possibility of

changing a large number of bits in the output on average, however you need to use at

least 20 rounds to guarantee you will have a significant change every time. Going past

24 rounds you get a negligible increase in returns with a linear increase in time. A

number of papers have been published detailing how to create a collision with reduced

round SHA-256, some up to 46 rounds. It should be noted that these papers and the

analysis done above are using standard SHA-256 without a secret key. VMAC uses the

secret key which increases computation complexity, assuming the key is generated

securely and randomly.

4.3.3 Key Reversal Attacks

 An analysis of the VMAC was performed to determine how difficult it would be

to extract the key. The initial assessment involved looking at a single input data block at

16-rounds, which is much simpler since it avoids any of the data bit rotations in the

Page 97 of 188

SHA-256 message schedule. To simplify the analysis the input data that was used did not

conform to the SHA-256 padding requirements, which are implemented in VMAC. In

order to reverse out a round, first note that at the end of a round the intermediary hash

values are available as shown below

Figure 19: SHA Intermediary Hash Values

 The values H0 through H7 are known constants, so given out0 through out7, we

can subtract the constants and recover values a..h at the end of the 16th (the N-2) round.

If we know the values a..h at the 16th round we can recover what the values were at the

end of the 15th (N-1) round via the following formulas:

• Round N-2 a,b,c,e,f,g are equal to Round N-1 b,c,d,f,g,h

• Round N-1 T2 can be computed from Round N-2 a,b,c

• Round N-1 T1 can be recovered from round N-1 a:

Page 98 of 188

o a = T1 + T2 T1 = a – T2

• Round N-2 d can be recovered from round N-1 T1 and e:

o e =d + T1 d = e – T1

If the constant for the round Kt is known (and it is based on the SHA-256 standard) then

you can recover round N-2 h from T1:

• T1= h + ConditionalFunction + Kt + Wt

o h = T1 – ConditionalFunction – Kt – Wt

where the ConditionalFunction in SHA-256 is based on the values of e thru g, which are

known per above.

When we look at 16 rounds it turns out that a single bit flip in the input data will

cause a corresponding bit flip in T1, and based on the change in the carry bit related to

that flip we can determine a bit of h and the key using the formula:

V = T1 – offset = h + W[N-1]

where offset includes the previously calculated low-order bits of h, to eliminate carry

propagation from those bits in the addition. Details of the analysis are shown in

Appendix A.2. It turns out that all of the bits can be easily cracked when using arbitrary

chosen input data, finding all but 8 bits of the 256-bit key directly and the remaining 8

Page 99 of 188

bits by exhaustive search. Therefore 16 rounds are not secure, which means that running

20 rounds is really the equivalent of only doing 4 “secure” rounds.

 The next assessment was done looking at a single input block at 17-rounds. The

idea was similar to the 16-round crack, where if you can determine h then you could

unwind the hash one more stage and find all of the key bits. At 17 rounds though, the

message schedule takes affect which means that W[16] is no longer a copied value with a

trivial key mix, and the formula expands to:

V = h + (((D XOR E) + X) XOR Y)

where D = sigma1(Data[14]), E = sigma1(ROTR(Key[2],7)), Y = ROTR(Key[7],23)

and X = sum of the Data[9,1,0] and Key[4,1,0] terms

If we can determine h then we could unwind the hash one more stage and find all of the

key bits using the method presented in “Appendix A.2”.

Data[9,1,0] affect h and X, but changes in D do not change h, E, X, or Y, so flipping

bit i of D will flip bit i of V. Although the change in bit i provides no information itself,

the addition with X may flip carry bits, and bit i+1 of ((D XOR E) + X) will change only

if bit i of X is 1. However we can only observe V, and the addition with h may also flip

carry bits. So if bit i+1 of V changes then bit i of either h or X is 1, but we don't know

which. Therefore we would have to continue without knowing h by running the approach

for cracking 16 rounds for each of the possible 232 values of h. Each of those produces 28

Page 100 of 188

candidate keys so the overall search space is O(240). For each value of h, Crack16

invokes VMAC twice for each of 256-8 = 248 bits, that is 2*248 = 496 invocations. At a

scan rate of 100msec, i.e. 10 invocations per second, that would take over 6000 years:

496 * ((2^32)/10) / (60*60*24*365) = 6755.1

Extrapolating to N=20 rounds, there would be 4 unknown h values associated with each

candidate key, so the overall search space is 28*(232)4 = O(2136). At a scan rate of

100msec that would take over 5.35e32 years.

4.4 Implementation Details

The information and the analysis provided above specifically focused on the

underlying mathematics of the VMAC algorithm, as encapsulated by the Add-On

Instruction shown in Figure 16. In this section we provide details on how to use the

VMAC algorithm in a secure implementation. The secure implementation consists of

two parts: the generation of outgoing messages and the processing of incoming

messages. The secure implementation also addresses the following concerns:

• Protection against the standard replay attack, where a message between two nodes

is saved and then later played again

• Protection against a variant of the replay attack where a message generated by one

node intended for a second node is captured and played to a third node

Page 101 of 188

• Determination of the key used in the VMAC algorithm, either Ks or Ks’, which is

changed by the KEP and is used to provide a bumpless transfer during a key

change

As stated previously it is possible to use the VMAC algorithm without the KEP, and

to only have Ks’. However this should only be used in circumstances where the user has

complete control of all the nodes in the system and the VMAC key is treated as

confidential or secret. It is also still recommended that the key is updated at least once

per year, a function provided by KEP.

“APPENDIX B. GRAPHICAL VMAC IMPLEMENTATION” provides sample

source code from NODE1 of the proof of concept implementation. In the reference

implementation each node generates a VMAC message to each other node thru multicast,

however VMAC itself has flexibility for unicast or multicast messages. In a typical

Rockwell RSLogix5000 PLC program, a task called “IO_Mapping” is created under the

MainTask and is used to map I/O signals to internal signals, with the internal signals

being used in a control logic task. The purpose of this logic is to reduce the scope of

code changes if it is found during commissioning that something happened with the I/O

such that the signal was not in an expected location and that the wiring can’t be changed

to match the original design. This happens relatively frequently during plant

commissioning, often due to simple human error, and sometimes can’t be fixed

(particularly in hardwired I/O) because cables are not long enough to relocate. Therefore

it seemed appropriate that the VMAC messages would also be considered part of the IO

Mapping task. Each node in the proof of concept implementation has a “VO_NODE#”

part which is the VMAC outgoing messages which are being multicast to each of the

Page 102 of 188

other nodes, and there is a “VI_NODE#” part which processes the incoming multicast

messages from each node.

4.4.1 Outgoing Messages

Generating outgoing messages is easier than verifying incoming messages, but there

are critical steps involved to ensure the message is generated accurately. The most

important step is that the VMAC must be generated using a temporary memory space,

and then transmitted into the outgoing send buffer due to the messages being sent

asynchronously from the logic execution. Otherwise what will happen is that a message

will be transmitted in the middle of the VMAC generation process, which will cause the

receiving node to get an incorrect VMAC and generate a fault. In the proof of concept

implementation, messages were transmitted every 20ms while the scan time of the total

IO_Mapping routine was closer to 50ms and the generation of the outgoing message

close to 8-9ms of that time. Without processing the VMAC in a buffer prior to transmit

an error rate of every few seconds would result, frequently with several invalid VMACs

in a row.

The second most important aspect of generating a VMAC is ensuring that the proper

“header” data is incorporated into the VMAC data message. The header information is

used to prevent the replay attacks described above. The structure of header data is as

follows:

• First 8 bytes: 64-bit Counter

• Next 4 bytes: 32-bit Node ID

• Next 4 bytes: 32-bit Destination ID

Page 103 of 188

• Last 8 bytes: 64-bit Key ID (only used with KEP)

The first value used in the header is a 64-bit counter, which on controller power up is

initialized to the number of microseconds since epoch time. This counter is then

incremented by 1 each time a new VMAC is generated, and essentially serves as a

timestamp replacement. The controller’s time itself does not have to be therefore

synchronized to some higher level server, it just needs to be reasonably accurate (within a

few minutes) and should never be reset to a time earlier than it was previously set to.

However, since the counter is only incremented by 1 for each VMAC generation, and in

the proof of concept it takes 8-9 ms to generate a VMAC it means that for each VMAC

the counter increases only by 1 where the number of microseconds since epoch time

would increase by thousands. This helps ensure that even during a power loss or a fresh

download which could cause a disturbance in the clock time the VMAC counter will

always be initialized at a value significantly higher than the previous value. This would

hold true if even during a power loss the controller’s clock does not increase such that

when it powers up it still thinks the time is what it was at the last power loss.

The 32-bit Node ID and Destination ID are used in the message to indicate the source

of the message and the intended recipient of the message. The Destination ID can be a

code such as “234” used to indicate a group of nodes, or an IPv4 address that represents a

unicast, multicast, or broadcast address. Similarly the Node ID can represent something

as simple as a Node number (as used in the proof of concept) to a full IPv4 address. The

purpose of these IDs is to ensure that someone does not take a message from one node

and send it to a different set of recipients, thus preventing a variant of the replay attack.

Page 104 of 188

The last 64-bits represent the VMAC Key ID, which indicates which Ks or Ks’ was

used to generate the VMAC. Note that it is not the value of the key itself, but rather a 64

bit code that could either be the hash of the key or a timestamp of the key. The proof of

concept uses a timestamp value where the 64-bits represents the number of microseconds

since epoch time at the time the key was generated, however a hash of the key could

easily be substituted and used to verify that the correct key was transmitted, and if not

then it could trigger a new Ks’_REQ in KEP to get a corrected copy of the key. In

general, the VMAC Key ID is used by KEP to determine which key, either Ks or Ks’

was used in VMAC.

Details will be provided in the description of KEP, but from a VMAC perspective

KEP provides a mechanism by which a node will know if all nodes are reporting that they

have the latest and greatest Ks’. If any nodes do not have the new Ks’, which likely

occurs during the middle of key propagation, then VMAC uses Ks which represents a

backed up copy of the old Ks’. Once KEP detects that all nodes have a copy of Ks’ it

instructs the node to use Ks’ for all outgoing messages and embed the corresponding ID

into the VMAC message. This will let a receiving node know whether to use the new key

or the old key. Note that KEP will have already determined that the receiving node has a

copy of the new key prior to instructing VMAC to use the new key to send the message.

4.4.2 Incoming Messages

The same principles for outgoing messages apply for incoming messages, but in

reverse. To begin, an incoming message must first be copied into a buffer for processing

since the messaging is asynchronous. Otherwise in the process of verifying one VMAC a

Page 105 of 188

new one could be written in which could cause the verification to improperly fail. After

the message is copied into a buffer, the Counter is immediately checked to determine Iif

it is greater than the last received value. If it is not then the message can be immediately

discarded, since it is either an old message that has not yet been updated by the sending

controller due to asynchronous processing or it is a replay attack. In general, if a counter

is less than the last counter than the message is likely to be a replay attack, but if it is

equal it could be just stale data.

The next step is to extract the VMAC Key ID from the message and determine if the

VMAC was created using Ks’ or Ks. Under most circumstances these values will be the

same, except during the middle of a key update by KEP. KEP will have already

determined that the receiving node has a copy of the new Ks’ before it gets used in a

VMAC from the sender node. KEP also has logic in it to monitor the VMAC

verifications, and a node waits for all nodes to have successfully sent it a valid VMAC

using the new Ks’ before it sets Ks = Ks’, essentially discarding the old key and backing

up the new key.

 Once the correct key is determined the VMAC of the incoming data is calculated and

then compared against the VMAC provided by the sending node. If the two values are

equal, and the counter is greater than the previous counter, and the Node ID of the sender

is correct, and the Destination ID is correct then the VMAC is flagged as “OK”. The data

for the message is then moved into a “data verified” buffer to be used for process control.

Invalid data is not processed. The VMAC implementation for incoming messages

includes 5 alarms for each message:

Page 106 of 188

1. Invalid VMAC Alarm – if a node does not receive a valid VMAC message

within a set time period then an alarm will be generated (recommend 250ms)

2. Replay Alarm – if a node does not receive a valid VMAC with a Counter

greater than the last valid message within a set time period then an alarm will

be generated (recommend 250ms), OR if a node receives a VMAC with a

Counter less than the last valid message

3. Node Alarm – if the Node ID of the message is not what was expected then

trigger an alarm (a 50ms debounce timer is recommended to avoid potential

network errors)

4. Destination Alarm – similar to Node Alarm but uses the Destination ID vice

the Node ID

5. Invalid Key Alarm – if a node receives a VMAC message with a key ID that

does not match Ks or Ks’ then generate an alarm

All alarms are cleared automatically on power up, but to be cleared during operation

both the alarm condition itself must be cleared and an acknowledgement from an operator

must be provided. Actions that an operator should take depend on the design of the

system under question and the acceptable risk profile of that system. The decision tree is

therefore beyond the scope of this thesis, however it should be understood that unlike IT

systems sometimes it will make sense to continue operating using invalid data even in the

presence of a cyber threat. For example, if a machine is providing life support to

someone and the option is to either shut down or keep running under risk then it is

probably better to keep running because that option might cause harm where shutting

Page 107 of 188

down will definitely cause harm. Control system design is also beyond the scope of this

thesis, but it should be noted that a good design will take into account that sometimes a

system component might need to run in a “standalone” mode due to equipment damage,

plant maintenance, cyber threats, or a number of other reasons.

Page 108 of 188

CHAPTER 5: COMPLEX MATH OPERATIONS

5.1 Introduction

As described in sections 3.3 and 3.4, two of the major limitations in developing a

cryptographic system for control systems and embedded controllers is the inability to

process BigIntegers natively, along with the overall reduced processing speed. These

factors make it challenging to develop a system capable of performing the complex

operations necessary to execute the mathematics required in performing the steps

necessary for an Ed25519 key generation, signature generation, and signature

verification. Note that this section is specific to Ed25519 as an overall proof of concept,

but can be extended for Ed448 if security at the 224-bit level is required in the future.

This section describes the advanced Add-On Instructions (AOIs) that were developed

as part of this project which were required to perform operations such as point

multiplication that are so complex that a controller is unable to perform them in one scan.

Therefore a new design approach was used, which was described in section 3.4. Much

of the code here is based on work done in [29], which is an implementation of the

Ed25519 elliptic curve digital signature scheme using 32-bit integers. The idea behind

[29] was to first create an implementation in a higher level language (in this case C) that

would be easier to write than in ladder logic. This would allow us to work out how to

perform the math operations using 32 bit integers only first as a proof of concept, and

then work out how to handle the limitations of processing speed and memory allocation.

The source code for the AOIs can be found at [28] and in Appendix C. The code

consists of *.L5K text files which can be imported into a PLC processor or used as a

reference to develop a hardware-based solution. This chapter describes the functional

Page 109 of 188

purpose of each of these AOIs. It provides the interface that is used in the main ladder

logic code, and describes any aspects of their design, coding, or implementation that are

uniquely noteworthy to that AOI.

Basic AOI functions like addition and subtraction are not described in this section,

but the code for them can be found at [28]. A “basic” AOI is defined as any

mathematical function which can be processed fully during one scan of the PLC, which

makes it most like the C-based implementation because it does not require a large degree

of special handling to work around the limitations of a PLC. As a result the coding is

fairly straightforward with the most important aspect, how to handle BigIntegrers,

already described in Section 3.3.

5.2 Custom Data Types

This section describes the various data types that were developed as part of this

project. From a mathematical perspective these custom data types are invaluable as they

represent the 256-bit values in accordance with the principals described in in Section 3.3.

It should be noted that PLC ladder logic does have the ability to declare custom data

types in a way similar to most other high level langauges, and this was done for the

POINT data type. For the C, D, and E data types this was not done because these data

types are really just different sized arrays of DINTs that are interpreted in different ways.

Creating a custom data type for them in the PLC code would only add an unnecessary

overhead with little to no value from an execution or an organizational perspective.

Page 110 of 188

5.2.1 C DataType

A “C” data type is a 256-bit value stored as an array of twenty-two (22) DINTs in the

little endian format. The DINTs from 0 to 21 each contain 12 bits of the value, with

DINT[21] containing the highest 4-bits. This data type is typically used as the normal

way of representing 256-bit value, for all operations except multiplication and

exponentiation.

5.2.2 D Data Type

A “D” data type is either a 256-bit value that has been reduced to be within the finite

field or a 512-bit value that requires reduction to be within the finite field. It consists of

forty-three (43) DINTs in the little endian format. All DINTs contain 12 bits of the value

except the highest DINT which contains only 8 bits. This data type is typically used in

multiplication, where storage of the result requires a bit space equal to the sum of the bit-

size of the two multipliers. This value is normally a temporary value that is reduced to

fall within the modulus, thus using only the bottom 22 DINTs and thus becomes

equivalent to the C data type.

5.2.3 E Data Type

An “E” data type is a 256-bit value stored in thirty-two (32) DINTs in the little endian

format, where each DINT contains one byte of the value. This data type is used during

exponentiation operations and is faster than using the C data type. Values stored in the E

data type are typically converted back into the C data type.

Page 111 of 188

5.2.4 POINT Data Type

A “POINT” data type consist of four C values that represent an Ed25519 curve point

(x,y) stored in the extended coordinate system (X, Y, Z, T). Mathematical operations

done on points use the POINT data type, however points are ultimately encoded into hex

strings for transmission and storage. These strings are decoded back into the POINT data

type when required for operations such as point multiplication and point addition.

5.3 Sequencers

In order to perform the complex mathematical operations such as point multiplication

and modular inverse, the operation had to be broken up into a series of smaller steps

which could then be executed sequentially. This is the most significant difference

between the work done in [29] and what was required for this work in order to perform

the complex mathematical operations on limited power devices. A generic sequencer

algorithm was developed which would allow for various parts to then be executed in an

order defined by the sequencer chart for that operation. The sequencer charts can be

found in Appendix D, where the top row of the charts contains the various parts that

could be executed by the sequencer. The “x” marks in the chart indicate which of these

steps is being executed in which step, and form the command value which is then stored

in the program. In many ways this process is similar to the way firmware is developed

for embedded processors in common commercial electronic devices such as BluRay

players.

Each sequencer contains control logic which looks at the command table and

determines which actions need to be taken. The actions are then processed in order, and

Page 112 of 188

when completed a “DONE” flag is set. Most of the actions are one shot actions which

are completed within one scan. The sequencer determines that all actions are complete

by examining a mask of the word containing all of the DONE flags with a word

containing all of the commands. When all actions are determined to be complete the

sequencer advances to the next step, resets the DONE flags, and extracts a new series of

commands. This process continues until all steps in the logic are complete. Note that in

most cases the next step in the sequencer is the result of taking the current step and

incrementing that step by one, but in some cases loops are formed within the sequencer

by setting the next step equal to some previous step until some loop counter i (for

example) reaches an intended value.

Some of the most complex operations, such as the Ed25519_SIGN operation, contain

multiple sequencers within the overall sequencer. Since each sequencer has a

SEQCTRL_DN flag which represents all steps in the sequencer having completed

execution it is possible to embed one sequencer within another. The host sequencer then

watches the SEQCTRL_DN flag of the embedded sequencer and uses that to trigger the

command’s DONE flag of the host sequencer. Logic is also provided that initializes the

sequencers properly in the event of a power loss or some other interruption that might

occur during mid execution. It is also possible to pause the operation of a sequencer mid-

execution and then resume it later, provided the memory areas being accessed by the

sequencer are not manipulated during the pause.

Page 113 of 188

5.4 Temp Data

One of the features of most high-level software languages such as C++ is that you can

create temporary variables in routines and objects that can be used to store and process

data. These variables can have descriptive names and be easily discarded (along with the

associated memory space) when execution is complete. PLCs and other embedded

controllers do not have this capability, since they are ultimately much more similar to

hardware than to software. As a result it is necessary to declare and reserve memory

space in the ladder logic code explicitly, which can then be used for temporary variables.

For clarity these temporary variables have been given names like “Temp_C1”, indicating

that it is the first “C” type temporary variable used in the program.

Each of the AOIs properly initializes the temporary space, since it is assumed that the

space may still have garbage data leftover from a previous instruction. This means that

the temporary variables can be used over and over again, with the catch that the same

temporary variables (i.e. the same memory space) can’t be used by two different

instructions at the same time. In many ways this is similar to how standard memory

allocation works in a language like C/C++, but more explicit given that a ladder logic

implementation is much more similar to hardware than software.

5.5 AOIs

This section describes the AOIs in more detail. In general an AOI format will be a

block shown with a blue border. A description of the block will be shown at top. The

first field of the block with an input will be the name of the block where a “control” field

is added. This is more of a Rockwell Software convention which is used to differentiate

Page 114 of 188

between multiple instances of the same AOI. For this section the control block will have

the same name as the AOI itself. The AOIs then begin with the temporary variables,

followed by the input variables and lastly with the output variables.

 During development it was determined that Rockwell actually provides 3 different

types of fields: an input, an output, and an InOut. The input and output fields are fairly

limited in the data types that can be assigned to them. The InOut field is extremely

flexible, and therefore was used to pass just about every data type except for the most

primitive such as an INT or DINT.

5.5.1 B256_MODPOW

The “B256_MODPOW” AOI is an add-on instruction designed to compute the

modular exponentiation of a 256-bit number where the modulus is the underlying finite

field of the Ed25519 curve (i.e. 2255-19). The mathematical description of the AOI is:

c2 = c1^e mod (2^255-19)

The figure below shows the AOI interface:

Figure 20: B256_MODPOW Add-On Instruction

Page 115 of 188

B256_MODPOW works by initializing the temporary variables and then for each bit in

the exponent byte performing a multiplication. If the bit in the exponent is a 1 then the

multiplication updates the output using input data. If the bit in the exponent is a 0 then

the multiplication simply takes the current value and multiplies it by 1. This is done in

order to help protect against timing attacks.

5.5.2 B256_MODINV

The “B256_MODINV” AOI is an add-on instruction designed to compute the

modular inverse of a 256-bit number where the modulus is the underlying finite field of

the Ed25519 curve (i.e. 2255-19). The mathematical description of the AOI is:

c2 = c1^(m-2) mod m, m=2^255-19

The figure below shows the AOI interface:

Figure 21: B256_MODINV Add-On Instruction

The modular inverse is calculated almost identically to performing the modular

exponentiation. The main difference is that the exponent is no longer an input, but

instead is set to a predefined value m-2 which results in the inverse.

Page 116 of 188

5.5.3 B256_MODL

The “B256_MODL” AOI is an add-on instruction designed to compute the modulus

of a 256-bit number where the modulus is the group order L (i.e. 2252 +

27742317777372353535851937790883648493) of the Ed25519 curve, and to store that

result in an E value for future use. The mathematical description of the AOI is:

e = d mod L

The figure below shows the AOI interface:

Figure 22: B256_MODL Add-On Instruction

This AOI is used in signature generation and verification for Ed25519 as shown in

Section 2.7.

5.5.4 POINT_MUL

The “POINT_MUL” AOI is an add-on instruction designed to compute the result of

multiplying a point on an Ed25519 curve with a scalar to compute a new point on the

curve. The mathematical description of the AOI is:

p3 = e*p1

Page 117 of 188

The figure below shows the AOI interface:

Figure 23: POINT_MUL Add-On Instruction

This AOI is used to perform digital signature generation, signature verification, and to

generate temporary symmetric key pairs in KEP that are used to encrypt/decrypt Ks’ to

be sent between nodes. Point multiplication is primarily the result of performing

successive point additions along a curve, one for each 1 bit in the exponent. The

recommendations found in [27] are followed, where the points are represented in

extended homogeneous coordinates (X, Y, Z, T) with x = X/Z, y = Y/Z, x*y = T. This

operation is usually performed by initializing Z to be 1 and then setting X = x, Y = y, and

calculating T. Reference [27] then specifies a generic option for adding two points and a

faster implementation for doubling a point. In general the AOI performs point doubling

as a specific type of point addition, so this is followed as much as possible. Each point

doubling operation saves two 256-bit subtractions, one 256-bit addition, one 256-bit

multiplication, and substitutes three 256-bit squares for three 256-bit multiplications (a

Page 118 of 188

square is faster than a multiplication). This resulted in about a 15% timing efficiency

improvement when run on the RSLogix 1756-L83 series PLCs.

5.5.5 POINT_ENC

The “POINT_ENC” AOI is an add-on instruction designed to take a POINT

represented in extended homogenous coordinates (X, Y, Z, T) and encode it as an E

value (i.e. an array of 32 bytes). The instruction stores the value in the little endian

format, and is often combined with other instructions in KEP to turn the point into a

STRING for transmission. This is particularly true when performing the Diffie-Hellman

key exchange portions of KEP. The figure below shows the AOI interface:

Figure 24: POINT_ENC Add-On Instruction

5.5.6 POINT_DEC

The “POINT_DEC” AOI is an add-on instruction designed to take a STRING

representing an encoded point (x,y) stored in the little-endian format and decode it to a

point in extended homogenous coordinates (X, Y, Z, T). Typically these STRING

values representing an encoded point come from another node as part of KEP when

performing the ECDH key exchange to create a shared symmetric key, which is then used

to encrypt/decrypt Ks’. The figure below shows the AOI interface:

Page 119 of 188

Figure 25: POINT_DEC Add-On Instruction

5.5.7 SHA512_SEQ

The “SHA512_SEQ” AOI performs the functions of the SHA512 algorithm. The

figure below shows the AOI interface:

Figure 26: SHA512_SEQ Add-On Instruction

The regular SHA512 algorithm is capable of operating over a variable length of bits,

which is not possible in a PLC. A PLC is also not capable of piping in the message as a

bit or byte stream. Therefore the message is stored as an array of LINT, with a maximum

capacity of up to 1600 LINTs. The Inp_LEN parameter then defines how many of the

Page 120 of 188

LINTs are used out of the possible 1600 to contain the message. Since SHA512 is a Θ(n)

algorithm the length of time for the sequencer to complete is dependent on the length of

the message. In practice, SHA512_SEQ is only used in KEP for signature generation and

verification which has a fixed length input as shown in Section 2.7. The output is stored

in an array of eight LINTs, where LINT[0] thru LINT[7] represent parts a thru h of the

hash respectively.

5.5.8 Ed25519_SIGN

The “Ed25519_SIGN” AOI creates a digital signature of a message using the

Ed25519 curve via the process shown in Section 2.7.2. This AOI, along with its partner

“Ed25519_VERIFY” are the most complicated AOIs mathematically and contain several

of the other AOIs listed above. The implementation is capable of processing a digital

signature on an RSLogix5000 PLC in approximately 3 minutes with a scan time impact

of less than 10ms. The figure below shows the AOI interface:

Page 121 of 188

Figure 27: Ed25510_SIGN Add-On Instruction

This AOI was designed for signing messages specifically for KEP, and all the

parameters listed as inputs are ultimately piped into an array of LINTs that then are piped

into the SHA512_SEQ AOI. It is possible to modify the AOI to make it more generic,

and to perform the message alignment outside of the AOI. However this interface

improves the overall readability of the KEP code, and ultimately this AOI is only used in

KEP. The discussion of the parameters used as part of the message to be signed is

discussed further in Section 6.2, which describes the KEP message structure. However,

Page 122 of 188

three inputs here are the private and public keys which are not part of the message

structure. Those values are:

• Inp_PubKey: a string representing an encoded point and generated offline via a

python script or some other equivalent means (see Appendix E)

• Inp_PriKey_scalar: a string representing a scalar and generated offline in the

same way as Inp_PubKey

• Inp_PriKey_prefix: a string representing representing part of the private key and

generated offline in the same way as Inp_PubKey

5.5.9 Ed25519_VERIFY

The “Ed25519_VERIFY” AOI verifies a digital signature of a message using the

Ed25519 curve via the process shown in Section 2.7.2. The implementation is capable of

verifying a digital signature on an RSLogix5000 PLC in approximately 3 minutes with a

scan time impact of less than 10ms. Like “Ed25519_SIGN” the AOI is designed to

process messages and digital signatures specifically used by KEP, and outputs a status of

1 for a successfully verified message, 666 for a message that has failed verification, and 0

for a verification in progress. The figure below shows the AOI interface:

Page 123 of 188

Figure 28: Ed25519_VERIFY Add-On Instruction

5.5.10 PRNG

The “PRNG” AOI creates a pseudo-random number and is based loosely on the

Hash_DRBG algorithm described in NIST SP 800-90A [37]. Ideally the PRNG AOI

would be replaced with a hardware-based true random number generator, but as

discussed in Section 3.2 that is currently not an option. The figure below shows the AOI

interface:

Page 124 of 188

Figure 29: PRNG Add-On Instruction

Any secure PRNG can be used in KEP, and if a PRNG is proven to not be secure it

can be easily replaced. For this work the PRNG algorithm works as shown below,

however it should be noted that a detailed security proof for this has not been developed

as part of this work. Note that both the constant and the seed should be initialized to

random numbers using a true random number generator, and that this can be done offline.

Step 1: Build the base input as the following:

- LINT[0]: The current timestamp as a 64-bit value representing the number of

nanoseconds since epoch time

- LINT[1]: A 64-bit counter that is incremented with each use of the PRNG

- LINT[2]: A 64-bit constant value that does not change

- LINT[6 thru 18]: The seed which is a 832-bit value stored as 13 LINTs that will

be changed as described below with each execution of this algorithm

Note that by most conventions the “seed” would be considered a constant value and not

something that would change. However this implementation follows the approach taken

Page 125 of 188

in NIST SP 800-90A which uses a constant value and then a seed which changes as part

of the PRNG execution [37].

Step 2: Using the SHA512_SEQ AOI, compute the hash of the input and output the

left part of the hash result as a 256-bit pseudo-random number.

Step 3: Update the seed for the next execution of the algorithm using the following

algorithm:

- Add the e part of the hash to the first 64-bits of the seed (Inp_Seed[0]), and then

do a circular right shift rotation by 1 bit.

- Add the f part of the hash to the next 64-bits of the seed (Inp_Seed[1]), and then

do a circular right shift rotation by 2 bit.

- Add the g part of the hash to the next 64-bits of the seed (Inp_Seed[2]), and then

do a circular right shift rotation by 3 bit.

- Add the f part of the hash to the next 64-bits of the seed (Inp_Seed[3]), and then

do a circular right shift rotation by 4 bit.

- For n=4 to 11

o Add Inp_Seed[n-4] to Inp_Seed[n]

o Do a n+1 bit circular right shift rotation on the result

- Inp_Seed[0] to Inp_Seed[12] and then do a 13-bit circular right shift rotation

- Swap Inp_Seed[0] and Inp_Seed[12]

Page 126 of 188

CHAPTER 6: KEY EXCHANGE PROTOCOL

6.1 Introduction

A multicast group can be efficiently protected through use of a single symmetric key

which can then be used to encrypt traffic between nodes or to provide message

authentication and verification using algorithms such as VMAC. The challenge comes in

generating the symmetric key and transmitting that key to the other nodes. As stated in

Section 4.1 it is possible to use VMAC without KEP, however only in the case when the

system designer has complete control of every node in the control system and does not

have to interface with a 3rd party vendor. In practice this is unlikely, since control

systems are often distributed, with a centralized “overarching” system that then interfaces

to a number of controllers contained in panels that come with various machines produced

by OEMs to provide local control. Therefore KEP provides a means by which a

distributed control system with components by different OEMs can interface to each

other and update the symmetric key used by VMAC. Each vendor would generate an

Ed25519 public/private key pair using a process similar to the script provided in

Appendix E, and then the vendors would exchange the public keys as part of the Interface

Design Documentation. These keys can then be used to generate the symmetric key.

Section 3.5 described the main approaches to generating and handling the symmetric

key in multicast groups, but these approaches have additional complications when

applied to control systems. The limited processing power is the primary challenge which

impacts each of the multicast solutions in a number of ways, primarily that they can not

process the number of steps that would be required to update keys each time group

membership changes while at the same time meeting performance requirements.

Page 127 of 188

Additionally there are significant challenges that stem from how message structures and

send rates work (Section 3.7), since most of these algorithms require that the system send

out specialized “one-time” messages as part of the group join and leave processes. An

implementation of these existing algorithms which must transmit the control messages

used to exchange the symmetric key would likely suffer performance degradation.

Thankfully, the design of control systems does mean that the requirements for

multicast messaging are more limited than the requirements for the generalized multicast

group scenarios that are addressed in [30, 32, 33]. The rate of group membership

changes is relatively low and is primarily the result of equipment or power failures where

there is a desire to rejoin the node to the group as speedily as possible. This eliminates

the need to change the group key solely based on group membership changes which is a

primary driver for the approaches taken in the literature. However this does add a unique

challenge in that a node must be capable of being restored to the group in near

instantaneous time even during the middle of a group key change. Even an algorithm

capable of updating a key with an O(log n) efficiency is not going to be fast enough given

the inherent limitations of processing speed. This is commonly referred to in control

systems engineering as a “bumpless transfer” and is not addressed in the literature simply

because it is not a requirement for an information system.

To solve these challenges the Key Exchange Protocol (KEP) for control systems was

developed. The primary purpose of KEP is to securely generate and transmit a Ks’,

which serves as the primary shared symmetric key, along with the identity number of the

Ks’ and the Ks currently in use. These identity numbers are 64-bit numbers that

represent the number of microseconds since epoch time at the time these were generated.

Page 128 of 188

During a key exchange a new Ks’ is created and distributed, however the old Ks is used

in VMAC until a node confirms that all nodes it communicates with have received Ks’

via the identity number. The nodes then begin to transmit messages using Ks’ vice Ks.

When a node receives valid VMAC messages from each node, which were generated

using Ks’, the node sets Ks equal to Ks’.

KEP consists of two parts, the Listener and the Processor, that run in parallel with

each other. The Listener is responsible for receiving messages from other nodes and

verifying the messages of these nodes. The Processor is a state-machine that uses

verified messages from the Listener along with internal data to perform the bulk of the

KEP logic. KEP operates using a client-server model, however unlike the Iolus

framework [30] which uses GSAs, each node in KEP can act as both a client and a server

depending on the state of the node. This is done by each node having an internal

“priority table” for all of the other nodes. A node finds the highest priority node that is

advertising that it has a Ks’ available for distribution and selects that node as its server to

obtain the key. It then goes through an Ed25519 ECDH process to generate a one-time

symmetric key with the server node, with that key known as Kp. Kp is then used to

encrypt a copy of Ks’ via an XOR operation, with the encrypted key known as Ke. Ke is

then transmitted from the server node to the client node and subsequently decrypted using

the client’s copy of Kp to obtain Ks’.

Since KEP, and control systems in general, do not require the symmetric key (i.e.

Ks’) to change each time a node leaves and joins the group the efficiency of the key

exchange is Θ(1). Also note that since the key does not change due to a node dropping

out of a group, a power loss and subsequent power restore does not require a node to go

Page 129 of 188

through the key exchange process before it can begin communicating. Even if a key

update has begun while a node is down, the key update will wait for the node to be

restored and obtain a copy of the new Ks’ before the current Ks is abandoned. This

means that the node which experienced the failure and subsequent restoration will be able

to use Ks to immediately authenticate and verify messages, meeting overall control

system performance requirements.

Node priorities and trust relationships are established as part of the control system

design. The trust relationships are established by each node having a copy of the

Ed25519 public keys of the other nodes. The priorities are set by entering values into an

internal table of the node, with “1” being the highest priority. Note that it is not

necessary for all nodes to have the same priorities, i.e. if there are four nodes it is not

required that each node consider the same node (say Node1) to be the highest priority

node. This means that it is possible to use KEP in a tree configuration with a root node

and have other nodes be branches and leaves of the tree. This improves the speed at

which a key change propagates throughout the tree, with KEP having a key change

efficiency of O(log n).

In general there is a root node for the KEP tree, however the root node does not

necessarily have to be the node with the highest priority at all times. If the highest

priority node “Node1” is down for some reason then the next highest priority node will

take over as the root. This “Node2” can even perform a key update which will then

propagate thru the rest of the tree. When “Node1” is restored it will perform the same

function as any other leaf on the tree by examining the existing nodes to determine the

highest priority node that is active and is advertising a Ks’ available. “Node1” will then

Page 130 of 188

work to obtain a copy of the Ks’ from “Node2”, and once that is obtained “Node1” will

start to advertise itself as having the key available. Since it is the highest priority node it

will automatically retake the position as the tree root.

It should be noted that when a node is first powered on it will enter a “powerup” state

in the KEP Processor state machine that will clear Ks’ from the node, with the

assumption that Ks’ might have changed while the node was down. However the node

can continue to use Ks to authenticate packets because Ks does not get set equal to Ks’

until a node has verified that all other nodes within its immediate vicinity in the tree are

using the new Ks’. As a result KEP provides bumpless transfer. It is not suitable for

scenarios where group membership in a multicast scheme is dynamic, but it is very

efficient where the group membership is relatively static.

In general, we recommend that KEP be used to trigger a key update once per year in

order to assure the validity of the VMAC key. This can be done on an automatic cycle by

adding logic so that the root node triggers the update automatically when a timer expires,

or can be done thru an message request sent by another node. Control engineers can

further tailor KEP to only allow designated nodes, perhaps a particular administration

console, to be allowed to instruct the root node to perform a key update. Note that the

command to perform a key update is contained within a digitally signed message.

The sections below describe the KEP Listener and Processor in detail, beginning with

a description of the message structure used in KEP which is digitally signed using the

Ed25519 curve (refer to Section 5.5.8). It then continues by defining the flags that are

used in KEP. The Listener is then described in detail, followed by the Processor and the

various states that make up the processor. The state machine diagram is presented, and

Page 131 of 188

the chapter concludes by illustrating the paths of the state machine during a key

generation and exchange. Appendix C contains source code from the proof of concept

implementation.

6.2 KEP Message Structure

As described in Sections 5.5.8 and 5.5.9, KEP uses the Ed25519 curve to digitally

sign and verify a specific message structure which contains the various control data. The

message structure is as follows:

• Inp_FLAGS: a 32-bit number containing various control flags

• Inp_PubDH: a 64 character string containing hexadecimal values representing an

encoded point

• Inp_Ke: a 64 character string containing hexadecimal values representing Ks’

encrypted with a unique one-time symmetric key known as Kp that is generated

via an ECDH key exchange

• Inp_KsID: a LINT representing the ID of the node’s Ks

• Inp_KsPrimeID: a LINT representing the ID of the node’s Ks’

• Out_Counter: a LINT value representing a timestamp of the message, and

represents the number of microseconds since epoch time when the message was

generated

• Out_Sig_R and Out_Sig_S: two 64 character strings containing hexadecimal

values that combined represent the digital signature

Note that PLCs in general do not have a good way of easily transmitting large numbers.

Therefore it was determined that sending a string of hexadecimal characters is one of the

Page 132 of 188

most efficient ways to send the value over the wire. It is possible to send a string of

Base64 encoded characters, but this adds extra processing time and does not improve

message size efficiently significantly. A string of ASCII characters is unusable because a

PLC uses the apostrophe character to denote the beginning and end of a string. If a

digital signature was encoded in ASCII characters the encoding might result in an

apostrophe appearing in the middle of the string, resulting in the PLC cutting off a

portion of the string leading to an invalid signature.

The table below defines the flags. Note that most of the 32-bits are spares for

potential status indications to provide additional details or diagnostics information that

may be desired in a future implementation, such as a KEP version number.

Page 133 of 188

Bit Flag Name Usage Description

0 All OK Indicates that node believes its overall health is
OK, and that there are no internal errors that the
node is detecting within itself.

7 Ks’ Request Requests that a node transmit a copy of the Ks’

8 Create New Ks’ Request Requests that a node create a new Ks’, will only
be processed by a node that believes it is a server

9 Ks’ Available Status that this node has a Ks’ that exists and that
either matches the node’s server, in the case where
the node believes another node is the server

12 Ks = Ks’ Status Status that this node has Ks = Ks’

14 Key Server Yes Status that this node believes it is a server

15 Key Server No Status that this node believes it is a client

18 Ks ID Matches Server Status that this node’s Ks ID matches the Ks ID of
the node that it believes is the server

19 Ks’ ID Matches Server Status that this node’s Ks’ ID matches the Ks’ ID
of the node that it believes is the server

20 Ks ID Matches Me Status that this node’s Ks ID matches the Ks ID of
the node receiving the message (based on the last
message this node received from that node)

21 Ks’ ID Matches Me Status that this node’s Ks’ ID matches the Ks’ ID
of the node receiving the message (based on the
last message this node received from that node)

Figure 30: KEP Message Flags

6.3 Listener

The Listener runs in parallel with the Processor, and is responsible for verifying

incoming messages from different nodes. As mentioned previously, PLCs and other

embedded controllers continually send messages, so the detection of a new message to be

verified is not based on the presence of a message but rather a change in the message’s

content. Each of the messages being sent to the controller from the various nodes are

Page 134 of 188

examined for a change in the content (note that a counter change only counts if the new

value is greater than the last value that was previously verified). If a change in the

content is detected the message is added to a verification queue.

The Listener is continually examining messages for new content, while at the same

time verifying the messages that have been added to the verification queue one at a time.

If a new message comes in for a node while the message for that node is being verified

the new message must wait until the current verification is complete before the new one

can be added to the queue. However if a new message comes in for a node that is not

currently undergoing verification than the new message is added to the queue and the old

message along with its position in the queue is discarded. This protects the Listener

against the case where one node is misbehaving, potentially due to a hardware or

networking failure, resulting in the node continually sending invalid messages. The

remaining nodes will be able to operate without any issue. Also note that if the failing

node is sending the same invalid message over and over again the verification will only

be performed once on the invalid message, which helps protect the Listener from

consuming unnecessary processing resources.

An attacker could potentially attempt to perform a denial of service attack by flooding

the Listener with false messages that appear to be from the different nodes. As a result

the KEP as a whole would essentially idle because it would continually detect a series of

unverifiable messages, which would then trigger an alarm to note that there appears to be

misbehavior of the system for further investigation. Since a controller sends out

messages continually, with a fixed message size and fixed message rate, detecting this

denial of service attack on a network is a relatively trivial task by analyzing the

Page 135 of 188

bandwidth of messages being sent to the node. Essentially, if the bandwidth utilization is

above normal and you are getting alarms then you are under a denial of service attack.

Since KEP works by only switching out Ks after it successfully detects that all nodes

have Ks’ the KEP can essentially idle indefinitely until such an attack is resolved. So

long as the attack is resolved before a key expires the overall control system data

authentication and verification component remains unaffected. This is particularly true

for VMAC, where the analysis in Section 4.3.3 shows that there is significant time before

a key expires.

The efficiency of the Listener is O(n), as it is possible that at any given moment every

node may be sending a new message to a node. The speed of the Listener is ultimately

dictated by the time in which it takes the Ed25519_VERIFY AOI to verify a message

(see Section 5.5.9). The scan time impact of the Listener is dependent on the scan time

impact of the Ed25519_VERIFY AOI, and is generally less than 1ms when no

verification is being performed on a Rockwell 1756-L8x processor.

6.4 Processor

The Processor is a state machine consisting of a total of ten states numbered from 0 to

9. Each state performs a sequence of logical functions designed to perform a specific

task. Once those functions are preformed the state machine than transitions to a new

state, performing those functions in the new state. This process repeats continually,

resulting in a state machine that is in constant motion. The design of the Processor was

inspired by a typical CPU processor, in which instructions are read from memory, the

Page 136 of 188

instruction is processed, actions are taken, and then the process repeats for the next set of

instructions.

Figure 31: Processor State Machine Diagram

Figure 31 above shows the Processor State Machine Diagram. The green numbers

indicate the state number, the black arrows indicate transitions only made by a node that

has not determined it is a server (i.e. client side transitions), and the orange arrows

indicate transitions only made by a node that has determined it is a server (i.e. server side

transitions). Transitions indicated by black/orange arrows can be made by either clients

or servers. The blue text indicates the conditions that dictate which state is next after the

current state completes its functions. Arrows without blue text simply indicate that there

is only one possible option for the next state. For example, state 4 is always followed by

Page 137 of 188

state 5, however there are multiple options for the next state after state 5. The sections

below describe the functions that are performed in each state.

During KEP operation there is significant discussion on “server” nodes versus

“client” nodes. It is important to remember that these are just roles that a node takes with

respect to a different node. A node can be a server for one node and a client to a different

node at the same time. Therefore a node is exclusively limited to just the “black” or just

the “orange” transitions at any given time.

6.4.1 State 0: Power On

State 0 is known as the “Power On” state because this is the state that all nodes begin

operation when power is freshly applied. The sequence chart for this state is shown in

Figure 32. The state begins by clearing the identity of the key server node which will

then be freshly determined in state 1. The state then goes into idle for a period of time

(20 minutes was used in the proof of concept) to allow the Listener (which is running in

parallel of the processor) to examine incoming messages from the various nodes. After

the timer expires the state saves a copy of the current public Diffie-Hellman values being

advertised by the various nodes as old messages, and sets an internal flag indicating that

the node has just left the Power On state.

Page 138 of 188

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

CL
EA

R
KE

Y
SE

RV
ER

 N
O

DE

SA
VE

 C
U

RR
EN

T
Pu

bD
H

AS
 O

LD

DE
LA

Y
FO

R
20

 M
IN

U
TE

S

SP
AR

E

SE
T

In
te

rn
al

Fl
ag

_P
ow

er
O

nC
yc

le

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

DE
TE

RM
IN

E
N

EX
T

ST
AT

E

SE
T

DN
 F

LA
G

IN
CR

EM
EN

T
N

EX
T

ST
EP

 IF
 F

AL
SE

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMD_VALUE
0 0

1 x 1
2 x 4
3 x 2
4 0
5 x 16
6 0
7 x 8192
8 0
9 x 16384

10 0

Figure 32: Processor State 0 Sequence Chart

Note that while State 0 is in operation the Listener and VMAC algorithms are still

operating in parallel. This means that if a node is being powered on for the first time ever

it will not have a valid Ks or Ks’ in order to being using to authenticate messages. This

scenario will most commonly occur when commissioning part of the control system for

the first time or when replacing a failed processor that did not have a “hot backup”

available (NOTE: Many PLC vendors offer a “hot backup” solution where two

controllers have a dedicated line between them and run in parallel with each other to act

as only one node). However for a node that has merely been shut down temporarily, such

as due to a power loss, the VMAC will still continue to work because it will have a copy

of Ks and also possibly Ks’ if a key exchange had not been initiated while the node was

powered off.

Page 139 of 188

6.4.2 State 1: Server Check

State 1 is known as the “Server Check” state because this is the state in which a node

determines who is the key server for the node. This determination is made by scanning

the verified messages from the nodes and finding the highest priority node that has set the

Ks’ Available flag. If no node has the flag set then the state selects the online node that

has the highest priority. Since priorities are based on the nodes internal settings a tree

can be created. For example, call this node A and call the server for A node B. It is

possible to configure B such that a third node C is the server for node B. As a result key

propagation would go down from C to B to A. The sequence chart for State 1 is shown in

Figure 33.

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

 IN
IT

IA
LI

ZE
 T

HA
T

N
O

 N
O

DE
 IS

 T
HE

 K
EY

SE

RV
ER

SE
T

N
O

DE
 1

 A
S

DE
FA

U
LT

 H
IG

HE
ST

PR

IO
RI

TY
 N

O
DE

CH
EC

K
N

O
DE

 2

CH
EC

K
N

O
DE

 3

CH
EC

K
N

O
DE

 4

SP
AR

E

CH
EC

K
IF

 K
S'

 E
XI

ST
S

CH
EC

K
IF

 K
S

EX
IS

TS

SP
AR

E

SP
AR

E

SP
AR

E

TH
E

N
O

DE
 W

IT
H

TH
E

HI
GH

ES
T

PR
IO

RI
TY

 A
N

D
RE

PO
RT

IN
G

A
KS

BE

CO
M

ES
 T

HE
 K

EY
 S

ER
VE

R

TH
E

N
O

DE
 W

IT
H

TH
E

HI
GH

ES
T

PR
IO

RI
TY

 A
N

D
RE

PO
RT

IN
G

A
KS

BE

CO
M

ES
 T

HE
 K

EY
 S

ER
VE

R

DE
TE

RM
IN

E
N

EX
T

ST
AT

E

SE
T

DN
 F

LA
G

IN
CR

EM
EN

T
N

EX
T

ST
EP

 IF
 F

AL
SE

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMD_VALUE
0 0

1 x 1
2 x 2
3 x 4
4 x 8
5 x 16
6 x 64
7 x 128
8 0
9 0

10 0
11 0
12 x 2048
13 x 4096
14 x 8192
15 x 16384
16 0

Figure 33: Processor State 1 Sequence Chart

Page 140 of 188

After the server is selected the state must determine the next transition. Normally

under a “steady state” operation (meaning that all keys have been exchanged, Ks=Ks’,

and VMAC is authenticating data regularly) the state will transition into State 5 to check

for new messages, and then back to State 1. This cycle repeats ad infimum until some

change occurs. If a node determines that it is its own server, meaning that it is the root of

the tree, and does not have a Ks’ it will go about the process of creating a new Ks’ by

transitioning to State 7. Note that just because a node is normally the root does not

necessary mean that it will always act as the root. If the root node is power cycled then it

is possible that the second highest priority node will have a copy of the Ks’ and will have

set the Ks’ Available flag. In this case the root node will instead act a client to the

second highest priority node, remaining a client until it has a copy of Ks’ in which case it

will then resume its normal role as a server. The status of each node will be clearly

identifiable thru the use of the Key Master Yes and Key Master No flags, where the

former will be set by Node 2 and the latter by Node 1, and then switched once Node 1

obtains a copy of Ks’.

Nodes that have determined that they are clients will transition to State 2 if they

determine that they need to request a copy of the Ks’, either because they have an invalid

or nonexistent Ks’ or Ks. The transition to State 2 essentially means that a node realizes

that something is wrong and is unsure of what to do. While in State 1 the node does not

know if it is in the process of obtaining the keys or if it needs to initiate that process, so it

moves into a state that is meant to handle this condition.

Page 141 of 188

6.4.3 State 2: Ks’ Req Check

State 2 is known as the “Ks’ Req Check” state because this is the state in which a

node determines if it is currently in the process of performing a key exchange by sending

a “Ks’ Request” flag to the server node. If the node has determined that it has sent a

request to the current server node, or that this node’s Ks’ ID matches the server’s Ks’ ID

it transitions into State 5. Otherwise the node transitions into State 3 to start the key

exchange process. The sequence chart for State 2 is shown in Figure 34.

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

DE
TE

RM
IN

E
N

EX
T

ST
AT

E

SE
T

DN
 F

LA
G

IN
CR

EM
EN

T
N

EX
T

ST
EP

 IF
 F

AL
SE

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMD_VALUE
0 0

1 x 8192
2 x 16384
3 0

Figure 34: Processor State 2 Sequence Chart

State 2 is one of the simplest states in the Processor and consideration was made to

combine it with State 1. It was determined, however, that combining the two states

overcomplicates the design of State 1 because it takes two fundamentally different

questions/actions and combines them. However during a key exchange process these

states are strongly interrelated because it is possible that a node’s current server node

could change during the key exchange. For example, assume you are node A and the

server node is node B. It is possible that during the key exchange node B will go offline

Page 142 of 188

for some reason while node A was waiting for a response to the last KEP message (which

would normally contain a public Diffie-Hellman value and encrypted Ks’). State 1 will

determine that a new node, call it node C, is now the server. It will transition to State 2,

which will then realize that a key exchange process has not been started with Node C and

therefore initiate a fresh request. Requests to nodes that are offline are automatically

cleared by the processor, so the previous key exchange with node B will be abandoned.

6.4.4 State 3: EdDH Keys

State 3 is known as the “EdDH Keys” state because this is the state in which a node

generates the public and private Diffie-Hellman keys using the Ed25519 curve. This is

done by pseudo randomly picking a private value called q and then performing a point

multiplication against the base point B to get the public value Q which represents a point

on the Ed25519 curve. The point is then encoded as a 64-character hexadecimal string.

The sequence chart for State 3 is shown in Figure 35.

Page 143 of 188

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

GE
T

N
EW

 R
AN

DO
M

 N
U

M
BE

R
(q

a)

SA
VE

 q
 A

S
In

te
rn

al
_P

riD
H

CO
N

VE
RT

 R
AN

DO
M

 N
U

M
BE

R
IN

TO
 E

SP
AR

E

BU
IL

D
BA

SE
 P

O
IN

T

SP
AR

E

CA
LC

U
LA

TE
 Q

 =
 q

 *
 B

SP
AR

E

EN
CO

DE
 Q

SP
AR

E

SA
VE

 Q
 A

S
In

te
rn

al
_P

ub
DH

SE
T

Pu
bD

H
Av

ai
l F

la
g

SP
AR

E

DE
TE

RM
IN

E
N

EX
T

ST
AT

E

SE
T

DN
 F

LA
G

IN
CR

EM
EN

T
N

EX
T

ST
EP

 IF
 F

AL
SE

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMD_VALUE
0 0

1 x 1
2 x 2
3 x 4
4 x 16
5 x 64
6 x 256
7 x 1024
8 x 2048
9 x 8192

10 x 16384
11 0

Figure 35: Processor State 3 Sequence Chart

For every node that a given node communicates with in KEP a table is kept in

memory that keeps track of this node’s current q / Q pair that is being used for that node.

It also keeps track of the last public Diffie-Hellman value that provided by that node,

since a change in that value indicates that the other node has created its own key pair

which it used to encrypt Ks’. Each row in the table is reserved for a specific node and is

only used for that node, which means that the table grows linearly with as the number of

nodes increase. However by using a tree structure a node’s table size only needs to be as

large as the node’s number of leaves plus 2 for the node itself and the node’s root.

Note that State 3 is used to generate q / Q pairs for both servers and clients. The state

essentially functions the exact same way regardless of the reason why it is creating the

Page 144 of 188

key pair and stores the results in the same table mentioned in the previous paragraph.

The difference is whether the node transitions next into State 6 if this is a server side

action or transitions into State 4 for a client side action.

6.4.5 State 4: Sign message

State 4 is where the digital signatures are created. Depending on how entry is made

into State 4 it is possible that the state will sign only a message to a given client, only a

message to the server node, or a message to all nodes. All nodes, in this context, includes

only the nodes in this node’s immediate proximity within the tree. For example, when

transitioning from State 3 to State 4 the message to be signed is a client message that only

needs to go to a server. Similarly when transitioning from State 6 to State 4 the message

is a server message that only needs to go to a specific client (in this case the one who

initiated the process by sending a Ks’ Request). When transitioning from State 8 to

State 4 a message is sent to all nodes advertising the new key IDs, so that all nodes can

use this information to determine if that node can act as a viable server node. The

sequence chart for State 4 is shown in Figure 36.

Page 145 of 188

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

M
AP

 K
EY

 ID
EN

TI
TY

 A
N

D
CO

M
M

O
N

FL

AG
S

TO
 IN

TE
RN

AL
 E

dD
SA

 M
ES

SA
GE

M
AP

 N
O

DE
1

SP
EC

IF
IC

 V
AL

U
ES

 T
O

IN

TE
RN

AL
 E

dD
SA

 M
ES

SA
GE

M
AP

 N
O

DE
2

SP
EC

IF
IC

 V
AL

U
ES

 T
O

IN

TE
RN

AL
 E

dD
SA

 M
ES

SA
GE

M
AP

 N
O

DE
3

SP
EC

IF
IC

 V
AL

U
ES

 T
O

IN

TE
RN

AL
 E

dD
SA

 M
ES

SA
GE

M
AP

 N
O

DE
4

SP
EC

IF
IC

 V
AL

U
ES

 T
O

IN

TE
RN

AL
 E

dD
SA

 M
ES

SA
GE

SI
GN

 M
ES

SA
GE

 T
O

 N
O

DE
1

SI
GN

 M
ES

SA
GE

 T
O

 N
O

DE
2

SI
GN

 M
ES

SA
GE

 T
O

 N
O

DE
3

SI
GN

 M
ES

SA
GE

 T
O

 N
O

DE
4

SP
AR

E

SP
AR

E

SP
AR

E

CL
EA

R
In

te
rn

al
Fl

ag
_P

ow
er

O
nC

yc
le

DE
TE

RM
IN

E
N

EX
T

ST
AT

E

SE
T

DN
 F

LA
G

IN
CR

EM
EN

T
N

EX
T

ST
EP

 IF
 F

AL
SE

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMD_VALUE
0 0

1 x x 3
2 x 32
3 x x 5
4 x 64
5 x x 9
6 x 128
7 x x 17
8 x 256
9 0

10 0
11 0
12 0
13 0
14 0
15 0
16 x 4096
17 x 8192
18 x 16384
19 0

Figure 36: Processor State 4 Sequence Chart

This sequence chart from the proof of concept does have room for future

improvement, particularly to streamline the chart and make the entire state more arbitrary

for a n-nodes. However it illustrates the critical concept that you first need to map the

values that you desire to sign into a working memory area, and then leave that memory

area untouched while the digital signature is being processed or else you will have an

invalid signature generated. The sequence chart also indicates that this is the state in

which the internal power on flag set in State 0 is finally cleared. This means that the flag

essentially acts as just a one shot to go straight from State 1 to State 4 in the

Page 146 of 188

circumstances where the node that just powered on determined it was its own server (i.e.

is the root node) and already had the current Ks’. This allows the root node to resume its

place in the tree as quickly as possible.

6.4.6 State 5: Check for new message

The purpose of this state is to check the incoming message of a node and compare the

information in that message with the information this node already has to determine if

some action needs to be taken. The various conditions that induce the transitions are

shown in Figure 31, and the sequence chart is shown in Figure 37. There is also an

internal “processing required” flag set by the Listener whenever a new message has come

in that is successfully verified, but this flag was just used for diagnostic purposes. The

state of the internal flag does not have an operational impact.

Page 147 of 188

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

IN
IT

IA
LI

ZE

SE
T

TH
E

W
O

RK
IN

G
N

O
DE

M
O

VE
 T

HE
 V

ER
IF

IE
D

M
ES

SA
GE

 IN
TO

 A

M
ES

SA
GE

 IN
 P

RO
CE

SS
IN

G

SP
AR

E

CH
EC

K
FO

R
ST

AT
E

3
TR

AN
SI

TI
O

N

(S
er

ve
r O

nl
y)

CH
EC

K
FO

R
ST

AT
E

9
TR

AN
SI

TI
O

N

(C
lie

nt
 O

nl
y)

CH
EC

K
FO

R
ST

AT
E

8
TR

AN
SI

TI
O

N

SP
AR

E

SP
AR

E

CH
EC

K
FO

R
ST

AT
E

7
TR

AN
SI

TI
O

N

(S
er

ve
r O

nl
y)

SP
AR

E

SP
AR

E

CH
EC

K
FO

R
ST

AT
E

1
TR

AN
SI

TI
O

N

SE
T

Q
U

E
O

F
W

O
RK

IN
G

N
O

DE
 T

O
 0

,
DE

C
O

TH
ER

 Q
U

ES

SE
T

DN
 F

LA
G

IN
CR

EM
EN

T
N

EX
T

ST
EP

 IF
 F

AL
SE

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMD_VALUE
0 0

1 x 1
2 x 2
3 x 4
4 0
5 x 16
6 x 32
7 x 64
8 0
9 0

10 x 512
11 0
12 0
13 x 4096
14 x 8192
15 x 16384
16 0

Figure 37: Processor State 5 Sequence Chart

This state works by examining the messages from one node at a time with each

transition into State 5, vice examining all messages each time. For example, when first

entering the state it checks for a new message from Node A. If no new or actionable

messages are found we transition into State 1. If nothing has changed with respect to the

server node we transition back into State 5, this time checking for a new message from

Node B. The process repeats cyclically, skipping nodes that are offline. This prevents a

possible denial of service attack where one node is constantly providing new messages

without allowing the next node to get a chance to check its functions.

Page 148 of 188

6.4.7 State 6: Gen Kp, Encrypt Ke

State 6 is a “server only” state that is executed as a result of the server receiving a

new message from a client in State 5 which initiates a Ed25519 Diffie-Hellman key

exchange. State 5 transitions into State 3 to generate the server’s key pair, and then

transitions into State 6 where a point multiplication between the server’s private value

(acting a scalar) and the client’s public value (acting as a point on the Ed25519 curve)

generates a new point on the curve. This new point is then hashed using SHA512 to

provide extra security, and the results of the hash (parts a thru d) are used as a one-time

symmetric key called Kp with a length of 256-bits. Kp is then used to encrypt Ks’ via an

XOR operation. The sequence chart for State 6 is shown in Figure 38.

Note that XOR can be used to securely encrypt data when the key is the same length

as the data and is only used once. Therefore when a public Diffie-Hellman value is

provided to the server or client the value is saved as the last value used. A new value

must be provided in order to get into State 6, which is controlled on the server side as one

of the criteria to initiate the State 5 to State 3 transition.

Page 149 of 188

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

IN
TE

RP
RE

T
Pr

iD
H

ST
RI

N
G

AS
 LI

TT
LE

EN

DI
AN

 IN
TE

GE
R

DE
CO

DE
 P

ub
DH

 P
O

IN
T

PE
RF

O
RM

 P
O

IN
T

M
U

LT
IP

LI
CA

TI
O

N

EN
CO

DE
 T

HE
 R

ES
U

LT

CO
N

VE
RT

 R
ES

U
LT

 T
O

 LI
N

Ts
 F

O
R

HA
SH

IN
G

HA
SH

ST
O

RE
 F

IR
ST

 2
56

 B
IT

S
AS

 K
p

EN
CR

YP
T

Ks
' A

S
Ke

 U
SI

N
G

Kp

CO
N

VE
RT

 K
e

IN
TO

 S
TR

IN
G

TO
 B

E
SI

GN
ED

SE
T

FL
AG

S

SP
AR

E

SP
AR

E

SP
AR

E

DE
TE

RM
IN

E
N

EX
T

ST
AT

E

SE
T

DN
 F

LA
G

IN
CR

EM
EN

T
N

EX
T

ST
EP

 IF
 F

AL
SE

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMD_VALUE
0 0

1 x 1
2 x 2
3 x 4
4 x 8
5 x 16
6 x 32
7 x 64
8 x 128
9 x 256

10 x 512
11 x 8192
12 x 16384
13 0

Figure 38: Processor State 6 Sequence Chart

6.4.8 State 7: Create new Ks’

This state is a “server only” state that is used to create a new Ks’, and is typically

initiated as a result of a scheduled automatic update. The sequence diagram for the state

is shown in Figure 39. Essentially the state clears the request and then pseudo randomly

generates a new 256-bit value which becomes the new Ks’. The ID of Ks’ is then set as a

64-bit number representing the number of microseconds since epoch time. If Ks does not

exist then the state transitions to State 8, otherwise it transitions to State 4 to send a new

digitally signed message to all nodes indicating that a new Ks’ is available. The other

nodes will receive this message, verify it, and then initiate the key exchange process with

the server.

Page 150 of 188

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

CL
EA

R
Ks

' R
EQ

 F
LA

G

SP
AR

E

GE
T

N
EW

 R
AN

DO
M

 N
U

M
BE

R

CO
N

VE
RT

 R
AN

DO
M

 N
U

M
BE

R
IN

TO
 K

s

SE
T

CU
RR

EN
T

KE
Y

ID
EN

TI
Y

VA
LU

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

DE
TE

RM
IN

E
N

EX
T

ST
AT

E

SE
T

DN
 F

LA
G

IN
CR

EM
EN

T
N

EX
T

ST
EP

 IF
 F

AL
SE

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMD_VALUE
0 0

1 x 1
2 0
3 x 4
4 x 8
5 x 16
6 0
7 x 8192
8 x 16384
9 0

Figure 39: Processor State 7 Sequence Chart

6.4.9 State 8: Set Ks = Ks’

This state is used to disregard the old Ks value and set it equal to the new Ks’ value,

as well as update the ID. Transition into this state is based on a node obtaining a new Ks’

and not having a Ks, or more commonly on a node detecting that all nodes have sent

valid VMAC messages using Ks’ as described previously. The sequence diagram for the

state is shown in Figure 40. The state completes when it has verified that Ks is equal to

Ks’ and the IDs of the keys match. The state then transitions to State 4 and sends a

message out to all nodes indicating the updated status of the node.

Page 151 of 188

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

SE
T

Ks
 =

 K
s'

CH
EC

K
Ks

 =
 K

s'
IN

TE
RN

AL
 F

LA
G

SE
T

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

DE
TE

RM
IN

E
N

EX
T

ST
AT

E

SE
T

DN
 F

LA
G

IN
CR

EM
EN

T
N

EX
T

ST
EP

 IF
 F

AL
SE

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMD_VALUE
0 0

1 x 1
2 x 2
3 x 8192
4 x 16384
5 0

Figure 40: Processor State 8 Sequence Chart

6.4.10 State 9: Gen Kp, Decrypt Ke

State 9 is the client side equivalent of State 6 described previously. It essentially does

the same process as State 6 to generate Kp, and this time uses XOR on Ke to recover

Ks’. The sequence chart is shown in Figure 41.

Page 152 of 188

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

IN
TE

RP
RE

T
Pr

iD
H

ST
RI

N
G

AS
 LI

TT
LE

EN

DI
AN

 IN
TE

GE
R

DE
CO

DE
 P

ub
DH

 P
O

IN
T

PE
RF

O
RM

 P
O

IN
T

M
U

LT
IP

LI
CA

TI
O

N

EN
CO

DE
 T

HE
 R

ES
U

LT

CO
N

VE
RT

 R
ES

U
LT

 T
O

 LI
N

Ts
 F

O
R

HA
SH

IN
G

HA
SH

ST
O

RE
 F

IR
ST

 2
56

 B
IT

S
AS

 K
p

CO
N

VE
RT

 K
e

FR
O

M
 S

TR
IN

G
TO

 B
E

DE
CR

YP
TE

D

DE
CR

YP
T

Ke
 A

S
Ks

' U
SI

N
G

Kp

SE
T

Ks
Pr

im
eI

D
TO

 N
EW

 K
sP

rim
eI

D

CL
EA

R
Ks

' R
EQ

, S
ET

 F
LA

G
Ks

' R
EC

EI
VE

D

SP
AR

E

SP
AR

E

DE
TE

RM
IN

E
N

EX
T

ST
AT

E

SE
T

DN
 F

LA
G

IN
CR

EM
EN

T
N

EX
T_

ST
EP

 IF
 F

AL
SE

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMD_VALUE
0 0

1 x 1
2 x 2
3 x 4
4 x 8
5 x 16
6 x 32
7 x 64
8 x 128
9 x 256

10 x 512
11 x 1024
12 x 8192
13 x 16384
14 0

Figure 41: Processor State 9 Sequence Chart

6.5 Typical Operation

This section describes the typical sequences of events that would occur during

operation of the KEP when powering on for the first time when the system is freshly

commissioned. In this example assume that there are four nodes, labeled A thru D, where

A has the highest priority and D has the lowest priority. This section is intended as an

example to demonstrate the general behavior of KEP in this particular scenario and

configuration. In general, both server nodes and client nodes will begin operation in state

Page 153 of 188

0, which is the starting point for when power is applied. The node does not know

whether it is a server or a client until after it completes state 1.

When the four nodes begin powering up, they will each move into State 1 to do a

server check. In this example each 10of the nodes will determine that A is the server,

and that no one is advertising Ks’ Available. In fact at this point since each node is

powering on for the first time the KEP message between them will be completely empty.

Nodes B thru D will each go through the process of preparing to get a new key from the

server by executing the sequence of operations shown in Figure 42 on the right. Node A

will recognize that it is the server and go thru the sequence of operations shown on the

left in order to generate a new Ks’. Since this is a first time power up it will set Ks =

Ks’. All nodes will conclude by generating digitally signed messages, with B thru D

each sending a single message to node A. This message will contain the Ks’ Request

along with the public Diffie-Hellman value necessary to do a key exchange. Node A will

be sending a message to all nodes advertising Ks’ Available along with the Ks’ ID and

Ks ID.

Figure 42: LEFT: A generating Ks’ and Ks, RIGHT: B thru D requesting Ks’

Page 154 of 188

All of the nodes will then enter into State 5 to check for a new message. Depending

on processing speeds and network latency it could take some time for the nodes to

receive the various messages and verify them. Therefore the nodes will enter into an idle

mode where they will cycle between different states looking for some kind of change in

status. This change could be a change in the server identity, or in the receipt of a verified

and actionable message. Figure 43 shows the sequence of operations that the different

nodes will take. Note that the client nodes will cycle differently than the server node at

this point because the server has the keys.

Figure 43: LEFT: A in Idle, RIGHT: B thru D in Idle but Exchange in Progress

At some point the server node and client nodes will receive verified messages. A

verified message from the server will be not be actionable at this point, since the message

will only confirm that A is the server. If the configuration was different and another node

was a higher priority than node A (call it E), which was previously offline for some

reason but now has come online with a valid Ks’ ID, then the clients would abandon the

request to A and generate a new request to E. In such a scenario A should also be

Page 155 of 188

configured to see that E is higher priority and switch its role over to a client, since it

would detect that the Ks’ ID that it generated did not match the server’s values.

In this configuration, however, the client nodes will continue to idle while the server

node processes the message for each node. The server node will receive the requests for

Ks’ and go thru the process of generating the Diffie-Hellman keys, generating Kp,

encrypting Ks’, generating a message, and signing the message. This process will be

repeated for each of the nodes as shown in the figure below on the left. Meanwhile, as

each node receives the message it will leave the idle cycle shown in the previous figure

and instead begin to process the message and decrypt the key as shown in Figure 44 on

the right.

Figure 44: LEFT: A encrypting Ks’, RIGHT: B thru D decrypting Ks’

In this example, each of the clients did not have an older Ks, so they immediately set

Ks = Ks’. However during subsequent key exchanges the client nodes will only enter

State 8 after confirming that all nodes have successfully received and verified VMAC

messages. Figure 45 and Figure 46 show the process that client node would go through

Page 156 of 188

to update Ks’ if it already has a Ks, as well as the process the client node will go thru

once it has received and verified VMAC messages from all nodes using Ks’.

Figure 45: Client Has Ks and Decrypting new Ks’

Figure 46: RIGHT: Client updating Ks = Ks’

Now that the key exchange is complete, all servers and clients will enter into the same

idle cycle shown in Figure 47. The nodes will remain in this cycle until there is either a

change in server status, a key update, or the node experience some kind of failure that

causes it to go down, such as a power loss.

Page 157 of 188

Figure 47: Client or Server in Idle Cycle with Ks = Ks’

Page 158 of 188

CHAPTER 7: RESULTS AND FUTURE WORK

The proof of concept was tested using four RSLogix 5000 1756-L83 PLCs that were

placed in the same rack. Messages were transmitted using produce/consume tags across

the backplane, however the work presented here is protocol independent. Any

transportation mechanism including Ethernet and Fieldbus could be used, which is a

feature inherent for both this work and produce/consume tags in general. The controllers

were configured initially with Node 1 having the highest priority and Node 4 the lowest,

all in a flat configuration. As testing continued variations on the tree configuration were

tested, such as nodes farther down on the tree from the root node. VMAC was used to

provide data authentication during the entire process.

In general for KEP it was found that the timing of KEP ranged from almost a

nonexistent impact on scan time to at most a 20 ms impact on scan time, depending on

what KEP was doing at the moment in time. The results on scan time are not dependent

on the number of nodes involved in the KEP, however the time to complete an entire key

change is dependent on the tree configuration and the number of nodes. The scan time

impact is ultimately driven by the processing of Ed25519_SIGN and Ed25519_VERIFY,

each of which has a maximum 10 ms scan time. Therefore during KEP it is possible to

have both of them running in the worst case scenario at a point in time resulting in the

20ms scan time impact. In general though the results showed that during an active key

exchange KEP spent about 30% of the time with a less than 1 ms impact, approximately

50% of the time with a 5-10 ms scan time impact, and remaining 20% of time between

10-20ms scan time impact.

Page 159 of 188

Ultimately the biggest scan time impacts come from VMAC itself. Figure 17

provided the timing results for VMAC using various rounds and Section 4.3.3 provides

the analysis for key reversal attacks. For the proof-of-concept 20 rounds were used with

a message length of 100 DINTs, or 400 bytes. Produce/consume tags have a maximum

length of 500 bytes so the VMAC data consumed 400 of the 500 bytes. The remaining

100 bytes was reserved for some overhead such as the VMAC itself (32 bytes), flags

indicating the number of rounds and the length of the message (8 bytes total), and

information on the connection status which is a generic part of using produce/consume

tags in a Rockwell PLC. With each node generating one VMAC message and processing

3 incoming messages the total scan time of the program (including all the other I/O

handling for none-VMAC data and all the implementation details described in Section

4.4) was between 51.7 ms and 52.1 ms.

This result is interesting because the results shown in Figure 17 indicate that running

four VMACs containing 400 bytes each should take a total of approximately 51.6 ms,

indicating that the overwhelming majority of the run time is spent running VMAC itself.

Therefore the implementation details provided in Section 4.4 have a negligible impact on

overall system performance but are critical for providing overall security. The result also

suggests that if additional alarms or monitoring capability were to be added that

capability would have a negligible impact on performance.

The one area of potential improvement for VMAC is the determination of the status

of a loss of communications to a node. In the proof of concept this was done using built

in system values and running a Get System Values (GSV) instruction that would provide

the status of communications from the PLC. In most PLC applications if the status was

Page 160 of 188

“good” then “COMMSOK” would be triggered immediately, and the status would have

to go “bad” for three seconds before we would state the communications was lost. In this

proof of concept status this was reversed, meaning that we would have to be “good” for

three seconds before setting “COMMSOK” and a “bad” status would immediately

indicate communications had been lost. The main driver for this change was to ensure

that stable communications had been established before cryptographic functions would be

initialized to improve the overall operation of KEP and VMAC. It is the author’s opinion

that this change would not negatively impact overall system performance, but that might

not hold true depending on the specific control system application.

A long term solution to improve efficiency in the algorithm would be to create a

hardware based solution, especially one that could perform 64-bit math natively in the

PLC. If a PLC was capable of performing 64-bit math natively the performance of

VMAC would be at least doubled because we could use an SHA512 based solution that

would double the size of VMAC data blocks, although it is likely we would have to

modify the message scheduling portion of SHA512. Additionally a hardware based

solution could include a built-in true-random number generator that could be integrated

into the control system platform (such as a card that would fit in the chassis). It is

suggested, however, that if PLC vendors do create such a solution they offer at least three

different options based on different technologies in case a flaw is discovered with one

option that is not solvable with a firmware update.

Finally, this work has been focused on providing a mechanism for protecting and

verifying data integrity between nodes, and allowing a mechanism for the operator to

detect if there is a problem. However this work has not defined what an operator should

Page 161 of 188

do if problem is detected. In IT systems the usual answer is to disconnect the systems,

however in a control system it is possible that disconnecting the system could result in

even higher risk. The decision tree is therefore based on a wide range of factors that

require further study with the goal of producing an automated system that can respond

intelligently to detected cyber threats. Further work is required to map out these threat

profiles and corresponding decision trees, and ultimately to develop the response

solution.

Page 162 of 188

REFERENCES

1. NISTIR 7628 Volume 1 (2010) “Guidelines for Smart Grid Cyber Security: Vol.

1, Smart Grid Cyber Security Strategy, Architecture, and High-Level

Requirements.”

2. D. Hankerson, A. Menezes, S. Vanstone, (2004) Guide to Elliptic Curve

Cryptography, ©2004, Springer-Verlag New York, Inc.

3. Wikipedia: RSA Algorithm

(http://en.wikipedia.org/wiki/RSA_%28algorithm%29) Accessed: 28 September

2017

4. Wikipedia: Digital Signature Algorithm

(http://en.wikipedia.org/wiki/Digital_Signature_Algorithm) Accessed: 28

September 2017

5. NIST Special Publication 800-57 Part 1 Revision 4 (2016) “Recommendation for

Key Management.”

(http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf)

Accessed: 28 September 2017

6. V.S. Miller, (1985). “Use of elliptic curves in cryptography.” Advances in

Cryptology Proc. Crypto ’85, LNCS 218, H.C. Williams, Ed., Springer-Verlag,

pp. 417-426

7. N. Koblitz, (1987). “Elliptic curve cryptosystems.” Mathematics of Computation,

Vol. 48, No. 177, p. 279-287

8. ANSI X9.62 (1999). “Public Key Cryptography for the Financial Services

Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)

http://en.wikipedia.org/wiki/RSA_%28algorithm%29
http://en.wikipedia.org/wiki/Digital_Signature_Algorithm
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

Page 163 of 188

9. ANSI X9.63 (2000- Working Draft). “Public Key Cryptography for the Financial

Services Industry: Elliptic Curve Key Agreement and Key Transport Protocols.”

10. IEEE 1363-2000 (2000) “Standard Specifications for Public-Key Cryptography.”

11. ISO/IEC 14888-3 (1998). “Information Technology – Security Techniques –

Digital Signatures with Appendix – Part 3: Certificate Based Mechanisms.”

12. ISO/IEC 15946 (1999 – Committee Draft). “Information Technology – Security

Techniques – Cryptographic Techniques Based on Elliptic Curves.”

13. NIST FIPS Pub 186-4 (2013). “Digital Signature Standard.”

(http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf) Accessed: 28

September 2017

14. Standards For Efficient Cryptography Group (SECG) (http://www.secg.org)

Accessed: 28 September 2017

15. SECG SEC 1 Version 2.0 (2009). “SEC 1: Elliptic Curve Cryptography.”

(http://www.secg.org) Accessed: 28 September 2017

16. SECG SEC 2 Version 2.0 (2010). “SEC 2: Recommended Elliptic Curve Domain

Parameters.” (http://www.secg.org) Accessed: 28 September 2017

17. Certicom (http://www.certicom.com) Accessed: 28 September 2017

18. D. McGrew, K. Igoe, M. Salter. (IETF) (RFC 6090). “Fundamental Elliptic Curve

Cryptography Algorithms.” (http://tools.ietf.org/html/draft-mcgrew-fundamental-

ecc-01) Accessed: 28 September 2017

19. N. Koblitz, (2010) “My Last 24 Years in Crypto: A Few Good Judgments and

Many Bad Ones” (http://2010.eccworkshop.org/slides/Koblitz.pdf)

Accessed: 28 September 2017

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://www.secg.org/
http://www.secg.org/
http://www.secg.org/
http://www.certicom.com/
http://tools.ietf.org/html/draft-mcgrew-fundamental-ecc-01
http://tools.ietf.org/html/draft-mcgrew-fundamental-ecc-01
http://2010.eccworkshop.org/slides/Koblitz.pdf

Page 164 of 188

20. N. Jansma, B. Arrendondo, (2004). “Performance Comparison of Elliptic Curve

and RSA Digital Signatures.”

(http://nicj.net/files/performance_comparison_of_elliptic_curve_and_rsa_digital_

signatures.pdf) 28 September 2017

21. A. Antipa, D. Brown, R. Gallant, R. Lambert, R. Struik, S. Vanstone, (2005).

“Accelerated Verification of ECDSA Signatures.”

(http://www.mathnet.or.kr/mathnet/preprint_file/cacr/2005/cacr2005-28.pdf)

Accessed: 28 September 2017

22. H. Krawczyk, M. Bellare, R. Canetti, “Request for Comments: 2104, HMAC:

Keyed-Hashing for Message Authentication.” http://www.ietf.org/rfc/rfc2104.txt

Last accessed: 28 September 2017

23. D. Bernstein, “The cr.yp.to blog: How to Design an Elliptic-curve Signature

System” (https://blog.cr.yp.to/20140323-ecdsa.html) Accessed: 12 February 2017

24. H. Edwards, (2007). “A normal form for elliptic curves.” Bulletin of the

American Mathematical Society 44, pp. 393-422

25. D. Bernstein, T. Lange, (2007). “Faster addition and doubling on elliptic curves”

(http://cr.yp.to/newelliptic/newelliptic-20070906.pdf) Accessed: 17 September

2017

26. D. Bernstein, N. Duif, T. Lange, P. Schwabc, B. Yang, (2011). “High-speed

high-security signatures” (https://ed25519.cr.yp.to/ed25519-20110926.pdf)

Accessed: 17 September 2017

27. S. Josefsson., I. Liusvaara, (IETF) . “Edwards-curve Digital Signature Algorithm

(EdDSA).” (https://tools.ietf.org/html/rfc8032) Accessed: 17 September 2017

http://nicj.net/files/performance_comparison_of_elliptic_curve_and_rsa_digital_signatures.pdf
http://nicj.net/files/performance_comparison_of_elliptic_curve_and_rsa_digital_signatures.pdf
http://www.mathnet.or.kr/mathnet/preprint_file/cacr/2005/cacr2005-28.pdf
http://www.ietf.org/rfc/rfc2104.txt
https://blog.cr.yp.to/20140323-ecdsa.html
http://cr.yp.to/newelliptic/newelliptic-20070906.pdf
https://ed25519.cr.yp.to/ed25519-20110926.pdf
https://tools.ietf.org/html/rfc8032

Page 165 of 188

28. K. Fischer, “L5K Files Link” (http://fog.misty.com/perry/ccs/ec/KF-PhD/)

Accessed: 26 November 2017

29. R. Perry, “EdDSA Reference Implementation.”

(http://fog.misty.com/perry/ccs/EdDSA/impl/impl.html) Accessed: 17

September 2017

30. S. Mittra, “Iolus: A Framework for Scalable Secure Multicasting”

(http://conferences.sigcomm.org/sigcomm/1997/papers/p113.pdf) Accessed: 17

September 2017

31. L. Dondeti, S. Mukherjee, A. Samal, “DISEC: A Distributed Framework for

Scalable Secure Many-to-many Communication”

(http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1030&context=cseco

nfwork) Accessed: 17 September 2017

32. O. Rodeh, K. Birman, D. Dolev, “Optimized Group Rekey for Group

Communication System”

(https://pdfs.semanticscholar.org/e000/fae10daa731a1faa6eeb82102912d0acf8fd.

pdf) Accessed: 17 September 2017

33. M. Baugher, R. Canetti, F. Lindholm, “RFC 4046: Multicast Security (MSEC)

Group Key Management Architecture” (https://www.ietf.org/rfc/rfc4046.txt)

Accessed: 17 September 2017

34. J. Guo, T. Peyrin, A. Poschmann, “The PHOTON Family of Lightweight Hash

Functions” (https://eprint.iacr.org/2011/609.pdf) Accessed: 2 October 2018

35. W. Diffie, M. Hellman (1976) “New Directions in Cryptography”, IEEE

Transactions on Information Theory, VOL IT-22, No. 6, pp 644-654

http://fog.misty.com/perry/ccs/ec/KF-PhD/
http://fog.misty.com/perry/ccs/EdDSA/impl/impl.html
http://conferences.sigcomm.org/sigcomm/1997/papers/p113.pdf
http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1030&context=cseconfwork
http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1030&context=cseconfwork
https://pdfs.semanticscholar.org/e000/fae10daa731a1faa6eeb82102912d0acf8fd.pdf
https://pdfs.semanticscholar.org/e000/fae10daa731a1faa6eeb82102912d0acf8fd.pdf
https://www.ietf.org/rfc/rfc4046.txt
https://eprint.iacr.org/2011/609.pdf

Page 166 of 188

36. NIST FIPS Pub 202 (2015). “SHA-3 Standard: Permutation-Based Hash and

Extendable-Output Functions.”

(http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf) Accessed: 2 October

2017

37. NIST SP 800-90A (2015). “Recommendation for Random Number Generation

Using Deterministic Random Bit Generators.”

(http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf)

Accessed: 2 October 2017

38. T. Krovetz, W. Dai, “VMAC: Message Authentication Code using Universal

Hashing <draft-krovetz-vmac-01.txt>” (http://fastcrypto.org/vmac/draft-krovetz-

vmac-01.txt) Accessed: 17 November 2017

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://fastcrypto.org/vmac/draft-krovetz-vmac-01.txt
http://fastcrypto.org/vmac/draft-krovetz-vmac-01.txt

Page 167 of 188

APPENDIX A. VMAC ANALYSIS

A.1 Testing SHA-256

/**
File: sha.py
**/

"""
SHA-256 constants, functions, processing one block, and testing

Also includes KF VMAC function for one block
"""

import random, zlib

offset to add to negative values to make them unsigned

_offset = (1 << 32)

mask to just keep 32 bits

_mask = _offset - 1

def ROTR(x,n):
 """Circular Rotate Right by n bits"""
 return (x >> n) | ((x << 32-n) & _mask)

def ROTL(x,n):
 """Circular Rotate Left by n bits, not used in SHA-256"""
 return ((x << n) & _mask) | (x >> 32-n)

def SHR(x,n):
 """Shift Right by n bits"""
 return (x >> n)

~x produces negative value

def Ch(x,y,z):
 """SHA-256 Ch Function"""
 return (x & y) ^ (((~x)+_offset) & z)

def Maj(x,y,z):
 """SHA-256 Maj Function"""
 return (x & y) ^ (x & z) ^ (y & z)

def Sigma0(x):
 """SHA-256 Sigma0 Function"""
 return ROTR(x,2) ^ ROTR(x,13) ^ ROTR(x,22)

def Sigma1(x):
 """SHA-256 Sigma1 Function"""
 return ROTR(x,6) ^ ROTR(x,11) ^ ROTR(x,25)

def sigma0(x):
 """SHA-256 sigma0 Function"""
 return ROTR(x,7) ^ ROTR(x,18) ^ SHR(x,3)

def sigma1(x):
 """SHA-256 sigma1 Function"""
 return ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10)

initial hash value
_H0 = [0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19]

Page 168 of 188

constants
_K = [0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2]

def SHA256(M, N=64):
 """
 SHA256 on data with size <= 447 bits so it fits in one 512-bit block M
 e.g. M = 32-bit-data1, ..., data13, 0x80000000, 0x0, data_bit_length

 N >= 16 is required. N < 64 represents a reduced-round SHA-256.
 """
 W = [0 for t in range(N)]
 # unpack M into array of 16 32-bit values
 for t in range(15,-1,-1):
 W[t] = M & _mask
 M >>= 32
 for t in range(16,N):
 W[t] = (sigma1(W[t-2]) + W[t-7] + sigma0(W[t-15]) + W[t-16]) & _mask
 a = _H0[0]; b = _H0[1]; c = _H0[2]; d = _H0[3]
 e = _H0[4]; f = _H0[5]; g = _H0[6]; h = _H0[7]
 for t in range(N):
 T1 = (h + Sigma1(e) + Ch(e,f,g) + _K[t] + W[t]) & _mask
 T2 = (Sigma0(a) + Maj(a,b,c)) & _mask
 h = g; g = f; f = e; e = (d + T1) & _mask
 d = c; c = b; b = a; a = (T1 + T2) & _mask
 H = (a + _H0[0]) & _mask
 H <<= 32; H |= (b + _H0[1]) & _mask
 H <<= 32; H |= (c + _H0[2]) & _mask
 H <<= 32; H |= (d + _H0[3]) & _mask
 H <<= 32; H |= (e + _H0[4]) & _mask
 H <<= 32; H |= (f + _H0[5]) & _mask
 H <<= 32; H |= (g + _H0[6]) & _mask
 H <<= 32; H |= (h + _H0[7]) & _mask
 return H

def VMAC(M, N=20, KEY=0):
 """
 KF VMAC on one block
 """
 # debug:
 # global a, b, c, d, e, f, g, h, T0, T1, T2
 # global Key
 global hprev, W
 #
 # unpack KEY into array of 8 32-bit values
 #
 Key = [0 for t in range(8)]
 for t in range(7,-1,-1):
 Key[t] = KEY & _mask
 KEY >>= 32
 #
 # unpack M into array of 16 32-bit values XOR'd with Key
 #
 W = [0 for t in range(N)]
 KeyIndex = [0, 1, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 1, 2, 0]
 for t in range(15,-1,-1):
 ki = KeyIndex[t]

Page 169 of 188

 W[t] = (M & _mask) ^ ROTR(Key[ki], 3*ki+(t>>3))
 M >>= 32
 for t in range(16,N):
 ki = (63-t)%8
 W[t] = ((sigma1(W[t-2]) + W[t-7] + sigma0(W[t-15]) + W[t-16]) & _mask) \
 ^ ROTR(Key[ki], 3*ki+(t>>3))
 #
 a = _H0[0]; b = _H0[1]; c = _H0[2]; d = _H0[3]
 e = _H0[4]; f = _H0[5]; g = _H0[6]; h = _H0[7]
 #
 for t in range(N):
 T0 = (h + Sigma1(e) + Ch(e,f,g) + _K[t]) & _mask
 T1 = (T0 + W[t]) & _mask
 T2 = (Sigma0(a) + Maj(a,b,c)) & _mask
 hprev = h;
 h = g; g = f; f = e; e = (d + T1) & _mask
 d = c; c = b; b = a; a = (T1 + T2) & _mask
 #
 H = (a + _H0[0]) & _mask
 H <<= 32; H |= (b + _H0[1]) & _mask
 H <<= 32; H |= (c + _H0[2]) & _mask
 H <<= 32; H |= (d + _H0[3]) & _mask
 H <<= 32; H |= (e + _H0[4]) & _mask
 H <<= 32; H |= (f + _H0[5]) & _mask
 H <<= 32; H |= (g + _H0[6]) & _mask
 H <<= 32; H |= (h + _H0[7]) & _mask
 return H

def bitstats(MSG,N):
 """
 count how many bits change vs. 1-bit change on input
 using SHA-256 main loop range 1:N (instead of 1:64)

 measure randomness by size of compressed hash (Z)

 returns (C,Cmin,Cmax,Cavg,Zmin,Zmax,Zavg)
 """
 C = [0 for i in range(257)]
 Cmin = Zmin = 256; Cmax = Cavg = Zmax = Zavg = 0
 mask = 1 << 511
 MD = SHA256(MSG, N) # original hash
 while mask > 0:
 # MSG ^ mask flips one bit in MSG
 # h ^ MD has non-zero bits where result != MD
 h = SHA256(MSG ^ mask, N)
 d = h ^ MD
 n = bin(d).count('1')
 C[n] += 1
 if n < Cmin: Cmin = n
 if n > Cmax: Cmax = n
 # compressed length will be > 32 bytes if h is very random
 Z = len(zlib.compress(h.to_bytes((h.bit_length()+7)//8,'big')))
 Zavg += Z
 if Z < Zmin: Zmin = Z
 if Z > Zmax: Zmax = Z
 mask >>= 1
 Zavg /= 512
 for i in range(257): Cavg += i*C[i]
 Cavg /= 512 # divide by number of trials
 return (C,Cmin,Cmax,Cavg,Zmin,Zmax,Zavg)

def block(MSG):
 """put 16 32-bit values into one 512-bit block"""
 M = MSG[0]
 for i in range(1,16):
 M = (M << 32) | MSG[i]
 return M

some test inputs and outputs from SHA256ShortMsg.rsp
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shabytetestvectors.zip

Page 170 of 188

_MSG_0 = [0x80000000, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0]
MSG_0 = block(_MSG_0)
MD_0 = 0xe3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

_MSG_8 = [0xd3800000, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x8]
MSG_8 = block(_MSG_8)
MD_8 = 0x28969cdfa74a12c82f3bad960b0b000aca2ac329deea5c2328ebc6f2ba9802c1

MSG_440 =
0x3ebfb06db8c38d5ba037f1363e118550aad94606e26835a01af05078533cc25f2f39573c04b632f62f68c29
4ab31f2a3e2a1a0d8c2be518000000000000001b8
MD_440 = 0x6595a2ef537a69ba8583dfbf7f5bec0ab1f93ce4c8ee1916eff44a93af5749c4

del _MSG_0, _MSG_8

/**
File: test.py
**/

from sha import *

tests = ["MSG_0, 64", "MSG_8, 64", "MSG_440, 64",
 "MSG_0, 32", "MSG_8, 32", "MSG_440, 32",
 "MSG_0, 20", "MSG_8, 20", "MSG_440, 20",
 "MSG_0, 16", "MSG_8, 16", "MSG_440, 16"]

for what in tests:
 test = "bitstats(" + what + ")"
 print(test)
 (C,Cmin,Cmax,Cavg,Zmin,Zmax,Zavg) = eval(test)
 print(Cmin,Cmax,Cavg,Zmin,Zmax,Zavg)

A.2 Cracking 16-Rounds

/**
File: crack16.py

**/

Crack one-block VMAC with N=16 rounds using arbitrary input data

The input data does not conform to the SHA-256 padding requirements.

This finds bits 0 to 30 of the rotated Key[0] used in round 16.

Bit 31 can not be found using this method because the carry bit related to
that is lost in the 32-bit additions. To continue, try both ways: with
that bit low and with that bit high. For each way, unwind H0 and H1 one
more round, and find bits 0 to 30 of rotated Key[1]. Again bit 31 will
be unknown, so another branch into two ways is required. After 8 unwind
levels 8 bits of KEY will remain unknown, and those 256 possibilities can
just be tested to determine those bits.

Only one unwind is done here, demonstrating the concept.

Page 171 of 188

import sha, random

N = 16

extract internal SHA-256 variables

def extract(H):
 h = (H - sha._H0[7]) & sha._mask; H >>= 32
 g = (H - sha._H0[6]) & sha._mask; H >>= 32
 f = (H - sha._H0[5]) & sha._mask; H >>= 32
 e = (H - sha._H0[4]) & sha._mask; H >>= 32
 d = (H - sha._H0[3]) & sha._mask; H >>= 32
 c = (H - sha._H0[2]) & sha._mask; H >>= 32
 b = (H - sha._H0[1]) & sha._mask; H >>= 32
 a = (H - sha._H0[0]) & sha._mask;
 #
 # check
 #
 # H = (a + sha._H0[0]) & sha._mask
 # H <<= 32; H |= (b + sha._H0[1]) & sha._mask
 # H <<= 32; H |= (c + sha._H0[2]) & sha._mask
 # H <<= 32; H |= (d + sha._H0[3]) & sha._mask
 # H <<= 32; H |= (e + sha._H0[4]) & sha._mask
 # H <<= 32; H |= (f + sha._H0[5]) & sha._mask
 # H <<= 32; H |= (g + sha._H0[6]) & sha._mask
 # H <<= 32; H |= (h + sha._H0[7]) & sha._mask
 #
 return (a,b,c,d,e,f,g,h)

extract V = T1 - offset = h + W[N-1]

The previous round values a,b,c,d,e,f,g,T1,T2 can be determined directly,
but not h (see notes in file REVERSE here).

def reverse(D, N, K):
 H = sha.VMAC(D, N, K)
 W = sha.W[N-1]
 hprev = sha.hprev
 (an,b,c,d,e,f,g,h) = extract(H)
 #
 a = b; b = c; c = d; e = f; f = g; g = h
 T2 = (sha.Sigma0(a) + sha.Maj(a,b,c)) & sha._mask
 T1 = (an - T2) & sha._mask
 V = (T1 - sha.Sigma1(e) - sha.Ch(e,f,g) - sha._K[N-1]) & sha._mask
 #
 if V != (hprev + W) & sha._mask: print("error in reverse, V is wrong")
 return V

random KEY

KEY = random.getrandbits(256)

Key0 = sha.ROTR(KEY>>224, 3*0+(15>>3)) # Key[0] XOR with W[15] in VMAC()

print(" Key0 =", format(Key0,'032b'))

K0 will hold the cracked key bits

K0 = 0

R will hold the h bits

R = 0

arbitrary random input Data

Data = random.getrandbits(512)

masks to set bit 0 of Data high or low

Page 172 of 188

ones = (1 << 512) - 1 # 11...11
mask1 = 1 # 00...01
mask0 = ones ^ mask1 # 11...10

find bit n of Key0

for n in range(31):
 #
 # W[15][n] = 0 or 1
 #
 V0 = reverse(Data & mask0,16,KEY)
 # W0 = sha.W[N-1]

 if n == 0: hprev0 = sha.hprev
 elif hprev0 != sha.hprev: print("error, hprev0 changed")

 V1 = reverse(Data | mask1,16,KEY)
 # W1 = sha.W[N-1]

 if hprev0 != sha.hprev: print("error, hprev1 changed")

 # for next iteration
 #
 mask1 <<= 1
 mask0 = ones ^ mask1

 # T1 ~= h + (Data XOR Key0), with T1 and Data known, h and Key0 unknown.
 #
 # A single bit flip in Data will cause a corresponding bit flip in T1,
 # and based on the change in the carry bit related to that flip, we can
 # determine a bit of h and Key0.
 #
 # V = T1 - offset = h + W[N-1]
 #
 # where offset includes R, the previously calculated low-order bits of h,
 # to eliminate carry propagation from those bits in the addition

 V0 = (V0 - R) & sha._mask

 V1 = (V1 - R) & sha._mask

 # print("V0 =", format(V0,'032b'))
 # print("V1 =", format(V1,'032b'))

 # print("W0 =", format(W0,'032b'))
 # print("W1 =", format(W1,'032b'), "\n")

 # get r = bit n of h, and k = bit n of Key0
 #
 # bits: i = input data, k = key, (v1,v0) = (carry, V bit n)
 #
 # i k r (v1,v0) = (i XOR k) + r
 # ----- -----
 # * 0 0 0 0 0
 # 1 0 0 0 1 no change in carry
 #
 # * 0 1 0 0 1
 # 1 1 0 0 0 no change
 #
 # * 0 1 1 1 0
 # 1 1 1 0 1 change
 #
 # * 0 0 1 0 1
 # 1 0 1 1 0 change
 #
 # As the input bit i changes 0->1, v0 changes 0->1 or 1->0,
 # and if the v1 carry bit changes then r = 1 else r = 0
 #
 # Take the four rows marked with (*) from the table above
 # (with i = 0), and rearrange the columns:
 #

Page 173 of 188

 # v0 r k
 # ---- -
 # 0 0 0
 # 1 0 1
 # 0 1 1
 # 1 1 0
 #
 # So k = v0 XOR r
 #
 # Alternate derivation: v0 = i XOR k XOR r ==> k = v0 XOR r XOR i
 #
 v0 = (V0 >> n) & 1; w0 = (V1 >> n) & 1 # these bits must differ

 if v0 == w0: print("error, v0 = w0") # consistency check

 r = ((V0 >> (n+1)) & 1) ^ ((V1 >> (n+1)) & 1) # change in carry

 k = v0 ^ r # key bit

 # print("k =", k)

 if k != ((Key0 >> n) & 1): print("error, k bit", n, "is wrong")

 if r != ((hprev0 >> n) & 1): print("error, r bit", n, "is wrong")

 # insert k into K0 and r into R
 #
 K0 |= k << n
 R |= r << n

print(" K0 =", format(K0,'032b'))
print("hprev =", format(hprev0,'032b'))
print(" R =", format(R,'032b'))

sample runs:

Key0 = 10010101111101010001000100010011
K0 = 00010101111101010001000100010011
hprev = 10010001110011101110001100001011
R = 00010001110011101110001100001011

Key0 = 11001100001100000111011111011010
K0 = 01001100001100000111011111011010
hprev = 00001011000100000001101010010000
R = 00001011000100000001101010010000

Key0 = 00110100000010110000100010010010
K0 = 00110100000010110000100010010010
hprev = 11100011110111001011001101110100
R = 01100011110111001011001101110100
--------^
this bit is not determined here

Page 174 of 188

APPENDIX B. GRAPHICAL VMAC IMPLEMENTATION

B.1 Controller Organizer

Page 175 of 188

B.2 VO_NODE1

Page 176 of 188

B.2 VI_NODE2

Page 177 of 188

Page 178 of 188

Page 179 of 188

APPENDIX C. SOURCE CODE

NOTE: Double click on the icon below in order to open the file. For printed copies of

this thesis refer to reference [28] to download the source files.

C.1 Custom Data Types

DATA TYPES FINAL.zip

C.2 Add-On Instructions

AOI MASTERS FINAL.zip

C.3 VMAC and IO_Mapping

VMAC AND IO MAPPING FINAL.zip

C.4 KEP Program

KEP FINAL.zip

Page 180 of 188

APPENDIX D. SEQUENCER CHARTS

D.1 Ed25519_SIGN

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

BU
IL

D
BA

SE
 P

O
IN

T
AN

D
IN

CR
EM

EN
T

CO
U

N
TE

R

CO
M

BI
N

E
RH

 A
N

D
DH

 IN
TO

 M
SG

1

AD
D

EN
CR

YP
TE

D
VM

AC
 K

EY
, C

O
N

TR
O

L F
LA

GS
, K

EY
ID

s,
 A

N
D

CO
U

N
TE

R
IN

TO
 M

SG
1

h1
 =

 S
HA

51
2(

M
SG

,L
EN

=1
6)

TE
M

P_
D1

 =
 B

51
2_

Ht
oD

 (h
1)

E
TE

M
P_

E1
 (r

e)
 =

 D
 T

EM
P_

D1
 m

od
 L

SP
AR

E

P
q

=
PO

IN
T_

M
U

L(
 E

 r
*

B)

E
SI

G_
R

=
PO

IN
T_

EN
C

(P
 q

)

O
U

TP
U

T
RE

SU
LT

:
S

SI
G_

R
=

B2
56

_S
to

SL
E(

B2
56

_C
to

S(
 B

25
6_

Et
oC

CO
M

BI
N

E
PO

IN
T

R
M

SG
2

AD
D

PU
B

KE
Y

A
AN

D
DH

 IN
TO

 M
SG

2

AD
D

EN
CR

YP
TE

D
VM

AC
 K

EY
, C

O
N

TR
O

L F
LA

GS
, K

EY
ID

s,
 A

N
D

CO
U

N
TE

R
IN

TO
 M

SG
2

h2
 =

 S
HA

51
2(

M
SG

,L
EN

=2
0)

E
TE

M
P_

E2
 (k

e)
 =

 D
 T

EM
P_

D1
 m

od
 L

SP
AR

E

SI
GN

: C
 T

EM
P_

C1
 (r

c)
 =

 B
25

6_
Et

oC
(T

EM
P_

E1
(r

e)
)

SI
GN

:
C

TE
M

P_
C2

 (k
c)

 =
 B

25
6_

Et
oC

(T
EM

P_
E2

 (k
e)

)

SI
GN

:
CO

P
 w

[0
..2

1]
=r

[0
..2

1]
,

 F
LL

 w
[2

2.
.4

3]
=0

SP
AR

E

SI
GN

:
In

iti
al

ize
 i=

-1
 a

nd
 In

p_
Pr

iK
ey

_s
ca

la
r i

nt
o

Te
m

p_
C1

0

SI
GN

:
In

cr
em

en
t I

 a
nd

 R
es

et
 j=

0

SI
GN

:
In

cr
em

en
t j

SI
GN

:
w

[i+
j]

+=
 k

[i]
 *

 a
[j]

SI
GN

:
B2

56
_N

N
RE

D(
w

)

SP
AR

E

SP
AR

E

O
U

TP
U

T
RE

SU
LT

:
SI

G_
S

=
B2

56
_C

to
S(

Sc
)

SP
AR

E

Se
t N

ex
t_

St
ep

 =
 1

9
if

i<
21

In
cr

em
en

t N
ex

t_
St

ep
 if

 F
AL

SE
 o

r (
 S

TE
P=

=6
2

an
d

i >
=

21
)

SE
T

DN
 F

LA
G

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 CMD_VALUE i j COMMENTS
0 0 ***NOT USED TO ALLOW FOR FIRST SCAN INPUT***

1 x 1 ? ? Initialize Variables
2 x 2
3 x 4
4 x 8
5 x 16
6 x 32
7 x 128
8 x 256
9 x 512

10 x x 3072
11 x 4096 Controller stores its own public key A (point) as an array of LINTs
12 x 8192 Other side stores it as a string value representing encoded point
13 x 16
14 x 16384
15 x 65536
16 x 131072
17 x 262144
18 x 1048576 -1
19 x 2097152 0 0 i loop
20 x 8388608 0 0
21 x 4194304 0 1
22 x 8388608 0 1
23 x 4194304 0 2
24 x 8388608 0 2
25 x 4194304 0 3
26 x 8388608 0 3
27 x 4194304 0 4
28 x 8388608 0 4
29 x 4194304 0 5
30 x 8388608 0 5
31 x 4194304 0 6
32 x 8388608 0 6
33 x 4194304 0 7
34 x 8388608 0 7
35 x 4194304 0 8
36 x 8388608 0 8
37 x 4194304 0 9
38 x 8388608 0 9
39 x 4194304 0 10
40 x 8388608 0 10
41 x 4194304 0 11
42 x 8388608 0 11
43 x 4194304 0 12
44 x 8388608 0 12
45 x 4194304 0 13
46 x 8388608 0 13
47 x 4194304 0 14
48 x 8388608 0 14
49 x 4194304 0 15
50 x 8388608 0 15
51 x 4194304 0 16
52 x 8388608 0 16
53 x 4194304 0 17
54 x 8388608 0 17
55 x 4194304 0 18
56 x 8388608 0 18
57 x 4194304 0 19
58 x 8388608 0 19
59 x 4194304 0 20
60 x 8388608 0 20
61 x 4194304 0 21
62 x x x 1619001344 0 21
63 x 16777216
64 x 16384
65 x 131072
66 x 134217728
67 0
68 x -2147483648
69 0
70 0

Page 181 of 188

D.2 Ed25519_VERIFY

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

BU
IL

D
BA

SE
 P

O
IN

T
AN

D
IN

CR
EM

EN
T

CO
U

N
TE

R

CO
M

BI
N

E
RH

 A
N

D
DH

 IN
TO

 M
SG

1

AD
D

EN
CR

YP
TE

D
VM

AC
 K

EY
, C

O
N

TR
O

L F
LA

GS
, K

EY
ID

s,
 A

N
D

CO
U

N
TE

R
IN

TO
 M

SG
1

h1
 =

 S
HA

51
2(

M
SG

,L
EN

=1
6)

TE
M

P_
D1

 =
 B

51
2_

Ht
oD

 (h
1)

E
TE

M
P_

E1
 (r

e)
 =

 D
 T

EM
P_

D1
 m

od
 L

SP
AR

E

P
q

=
PO

IN
T_

M
U

L(
 E

 r
*

B)

E
SI

G_
R

=
PO

IN
T_

EN
C

(P
 q

)

O
U

TP
U

T
RE

SU
LT

:
S

SI
G_

R
=

B2
56

_S
to

SL
E(

B2
56

_C
to

S(
 B

25
6_

Et
oC

CO
M

BI
N

E
PO

IN
T

R
M

SG
2

AD
D

PU
B

KE
Y

A
AN

D
DH

 IN
TO

 M
SG

2

AD
D

EN
CR

YP
TE

D
VM

AC
 K

EY
, C

O
N

TR
O

L F
LA

GS
, K

EY
ID

s,
 A

N
D

CO
U

N
TE

R
IN

TO
 M

SG
2

h2
 =

 S
HA

51
2(

M
SG

,L
EN

=2
0)

E
TE

M
P_

E2
 (k

e)
 =

 D
 T

EM
P_

D1
 m

od
 L

SP
AR

E

SI
GN

: C
 T

EM
P_

C1
 (r

c)
 =

 B
25

6_
Et

oC
(T

EM
P_

E1
(r

e)
)

SI
GN

:
C

TE
M

P_
C2

 (k
c)

 =
 B

25
6_

Et
oC

(T
EM

P_
E2

 (k
e)

)

SI
GN

:
CO

P
 w

[0
..2

1]
=r

[0
..2

1]
,

 F
LL

 w
[2

2.
.4

3]
=0

SP
AR

E

SI
GN

:
In

iti
al

ize
 i=

-1
 a

nd
 In

p_
Pr

iK
ey

_s
ca

la
r i

nt
o

Te
m

p_
C1

0

SI
GN

:
In

cr
em

en
t I

 a
nd

 R
es

et
 j=

0

SI
GN

:
In

cr
em

en
t j

SI
GN

:
w

[i+
j]

+=
 k

[i]
 *

 a
[j]

SI
GN

:
B2

56
_N

N
RE

D(
w

)

SP
AR

E

SP
AR

E

O
U

TP
U

T
RE

SU
LT

:
SI

G_
S

=
B2

56
_C

to
S(

Sc
)

SP
AR

E

Se
t N

ex
t_

St
ep

 =
 1

9
if

i<
21

In
cr

em
en

t N
ex

t_
St

ep
 if

 F
AL

SE
 o

r (
 S

TE
P=

=6
2

an
d

i >
=

21
)

SE
T

DN
 F

LA
G

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 CMD_VALUE i j COMMENTS
0 0 ***NOT USED TO ALLOW FOR FIRST SCAN INPUT***

1 x 1 ? ? Initialize Variables
2 x 2
3 x 4
4 x 8
5 x 16
6 x 32
7 x 128
8 x 256
9 x 512

10 x x 3072
11 x 4096 Controller stores its own public key A (point) as an array of LINTs
12 x 8192 Other side stores it as a string value representing encoded point
13 x 16
14 x 16384
15 x 65536
16 x 131072
17 x 262144
18 x 1048576 -1
19 x 2097152 0 0 i loop
20 x 8388608 0 0
21 x 4194304 0 1
22 x 8388608 0 1
23 x 4194304 0 2
24 x 8388608 0 2
25 x 4194304 0 3
26 x 8388608 0 3
27 x 4194304 0 4
28 x 8388608 0 4
29 x 4194304 0 5
30 x 8388608 0 5
31 x 4194304 0 6
32 x 8388608 0 6
33 x 4194304 0 7
34 x 8388608 0 7
35 x 4194304 0 8
36 x 8388608 0 8
37 x 4194304 0 9
38 x 8388608 0 9
39 x 4194304 0 10
40 x 8388608 0 10
41 x 4194304 0 11
42 x 8388608 0 11
43 x 4194304 0 12
44 x 8388608 0 12
45 x 4194304 0 13
46 x 8388608 0 13
47 x 4194304 0 14
48 x 8388608 0 14
49 x 4194304 0 15
50 x 8388608 0 15
51 x 4194304 0 16
52 x 8388608 0 16
53 x 4194304 0 17
54 x 8388608 0 17
55 x 4194304 0 18
56 x 8388608 0 18
57 x 4194304 0 19
58 x 8388608 0 19
59 x 4194304 0 20
60 x 8388608 0 20
61 x 4194304 0 21
62 x x x 1619001344 0 21
63 x 16777216
64 x 16384
65 x 131072
66 x 134217728
67 0
68 x -2147483648
69 0
70 0

Page 182 of 188

D.3 B256_MODINV

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

In
iti

al
ize

 u
 =

 1
, i

=-
1

In
iti

al
ize

 t
=

v

In
cr

em
en

t i
 a

nd
 R

es
et

 j=
-1

Ex
tr

ac
t t

he
 b

yt
e

fr
om

 e
xp

on
en

t

In
cr

em
en

t j
 to

 g
et

 n
ex

t b
it

in
 e

xp
on

en
t b

yt
e

Lo
ok

 a
t E

xp
on

en
t B

it,
 if

 tr
ue

 u
=u

*t
 e

lse
 u

=u
*1

t=
t*

t

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

Se
t D

N
 F

la
g

Se
t N

ex
t_

St
ep

 =
 3

 if
 i<

31

In
cr

em
en

t N
ex

t_
St

ep
 if

 F
AL

SE
 o

r i
>=

31

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMD_VALUE i j COMMENTS
0 0 ***NOT USED TO ALLOW FOR FIRST SCAN INPUT***

1 x 1 -1 ? Initialize Variables
2 x 2
3 x 4 0 0
4 x 8 0 0
5 0 0 0
6 x 32 0 0
7 x 64 0 0
8 x 16 0 1
9 x 32 0 1 This subsection is representative of

10 x 64 0 1 what it takes to complete a single j-loop
11 x 16 0 2
12 x 32 0 2
13 x 64 0 2
14 x 16 0 3
15 x 32 0 3
16 x 64 0 3
17 x 16 0 4
18 x 32 0 4
19 x 64 0 4
20 x 16 0 5
21 x 32 0 5
22 x 64 0 5
23 x 16 0 6
24 x 32 0 6
25 x 64 0 6
26 x 16 0 7
27 x 32 0 7
28 x x x -16320 0 7
29 x 8192 TRIGGER DONE FLAG FOR EXTERNAL STATUS REPORT
30 0 DONE WITH MODINV, GO BACK TO STEP 0

Page 183 of 188

D.4 B256_MODL

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

In
iti

al
ize

 i=
43

, p
=0

, q
=0

de
cr

em
en

t i
 a

nd
 R

es
et

 j=
-1

, s
=I

np
_D

[i]
, I

np
_D

[i]
=0

:

in
cr

em
en

t j

k=
 i+

j-N
+1

m
at

h
op

er
at

io
ns

 to
 ca

lcu
la

te
 w

[k
]

SP
AR

E

ad
ju

st
 n

eg
at

iv
e

va
lu

es

in
cr

em
en

t p

m
at

h
op

er
at

io
ns

 to
 ca

lcu
la

te
 w

[q
]

in
cr

em
en

t q

Co
py

 lo
w

er
 h

al
f o

f I
np

_D
 to

 c

Ct
oE

Se
t D

N
 F

la
g

Se
t N

ex
t_

St
ep

 =
 8

7
If

w
[2

1]
 >

 0
, e

lse
 In

cr
em

en
t N

ex
t_

St
ep

Se
t N

ex
t_

St
ep

 =
 2

 if
 i>

21

In
cr

em
en

t N
ex

t_
St

ep
 if

 F
AL

SE
 o

r (
i<

=2
1

 &
 cu

rr
en

t_
st

ep
 =

 4

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMD_VALUE i j p q COMMENTS
0 0 ***NOT USED TO ALLOW FOR FIRST SCAN INPUT***

1 x 1 43 ? 0 0 Initialize Variables
2 x 2 42 -1 0 0
3 x 4 42 0 0 0
4 x 8 42 0 0 0
5 x 16 42 0 0 0
6 x 4 42 1 0 0
7 x 8 42 1 0 0
8 x 16 42 1 0 0
9 x 4 42 2 0 0

10 x 8 42 2 0 0
11 x 16 42 2 0 0
12 x 4 42 3 0 0
13 x 8 42 3 0 0
14 x 16 42 3 0 0
15 x 4 42 4 0 0
16 x 8 42 4 0 0
17 x 16 42 4 0 0
18 x 4 42 5 0 0
19 x 8 42 5 0 0
20 x 16 42 5 0 0
21 x 4 42 6 0 0
22 x 8 42 6 0 0
23 x 16 42 6 0 0
24 x 4 42 7 0 0
25 x 8 42 7 0 0
26 x 16 42 7 0 0
27 x 4 42 8 0 0
28 x 8 42 8 0 0
29 x 16 42 8 0 0
30 x 4 42 9 0 0
31 x 8 42 9 0 0
32 x 16 42 9 0 0
33 x 4 42 10 0 0
34 x 8 42 10 0 0
35 x 16 42 10 0 0
36 x 4 42 11 0 0
37 x 8 42 11 0 0
38 x 16 42 11 0 0
39 x 4 42 12 0 0
40 x 8 42 12 0 0
41 x x x -16368 42 12 0 0
42 x x 192 21 12 0 0
43 x x 192 1 0
44 x x 192 2 0
45 x x 192 3 0
46 x x 192 4 0
47 x x 192 5 0
48 x x 192 6 0
49 x x 192 7 0
50 x x 192 8 0
51 x x 192 9 0
52 x x 192 10 0
53 x x 192 11 0
54 x x 192 12 0
55 x x 192 13 0
56 x x 192 14 0
57 x x 192 15 0
58 x x 192 16 0
59 x x 192 17 0
60 x x 192 18 0
61 x x 192 19 0
62 x x 192 20 0
63 x x 192 21 0
64 x x -24576 22 0
65 x x 768 0 this section only done to adjust negative values
66 x x 768 1
67 x x 768 2
68 x x 768 3
69 x x 768 4
70 x x 768 5
71 x x 768 6
72 x x 768 7
73 x x 768 8
74 x x 768 9
75 x x 768 10
76 x x 768 11
77 x x 768 12
78 x x 768 13
79 x x 768 14
80 x x 768 15
81 x x 768 16
82 x x 768 17
83 x x 768 18
84 x x 768 19
85 x x 768 20
86 x x 768 21
87 x 1024 22
88 x 2048
89 x 4096 TRIGGER DONE FLAG FOR EXTERNAL STATUS REPORT
90 0 DONE WITH MOD_L, GO BACK TO STEP 0

Page 184 of 188

D.5 B256_MODPOW

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

In
iti

al
ize

 u
 =

 1
, i

=-
1

In
iti

al
ize

 t
=

v

In
cr

em
en

t i
 a

nd
 R

es
et

 j=
-1

Ex
tr

ac
t t

he
 b

yt
e

fr
om

 e
xp

on
en

t

In
cr

em
en

t j
 to

 g
et

 n
ex

t b
it

in
 e

xp
on

en
t b

yt
e

Lo
ok

 a
t E

xp
on

en
t B

it,
 if

 tr
ue

 u
=u

*t
 e

lse
 u

=u
*1

t=
t*

t

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

Se
t D

N
 F

la
g

Se
t N

ex
t_

St
ep

 =
 3

 if
 i<

31

In
cr

em
en

t N
ex

t_
St

ep
 if

 F
AL

SE
 o

r i
>=

31

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMD_VALUE i j COMMENTS
0 0 ***NOT USED TO ALLOW FOR FIRST SCAN INPUT***

1 x 1 -1 ? Initialize Variables
2 x 2
3 x 4 0 0
4 x 8 0 0
5 0 0 0
6 x 32 0 0
7 x 64 0 0
8 x 16 0 1
9 x 32 0 1 This subsection is representative of

10 x 64 0 1 what it takes to complete a single j-loop
11 x 16 0 2
12 x 32 0 2
13 x 64 0 2
14 x 16 0 3
15 x 32 0 3
16 x 64 0 3
17 x 16 0 4
18 x 32 0 4
19 x 64 0 4
20 x 16 0 5
21 x 32 0 5
22 x 64 0 5
23 x 16 0 6
24 x 32 0 6
25 x 64 0 6
26 x 16 0 7
27 x 32 0 7
28 x x x -16320 0 7
29 x 8192 31 7 TRIGGER DONE FLAG FOR EXTERNAL STATUS REPORT
30 0 DONE WITH MODPOW, GO BACK TO STEP 0

Page 185 of 188

D.6 POINT_DEC

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

Cl
ea

r t
he

 p
oi

nt
 a

nd
 co

nv
er

t t
he

 S
tr

in
g

to
 a

 C
 v

al
ue

Cr
ea

te
 a

 C
 v

al
ue

 re
pr

es
en

tin
g

d
of

 E
d2

55
19

Cr
ea

te
 a

 C
 v

al
ue

 re
pr

es
en

tin
g

m
1=

m
-1

 a
nd

 a
n

E
va

lu
e

re
pr

es
en

tin
g

m
58

=(
m

-5
)/

8

Cr
ea

te
 a

 C
 v

al
ue

 re
pr

es
en

tin
g

sq
rt

m
1

=
2^

((
m

-1
)/

4)

Fi
nd

 le
as

t s
ig

ni
fic

an
t b

it
of

 x
-c

oo
rd

in
at

e
an

d
Cl

ea
r t

he
 b

it
to

 m
ak

e
th

e
y-

co
or

di
na

te

Ca
lcu

la
te

 v
 =

 d
*y

^2
+1

, v
 is

 n
ot

 re
du

ce
d

 C
al

cu
la

te
 u

 =
 y

^2
 -

1,
 N

ot
e

if
y^

2
==

 0
, u

 =
 m

-1

N
ot

e
if

y^
2

==
 0

, u
 =

 m
-1

Ca
lcu

la
te

 t1
 =

 u
*v

^3

Ca
lcu

la
te

 t2
=u

*v
^7

Ca
lcu

la
te

 t3
=(

u*
v^

7)
^(

(m
-5

)/
8)

Ca
lcu

la
te

 x
=(

u/
v)

^(
(p

+3
)/

8)

Ca
lcu

la
te

 t2
=x

^2
, t

1=
v*

x^
2,

 t2
=-

u

De
te

rm
in

e
if

v
x^

2
is

eq
ua

l t
o

u
or

 -u
If

eq
ua

l t
o

-u
 th

en
 P

.x
 =

 P
.x

 *
 2

^(
(p

-1
)/

4)
 =

 P
.x

 *
 sq

rt
 o

f -
1

De
te

rm
in

e
if

de
co

di
ng

 fa
ile

d
by

 co
m

pa
rin

g
to

 x
_0

, i
f P

.x
 =

 0
 a

nd
 x

_0
 =

 1
 d

ec
od

in
g

fa
ils

 If
 x

_0
 !=

 x
 m

od
 2

 se
t x

 =
 p

 -
x

De
te

rm
in

e
if

y
is

>=
 p

, i
f i

t i
s t

he
n

de
co

di
ng

 fa
ils

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

EX
TE

N
DE

D
CO

O
RD

IN
AT

ES
:

Se
t Z

 =
 1

, X
=x

, Y
=y

, T
=x

*y

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SE
T

DN
 F

LA
G

In
cr

em
en

t N
ex

t_
St

ep
 if

 F
AL

SE

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 CMD_VALUE COMMENTS
0 0 ***NOT USED TO ALLOW FOR FIRST SCAN INPUT***

1 x 1 Initialize Variables
2 x 2
3 x 4
4 x 8
5 x 16
6 x 32
7 x 64
8 x 128
9 x 256

10 x 512
11 x 1024
12 x 2048
13 x 4096
14 x 8192
15 x 16384
16 x 32768
17 x 65536
18 x 33554432
19 x 1073741824
20 0

Page 186 of 188

D.7 POINT_ENC

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

In
iti

al
ize

 u
 =

 1
, i

=-
1

In
iti

al
ize

 t
=

v

m
od

In
v(

z,
p-

>z
):

 In
cr

em
en

t i
 a

nd
 R

es
et

 j=
-1

m
od

In
v(

z,
p-

>z
):

 E
xt

ra
ct

 th
e

by
te

 fr
om

 e
xp

on
en

t

m
od

In
v(

z,
p-

>z
):

 In
cr

em
en

t j
 to

 g
et

 n
ex

t b
it

in
 e

xp
on

en
t b

yt

m
od

In
v(

z,
p-

>z
):

 Lo
ok

 a
t E

xp
on

en
t B

it,
 if

 tr
ue

 u
=u

*t
 e

lse
 u

=

m
od

In
v(

z,
p-

>z
):

 t=
t*

t

m
ul

 (x
, p

->
x,

 z)
 //

z=
 T

em
p_

C4

ad
ju

st
(x

) /
/ x

=T
em

p_
C2

m
ul

 (y
, p

->
y,

 z)
 //

z=
 T

em
p_

C4

ad
ju

st
(y

) /
/ y

=T
em

p_
C3

Ct
oE

(e
,y

) /
/y

=T
em

p_
C3

e[
M

-1
] |

=
(x

[0
] &

 1
) <

<
7;

 /
/ls

b
of

 x
 g

oe
s t

o
m

sb
 o

f e

Se
t D

N
 F

la
g

Se
t N

ex
t_

St
ep

 =
 3

 if
 i<

31

In
cr

em
en

t N
ex

t_
St

ep
 if

 F
AL

SE
 o

r i
>=

31

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMD_VALUE i j COMMENTS
0 0 ***NOT USED TO ALLOW FOR FIRST SCAN INPUT***

1 x 1 -1 ? Initialize Variables
2 x 2
3 x 4 0 0
4 x 8 0 0
5 0 0 0
6 x 32 0 0
7 x 64 0 0
8 x 16 0 1
9 x 32 0 1 This subsection is representative of

10 x 64 0 1 what it takes to complete a single j-loop
11 x 16 0 2
12 x 32 0 2
13 x 64 0 2
14 x 16 0 3
15 x 32 0 3
16 x 64 0 3
17 x 16 0 4
18 x 32 0 4
19 x 64 0 4
20 x 16 0 5
21 x 32 0 5
22 x 64 0 5
23 x 16 0 6
24 x 32 0 6
25 x 64 0 6
26 x 16 0 7
27 x 32 0 7
28 x x x -16320 0 7
29 x 128 31 7
30 x 256
31 x 512
32 x 1024
33 x 2048
34 x 4096
35 x 8192 TRIGGER DONE FLAG FOR EXTERNAL STATUS REPORT
36 0 DONE WITH POINT_ENC, GO BACK TO STEP 0

Page 187 of 188

D.8 POINT_MUL

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

IN
IT

IA
LI

ZE
 T

EM
P

VA
RI

AB
LE

S

CO
PY

 IN
PU

T
AN

D
IN

IT
IA

LI
ZE

 T
EM

P
PO

IN
T

IN
IT

IA
LI

ZE
 Q

_p
3

TO
 T

HE
 N

EU
TR

AL
 E

LE
M

EN
T

PO
IN

T

EX
TR

AC
T

TH
E

BY
TE

 F
RO

M
 E

XP
O

N
EN

T

IN
CR

EM
EN

T
i A

N
D

RE
SE

T
j

IN
CR

EM
EN

T
j T

O
 G

ET
 N

EX
T

BI
T

IN
 E

XP
O

N
EN

T
BY

TE

j L
oo

p
PO

IN
T_

AD
D

(T
_P

d,
 Q

_p
3,

 I_
p1

)

Lo
ok

 a
t E

xp
on

en
t B

it,
 Q

_p
3=

d
ex

le
 Q

_p
3=

Q
_p

3

j L
oo

p
Po

in
t_

Db
l (

Q
_p

3,
 Q

_p
3)

AD
JU

ST
 (Q

_p
3.

X)
, A

DJ
U

ST
 (Q

_p
3.

Y)

SP
AR

E

SP
AR

E

SP
AR

E

SE
T

DN
 F

LA
G

Se
t N

ex
t_

St
ep

 =
 3

4
if

i<
31

In
cr

em
en

t N
ex

t_
St

ep
 if

 F
AL

SE
 o

r i
>=

31

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMD_VALUE i j COMMENTS
0 0 ***NOT USED TO ALLOW FOR FIRST SCAN INPUT***

1 x x x 7 0 0 Initialize Variables, Step 1 unique
2 x 8 0 0 Starting J loops
3 x 64
4 x 128
5 x 256
6 x 32 0 1
7 x 64
8 x 128
9 x 256

10 x 32 0 2
11 x 64
12 x 128
13 x 256
14 x 32 0 3
15 x 64
16 x 128
17 x 256
18 x 32 0 4
19 x 64
20 x 128
21 x 256
22 x 32 0 5
23 x 64
24 x 128
25 x 256
26 x 32 0 6
27 x 64
28 x 128
29 x 256
30 x 32 0 7 First complete j-Loop Done
31 x 64 Loop back to i and begin next j Loop
32 x 128
33 x 256
34 x 16 1 0 This block is a representative sample
35 x 8 of what it takes to complete a single i-loop
36 x 64 Ultimately this results in lots of steps but
37 x 128 the objective is to complete the sequence
38 x 256 with minimum impact on overall scan time
39 x 32 1 1
40 x 64
41 x 128
42 x 256
43 x 32 1 2 This subsection is representative of
44 x 64 what it takes to complete a single j-loop
45 x 128
46 x 256
47 x 32 1 3
48 x 64
49 x 128
50 x 256
51 x 32 1 4
52 x 64
53 x 128
54 x 256
55 x 32 1 5
56 x 64
57 x 128
58 x 256
59 x 32 1 6
60 x 64
61 x 128
62 x 256
63 x 32 1 7
64 x 64
65 x 128
66 x x x -16128
67 x 512 31 7
68 x 8192 31 7 TRIGGER DONE FLAG FOR EXTERNAL STATUS REPORT
69 0 31 7 DONE WITH POINT MULTIPLY, GO BACK TO STEP 0

Page 188 of 188

D.9 PRNG

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

GR
AB

 C
LO

CK
 T

IM
E

FO
R

AD
DI

TI
O

N
AL

 IN
PU

T
AN

D
AD

D
IN

TO
 M

SG

IN
CR

EM
EN

T
CO

U
N

TE
R

AN
D

AD
D

IN
TO

 M
SG

AD
D

CO
N

ST
AN

T
IN

TO
 M

SG

AD
D

SE
ED

 IN
TO

 M
SG

CO
M

PU
TE

 T
HE

 H
AS

H

TA
KE

 LE
FT

 H
AN

D
PO

RT
IO

N
 O

F
TH

E
HA

SH
 A

S
TH

E
PR

N

RO
TR

 E
AC

H
PO

RT
IO

N
 O

F
TH

E
SE

ED
<

AD
DI

N
G

IN
 U

N
U

SE
D

PO
RT

IO
N

S
O

F
TH

E
HA

SH

RO
TR

 E
AC

H
PO

RT
IO

N
 O

F
TH

E
SE

ED
, A

DD
IN

G
IN

 P
O

RT
IO

N
S

O
F

TH
E

SE
ED

RO
TR

 E
AC

H
PO

RT
IO

N
 O

F
TH

E
SE

ED
, A

DD
IN

G
IN

 P
O

RT
IO

N
S

O
F

TH
E

SE
ED

AD
D

FI
RS

T
PO

RT
IO

N
 O

F
SE

ED
 T

O
 LA

ST
, R

O
TA

TE
, A

N
D

TH
EN

 S
W

AP

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

SP
AR

E

IN
CR

EM
EN

T
N

EX
T

ST
EP

 if
 F

AL
SE

SE
T

DN
 F

LA
G

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 CMD_VALUE COMMENTS
0 0 ***NOT USED TO ALLOW FOR FIRST SCAN INPUT***

1 x 1
2 x 2
3 x 4
4 x 8
5 x 16
6 x 32
7 x 64
8 x 128
9 x 256

10 x 512
11 x -2147483648
12 0

D.10 SHA512_SEQ

SE
Q

U
EN

CE
 C

O
N

TR
O

L C
O

M
M

AN
DS

PR
EP

AR
E

DA
TA

 F
O

R
HA

SH

PA
D

M
SG

AP
PE

N
D

LE
N

GT
H

IN
IT

IA
LI

ZE
 H

AS
H

BU
FF

ER

SP
AR

E

SP
AR

E

SC
HE

DU
LE

 M
ES

SA
GE

:
SA

VE
 H

AS
H

BU
FF

ER
 IN

PU
T

SC
HE

DU
LE

 M
ES

SA
GE

:
SE

T
W

[0
] T

HR
U

 W
[1

5]

IN
IT

IA
LI

ZE
 T

EM
P

BU
FF

ER

SC
HE

DU
LE

 M
ES

SA
GE

:
IN

IT
IA

LI
ZE

 i=
16

SC
HE

DU
LE

 M
ES

SA
GE

:
CA

LC
U

LA
TE

 S
IG

M
A0

SC
HE

DU
LE

 M
ES

SA
GE

:
CA

LC
U

LA
TE

 S
IG

M
A1

SC
HE

DU
LE

 M
ES

SA
GE

:
CA

LC
U

LA
TE

 W

SC
HE

DU
LE

 M
ES

SA
GE

:
IN

CR
EM

EN
T

i

SE
T

N
ex

t_
St

ep
 =

 1
0

if
i<

80

PR
O

CE
SS

 M
ES

SA
GE

:
IN

IT
IA

LI
ZE

 t=
0

PR
O

CE
SS

 M
ES

SA
GE

:
CA

LC
U

LA
TE

 C
O

N
D

FU
N

C

PR
O

CE
SS

 M
ES

SA
GE

:
CA

LC
U

LA
TE

 M
AJ

 F
U

N
C

PR
O

CE
SS

 M
ES

SA
GE

:
CA

LC
U

LA
TE

 S
IG

M
A

A

PR
O

CE
SS

 M
ES

SA
GE

:
CA

LC
U

LA
TE

 S
IG

M
A

E

PR
O

CE
SS

 M
ES

SA
GE

:
CA

LC
U

LA
TE

 T
1

AN
D

T2

PR
O

CE
SS

 M
ES

SA
GE

:
U

PD
AT

E
HA

SH
 B

U
FF

ER

PR
O

CE
SS

 M
ES

SA
GE

:
IN

CR
EM

EN
T

t

SE
T

N
ex

t_
St

ep
 =

 1
6

if
t<

80

CO
M

PU
TE

 IN
TE

RM
ED

IA
TE

 H
AS

H
VA

LU
E

IN
CR

EM
EN

T
M

 B
Y

16

SE
T

N
ex

t_
St

ep
 =

 7
 if

 M
=<

TO
TA

L_
M

SG
_L

EN
GT

H_
M

IN
U

S_
16

SE
N

D
O

U
TP

U
T

In
cr

em
en

t N
ex

t_
St

ep
 if

 F
AL

SE
 o

r (
i>

=8
0

 &
 cu

rr
en

t_
st

ep
 =

 1
4)

 o
r

(t
>=

80
 &

 cu
rr

en
t_

st
ep

=2
3)

 o
r (

m
>T

O
TA

L_
M

SG
_L

EN
GT

H_
M

IN
U

S_

&
 cu

rr
en

t_
st

ep
=2

6)

Se
t D

N
 F

la
g

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 CMD_VALUE
0 0

1 x 1
2 x 2
3 x 4
4 x 8
5 x 16
6 x 32
7 x 64
8 x 128
9 x x 768

10 x 1024
11 x 2048
12 x 4096
13 x 8192
14 x x 1073758208
15 x x 33024
16 x 65536
17 x 131072
18 x 262144
19 x 524288
20 x 1048576
21 x 2097152
22 x 4194304
23 x x 1082130432
24 x 33554432
25 x 67108864
26 x x 1207959552
27 x 268435456
28 x -2147483648
29 0

Page 189 of 188

APPENDIX E. KEY SCRIPTS

E.1 keygen.py

Name: keygen.py
Desc: generates public and private keys for use in ControlLogix
Usage: python keygen.py < keygen.tests.input
Input: A series of standard test messages to ensure keys properly function
Output: Private_Key_a, Private_Key_UH, Public_Key, all as hex strings

NOTE: Uses the secrets module and the ed25519
Last Modified: 5/20/2017 4:26PM
Last Author: Ken Fischer, NSWCPD, C516

import sys
import secrets
import hashlib
import binascii
import ed25519

b = 256

def H(m):
return hashlib.sha512(m).digest()

random_number = secrets.token_hex(32)
sk = binascii.unhexlify(random_number)

h = H(sk)
Private_Key_scalar = 2**(b-2) + sum(2**i * ed25519.bit(h,i) for i in range(3,b-2))
h_string = binascii.hexlify(h)
Private_Key_prefix = h_string[64:]
A = ed25519.encodepoint(ed25519.scalarmult(ed25519.B,Private_Key_scalar))
Public_Key = binascii.hexlify(A)

#OUTPUT THE KEY VALUES
print ""
print "Private_Key_scalar: "
print format(Private_Key_scalar, 'x')
print ""
print "Private_Key_prefix: "
print Private_Key_prefix
print ""
print "Public_Key: "
print Public_Key

#HERE WE TEST THE KEYS TO ENSURE THEY WORK ON VARIOUS MESSAGES
print ""
print "Testing Keys... this can take up to a minute per test case..."

pk = binascii.unhexlify(Public_Key)
i = 0
while 1:
 line = sys.stdin.readline()
 if not line: break
 x = line.split(':')
 m = binascii.unhexlify(x[0])
 s = ed25519.signature(m,sk,pk)
 ed25519.checkvalid(s,m,pk)
 i += 1
 print " Test {} complete.".format(i)
 sys.stdout.write("\033[F")

print ""
print "Testing Complete. If no errors then use keys."

	STATEMENT BY AUTHOR
	ACKNOWLEDGEMENTS
	DEDICATION
	TABLE OF CONTENTS
	TABLE OF FIGURES
	ABSTRACT
	CHAPTER 1: INTRODUCTION
	1.1 Overview
	1.2 Background
	1.3 Fundamental Objectives
	1.3.1 NIST SGiP

	1.4 Traditional Solutions for Information / Corporate Systems
	1.4.1 Symmetric-key Cryptography
	1.4.2 Public-key Cryptography
	1.4.2.1 RSA
	1.4.2.2 Digital Signature Algorithm
	1.4.2.3 Limitations Using Public-Key Cryptography

	1.5 Industry Solutions
	1.6 Summary

	CHAPTER 2: ELLIPTIC CURVE CRYPTOGRAPHY
	2.1 Background
	2.2 Mathematical Foundations
	2.2.1 Finite Fields
	2.2.1.1 Prime Finite Fields [15]
	2.2.1.2 Binary Finite Fields [15]

	2.2.2 Elliptic Curves
	2.2.3 Projective Coordinates
	2.2.4 Point Multiplication

	2.3 Domain Parameters
	2.3.1 Prime Field Elliptic Curves
	2.3.2 Binary Field Elliptic Curves
	2.3.3 Standardized Versus Random Curves

	2.4 Known Attack Mechanisms against ECC
	2.4.1 Naïve Method
	2.4.2 Pohlig-Hellman Attack
	2.4.3 Pollard’s rho Attack
	2.4.4 Index-Calculus Attacks
	2.4.5 Isomorphism Attacks

	2.5 Cryptographic Protocols Useful for Control Systems
	2.5.1 Key Generation
	2.5.2 Elliptic Curve Digital Signature Algorithm (ECDSA)
	2.5.3 Supported Secure Hash Algorithms

	2.6 Comparing RSA Signatures to ECDSA
	2.7 Edward’s Curves
	2.7.1 Key Generation
	2.7.2 Signature Generation
	2.7.3 Signature Verification
	2.7.4 Special Curves

	CHAPTER 3: TECHNICAL CONSTRAINTS AND SOLUTIONS
	3.1 Introduction
	3.2 Random Number Generation
	3.3 BigIntegers
	3.4 Processing Speed
	3.5 Multicast
	3.6 Lack of Proper Time Synchronization
	3.7 Message Structures and Send Rates
	3.8 Proof of Concept Implementation Overview

	CHAPTER 4: VMAC
	4.1 Introduction
	4.2 Cryptographic Details
	4.3 Attack Vectors
	4.3.1 Length Extension Attacks
	4.3.2 Collision Attacks
	4.3.3 Key Reversal Attacks

	4.4 Implementation Details
	4.4.1 Outgoing Messages
	4.4.2 Incoming Messages

	CHAPTER 5: COMPLEX MATH OPERATIONS
	5.1 Introduction
	5.2 Custom Data Types
	5.2.1 C DataType
	5.2.2 D Data Type
	5.2.3 E Data Type
	5.2.4 POINT Data Type

	5.3 Sequencers
	5.4 Temp Data
	5.5 AOIs
	5.5.1 B256_MODPOW
	5.5.2 B256_MODINV
	5.5.3 B256_MODL
	5.5.4 POINT_MUL
	5.5.5 POINT_ENC
	5.5.6 POINT_DEC
	5.5.7 SHA512_SEQ
	5.5.8 Ed25519_SIGN
	5.5.9 Ed25519_VERIFY
	5.5.10 PRNG

	CHAPTER 6: KEY EXCHANGE PROTOCOL
	6.1 Introduction
	6.2 KEP Message Structure
	6.3 Listener
	6.4 Processor
	6.4.1 State 0: Power On
	6.4.2 State 1: Server Check
	6.4.3 State 2: Ks’ Req Check
	6.4.4 State 3: EdDH Keys
	6.4.5 State 4: Sign message
	6.4.6 State 5: Check for new message
	6.4.7 State 6: Gen Kp, Encrypt Ke
	6.4.8 State 7: Create new Ks’
	6.4.9 State 8: Set Ks = Ks’
	6.4.10 State 9: Gen Kp, Decrypt Ke

	6.5 Typical Operation

	CHAPTER 7: RESULTS AND FUTURE WORK
	REFERENCES
	APPENDIX A. VMAC ANALYSIS
	A.1 Testing SHA-256
	A.2 Cracking 16-Rounds

	APPENDIX B. GRAPHICAL VMAC IMPLEMENTATION
	B.1 Controller Organizer
	B.2 VO_NODE1
	B.2 VI_NODE2

	APPENDIX C. SOURCE CODE
	C.1 Custom Data Types
	C.2 Add-On Instructions
	C.3 VMAC and IO_Mapping
	C.4 KEP Program

	APPENDIX D. SEQUENCER CHARTS
	D.1 Ed25519_SIGN
	D.2 Ed25519_VERIFY
	D.3 B256_MODINV
	D.4 B256_MODL
	D.5 B256_MODPOW
	D.6 POINT_DEC
	D.7 POINT_ENC
	D.8 POINT_MUL
	D.9 PRNG
	D.10 SHA512_SEQ

	APPENDIX E. KEY SCRIPTS
	E.1 keygen.py

