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Abstract—The challenge of securing industrial 

control systems is significant, and the need to provide 

authentication and verification services for control 

system commands and data has been well established.  

However there is currently a lack of options for the 

control system engineer, and the options that do exist 

mainly involve purchasing additional hardware.  

However these solutions disrupt the use of some real 

time communications products such as the 

Profinet/iMap combination used on Siemens PLCs.  

Previous work demonstrated the use of the Elliptic 

Curve Digital Signature Algorithm (ECDSA) on 

SoftPLCs, but solutions implemented for traditional 

PLCs such as the Rockwell ControlLogix line were 

deferred. 

There are a number of challenges to implementing 

control system data authentication and verification in a 

PLC, including performing mathematical operations 

on BigIntegers; generating and distributing keys; 

generating cryptographically secure hash values; 

implementing random number generation; and 

ensuring that the operations can be performed without 

impacting normal operation / scan times.  In this paper 

we present a generic solution to these problems for 

implementation on any IEC61131-3 compliant PLC, as 

well as specific implementations for these solutions on 

the ControlLogix platform.  Advances in cryptography 

are discussed including new algorithms that make use 

of twisted Edwards-curves that allow control system 

applications such as PLCs to perform advanced 

cryptographic functions without impacting overall 

performance at the 128-bit security level.   

Index Terms—PLC, HMI, Ed25519, EdDSA, ICS  

 

1.  INTRODUCTION 
The challenge of securing Industrial Control Systems 

(ICS) is significant and the need to provide authentication 

and verification services for control system commands and 

data has been well established [1,2]. Control system 

components such as Programmable Logic Controllers (PLCs) 

and Human-Machine Interfaces (HMIs) can no longer rely 

on simple heartbeat logic algorithms in order to verify 

communications.  Advanced cryptographic algorithms for 

data authentication and verification are needed in messaging 

protocols between PLCs, HMIs, and sensors.   

Unfortunately, the utilization of cryptographic algorithms 

in a control system is a complicated endeavour.  The primary 

processing component of a control system is a PLC, with 

software written in a language known as “ladder logic” that 

is based on old electrical relay diagrams.  Ladder logic offers 

a number of benefits for control systems, primarily the 

benefit of being easy to understand and implement.  

Additionally it offers the ability to watch the code execute 

“live” to debug without the need of more advanced features 

such breakpoints common when performing debugging of a 

higher level language.  In many ways, implementing a 

solution in ladder logic is much more similar to 

implementing a solution in hardware then in software, 

without the cost of expensive hardware components and the 

difficulty of changing hardware to meet new requirements. 

The result is that control systems are completely unable to 

use existing implementations of cryptographic algorithms 

such as those found in the OpenSSL library.  Even basic 

functions such as declaring an unsigned integer and a 

standard “for loop” are dramatically more difficult than in a 

language like C/C++.  Memory is extremely limited in most 

PLCs and they do not possess the ability to natively do 64-

bit integer calculations which are required for most 

cryptographic algorithms such as SHA-512.  Generation of 

random numbers, a must for cryptographic algorithms, is all 

but impossible by a PLC and concepts such as the storing of 

digital certificates are completely foreign to a control system. 

All of these challenges require a new approach to solving 

control system security that takes the best of our 

cryptographic technologies and essentially “translates” them 

into an implementation suitable for control systems. A 

solution was prototyped [2] using ISaGRAF™ SoftPLCs 

that was primarily written in IEC 61131-3 ladder logic with 

the addition of five specialized function blocks developed in 

C [1].  The specialized function blocks utilized the OpenSSL 

library to implement ECDSA and SHA-512 hashing 

functionality, key generation and verification functionality, 

and signature generation and verification functionality.  The 

blocks could then be used in the same manner as a regular 

ladder logic instruction in the prototype’s implementation.    

The intent of the prototype was to develop a solution 

written primarily in ladder logic that could be used in 

existing control systems if the specialized function blocks in 

C could be converted to ladder.  Four SoftPLCs were 
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configured in a round robin architecture on two different test 

strings in order to determine the average time it takes to 

generate a message, sign it, transmit it, receive it, and verify 

the signature.  A self-signing key distribution architecture 

was developed which relied on the commissioning process 

of PLCs to establish the initial trust relationship.   

Results of this work indicated that development of a fully 

IEC 61131-3 compliant implementation was justified. Such 

an implementation would need to go further and address a 

number of design issues of the prototype and present a 

solution that could be implemented across a wide range of 

platforms without negatively impacting performance.  This 

paper presents such a solution, providing a cryptographically 

secure message authentication protocol without sacrificing 

performance. 

Section 2 below describes the challenges in implementing 

cryptography on an ICS.  Section 3 presents the background 

and concept of the solution.  Section 4 provides details of the 

solution with respect to the major challenges described in 

Section 2.  Section 5 provides recommendations for PLC 

vendors to include in future iterations of their products.  

Finally Sections 6 and 7 describe future work opportunities 

and provide the conclusion to this work.  

 

2. ICS CRYPTOGRAPHY 

CHALLENGES 
There are a number of problems with implementing 

cryptography in ICS, such as the inability to natively 

perform 64 bit operations.  This section presents the three 

most significant challenges the author faced in developing an 

ICS cryptography solution. 

 

2.1.  Random Numbers 

In cryptography, the ability to generate true random 

numbers is crucial and failure to do so will result in a 

vulnerable system.  In the prototype, every message was 

digitally signed before being sent to a controller using the 

Elliptic Curve Digital Signature Algorithm (ECDSA).  

ECDSA requires a random number to be generated for each 

signature in order for the algorithm to be secure.  While it is 

possible to use a pseudo-random number generator (PRNG) 

for ECDSA, the PRNG has to be initialized with a true 

random seed which is kept secret.  The seed itself is partially 

consumed with each use of the PRNG, eventually weakening 

to the point that the seed must be reinitialized to a new true 

random number to maintain security.  Since PLCs send a 

message anywhere from 20 to 50 times a second, and each 

message in the prototype requires a digital signature which 

consumes randomness, the seed would be too quickly 

consumed to provide long term security. 

Unfortunately, the creation of a true random number 

generator (TRNG) is a non-trivial task which usually relies 

on some kind of quantum effect.  The most common sources 

for TRNGs include radioactive sources, quantum effects in 

semiconductors, and quantum effects in photon polarization 

detection.  Sources that do not rely on quantum effects 

usually rely on “human error” by asking a human to perform 

a task such as move a mouse around randomly and calculate 

the deltas in time when the human moves a mouse in a 

different direction.  Software such as Veracrypt, for example, 

relies on this “human error” approach. 

At this time for most applications the only true reliable 

method of obtaining random numbers is to install an external 

hardware-based random number generator.  There are a 

number of products on the market today that make the claim 

to be TRNG (evaluation of such claims is beyond the scope 

of this paper).  However most of those devices were 

designed with a more standard computer in mind and are 

incompatible for use with a PLC.  An example is the 

TRNG9815device commercially available at 

www.trng98.com and shown in Figure 1 below.  This device 

is based upon a Zeener diode noise source which is then 

amplified to be read by a PC.   

  

 

 

Figure 1.  TRNG 9815 Device 

 

One problem with this device, and others like it, is that 

they usually rely on a USB connection to a PC and external 

driver software to function properly.  ICS devices like PLCs 

do not have the capability to read USB devices let alone 

install driver software.  Additionally, many control engineers 

consider the presence of USB ports on ICS devices to be a 

significant security risk.   

The good news is that it is possible for ICS vendors to 

create a hardware based TRNG using existing technologies 

with relative ease.  Therefore, while a commercial product is 

not available at this time to the best of the author’s 

knowledge, it is likely one will be available in the near 

future.  The bad news though, is that it takes time for a 

TRNG to collect enough quantum data to generate a random 

number long enough to be cryptographically usable.  Given 

the high rate of PLC messages it is doubtful a TRNG will be 

available in the near term that is fast enough for per-message 

authentication. We will have to continue to use a PRNG with 

a TRNG to update the PRNG’s seed value. 

Ultimately a solution is required that will significantly 

decrease our need for random numbers from potentially 

380+ million random bits a day to  256 random bits every 

couple of months.  This would allow us to use PRNGs to 



  Page 3 of 10  

meet our application needs in the short run and ultimately 

loosen the design constraints for an eventual hardware based 

TRNG that can be used on a PLC. 

 

2.2.  PLC Processing Speed 

The single biggest challenge in implementing 

cryptography in a PLC is the speed of the processor.  Over 

the years PLC processing speeds have increased 

dramatically, to the point that control system engineers 

rarely have to even consider the possibility that their 

application might actually run so slow on a PLC that it 

would fault the controller.  On average, the PLC programs 

developed in our offices have scan times between 20ms and 

100ms for fairly large applications processing hundreds to 

thousands of I/O points.  In general, it is the opinion of the 

author that a control system program must have a scan time 

at least twice as fast as the fastest response rate of a 

controlled physical I/O device (i.e a valve or pump).  This 

typically translates to a required scan time of less than 

250ms, and ideally less than 100ms.  Additionally, we have 

found that scan times of greater than 500ms will actually 

cause a Rockwell 1756-L8x series processor (the latest 

available at the time of writing) to have a major fault. 

Modern computers have multi-core processors that run in 

the GHz range and typically do not have real-time 

performance requirements (those that do can always have 

dedicated cryptographic modules).  PLCs on the other hand 

have strong real-time performance requirements and have 

processors that run in the MHz range due to the lack of 

active cooling.  To illustrate this challenge a basic SHA-512 

algorithm written completely in ladder logic was developed. 

Running that algorithm in RSEmulate on a standard PC 

running an Intel 2500K processor at 4.2 GHz for 104 bytes 

of data gave a scan time of 2ms.  Running that same 

algorithm on a 1756-L8x series PLC gave a scan time of 

26ms, over an order of magnitude higher. While this may not 

seem like a lot, consider that operations used in 

cryptography such as point multiplication and modular 

exponentiation are much more complex.  Such operations 

could easily consume the entire available scan time of a PLC 

and leave no real time to actually perform control work. 

Therefore a solution is required that would allow us to 

perform these complex operations without impacting scan 

time.      

 

2.3. BigIntegers 

A BigInteger is a data type that represents an arbitrarily 

large integer whose value has no upper or lower bound.  This 

is distinguished from a DINT or even a LINT, which has an 

upper bound limited to the number of bits present in the data 

type (32 and 64 respectively).  In RSA, a common 

cryptographic algorithm used to secure a wide range of 

systems, BigIntegers on the order of 2048 to 8192 bits are 

used.  In previous work [1] it was discussed how Elliptic 

Curve Cryptography (ECC) helps reduce the scale of this 

problem by allowing us to use smaller BigIntegers to 

provide solutions of equivalent strength at reduced bit sizes.  

For example, to provide security at the 128-bit level 

(common security level for data considered “secret”) the 

RSA BigIntegers need to contain 3072 bits according to 

NIST SP 800-57.  ECC can provide us the same security 

using BigIntegers of 256 bits, which dramatically improves 

the scope of the problem but does not in itself provide us a 

solution to perform 256-bit math in a PLC. 

   

3. PROPOSED SOLUTION OVERVIEW 

3.1. Background 

In the original prototype, a ladder logic implementation 

was used that contained the following custom C function 

blocks using the OpenSSL library:  MsgGen, KeyGen, 

KeyVerify, SigGen, and SigVerify.  The prototype had each 

controller start with a private-public key pair and knowledge 

of the public keys of each controller it needed to talk to.  The 

prototype then immediately changed its active key and used 

a self-signing algorithm to communicate the key change to 

each pair.  The controllers would regularly use this same 

mechanism to update and communicate these keys (on an 

approximately every hour basis).   

Messages were hashed in the prototype using SHA-512, 

but had a limitation of only being able to receive a very fixed 

range of input options and to extend the range of input 

MsgGen Blocks had to be chained together as shown in 

Figure 2 below.  The messages were then digitally signed by 

the controller using ECDSA and then transmitted to the next 

controller.  The next controller would receive the data and 

the signature.  Then it would have to regenerate the hash 

from the message and verify the digital signature.  If the 

signature was not verified it would generate an operator 

alarm. 

 

 
Figure 2.  Three MsgGen Blocks Connected Together 

 

This concept worked on the SoftPLC due to the increased 

power of the PLC, the ability to use OpenSSL’s BigInteger 

data type, and the ability of the SoftPLC to generate random 
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numbers using the built-in RDRAND features of the Intel 

chipset.  Discussion of the security of RDRAND itself and 

the potential backdoor compromise is beyond the scope of 

this paper, but for the sake of discussion we will assume it to 

be secure.   

 

3.2. Concept 

This section describes the high level concept of what the 

system needs to do in order to provide security.  Most of 

what follows in this section is a fairly standard description of 

establishing a secure session across an unsecure channel.   

Assume you have a Distributed Control System (DCS) 

that needs to interface with a gas turbine’s Full Authority 

Digital Control (FADC) across an unsecure channel.  The 

DCS has a Remote Terminal Unit (RTU) that will directly 

communicate to the FADC via Ethernet.  As typical in an 

ICS development, an Interface Design Document (IDD) is 

developed that defines the parameters the RTU needs to send 

and receive from the FADC and how to obtain/send that data. 

The first step in this concept is that we add to the IDD a 

new parameter, a 256-bit public key A for both the FADC 

and the RTU.  The public keys are generated offline and 

loaded into the controllers, along with corresponding private 

keys a which are not shared and considered 

CONFIDENTIAL or SECRET.  The private key a and the 

public key A are mathematically related to each other.  The 

primary purpose of these keys is to allow control system 

nodes to be able to identify each other across unsecure 

channels and prevent Man-In-The-Middle (MITM) attacks. 

In the proposed design, PLC messages are authenticated 

via a Hashed Message Authenticated Code (HMAC) 

algorithm, where the data communicated between the RTU 

and the FADC is combined with a shared secret session key 

K to produce a fixed length result. The session key will be 

generated using the Elliptic Curve Diffie-Hellman (ECDH) 

algorithm and a cryptographically secure PRNG.  ECDH 

would have each controller in each pair of nodes generate a 

private number q.  That number would be used in a point 

multiplication algorithm in which a publicly known base 

point B on an elliptic curve (also defined in the IDD) is 

multiplied by the pseudo-random number to generate a result 

Q that is made public.   

Simultaneously the public number is digitally signed 

within each controller, using the Edwards-curve Digital 

Signature Algorithm (EdDSA) [4] and the private key a.  

EdDSA offers a number of improvements to standard 

ECDSA, such as the formulas being complete along the 

curve (no special exceptions that need to be handled) and the 

ability to generate secure digital signatures without the need 

for a random number.  Additionally, the curve Ed25519 is 

optimized for performance while still providing 128-bit level 

security. 

The digital signature [R, S], and the public ECDH value 

Q is sent to the other controller.  The two controllers each 

receive the other’s public value and digital signature.  The 

controllers then verify the digital signature using only the 

public key value A.  Once verified the controllers would take 

the public number Q and multiply it with their own private 

number q to create the 256-bit key K, which is never sent 

across the unsecure channel.  This process works because: 

 

K = q1*Q2 = q1*q2*B = q2*q1*B = q2*Q1 

 

This entire operation would occur during power-up or 

when initiated by an operator.  This means that the most 

complex mathematical operations would only need to occur 

rarely such as once a year, during planned maintenance 

availabilities.  The HMAC itself is used to protect the system 

during operation, allowing the system to identify legitimate 

commands versus illegitimate commands, which can then be 

alarmed for operator’s situational awareness.   

The advantage of this approach is that it significantly 

reduces the workload of the controllers during normal 

operation compared to digital signatures.  It also 

significantly reduces the scale of the random number 

problem, since now we only need one random number each 

time we change the session key (i.e. once every couple of 

months to a couple of years depending on the strength of the 

HMAC and the data rate).  At that rate, a PRNG initialized 

with a truly random seed generated offline would be 

sufficient, effectively solving the random number problem 

without the use of a PLC hardware based TRNG.  

The approach as described so far does not address the 

other two major concerns:  how do you handle BigIntegers 

and even more importantly how do you get a PLC to do this 

kind of complex math without impacting control system 

performance?   

 

4. SOLUTION DETAILS 

4.1. Representing BigIntegers in Ladder Logic 

Representing a BigInteger can be done a number of ways, 

with the most obvious being to simply take an array of 8 32-

bit DINTs, which total 256-bits.  The problem with this 

approach is that when you perform operations such as 

addition and multiplication you end up having to propagate 

the carries, and if you use an array of 8 32-bit DINTs you 

have to perform a lot of work to propagate the carries which 

turns into a very long sequence of bit operations.  Bernstein 

on his blog [5] states “The standard NIST P-256 reduction 

procedure becomes even more painful if integers aren't 

represented in radix 232 (or 216 or 28): the word shuffling 

required for T,S1,S2,S3,S4,D1,D2,D3,D4 then turns into a long 

sequence of bit manipulations. The reason this is important 

is that radix 2
32

 isn't the best way to carry out big-integer 

arithmetic on most CPUs. Even on CPUs where the largest 

multiplier size is exactly 32 bits, it's almost always better to 

use a radix smaller than 2
32

, so that carries can be delayed.”   

Rockwell Automation has a data type in the RSLogix5000 

series called LINT, which is a 64-bit integer.  However, the 

mathematical operations ADD, SUB, MUL, and others 

which are usable on a 32-bit DINT data type cannot be used 

with the LINT.  Rockwell does provide a series of Add-On 
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Instructions (AOIs) that provide this functionality. These 

AOIs essentially work by breaking the 64-bit LINT into 3 

32-bit DINTs, performing the math operation on the three 

different pieces and then reducing the entire array of DINTs 

back into one LINT.   

Following a similar approach we determined that using 

twenty-two (22) 12-bit pieces stored in DINT is the most 

efficient method for representing a 256-bit value for the 

following reasons: 

• Splitting the value into 32-bit pieces significantly 

increases the number of bit manipulations which 

decreases code efficiency 

• Splitting the value into 16-bit pieces works for addition 

and subtraction, but when you perform multiplication 

the result in the intermediate steps would have 32-bit 

pieces which would have to be added together 

introducing carries which then require complex code to 

handle 

The result is that splitting the value into 12-bit pieces is the 

largest value that takes up the least amount of space without 

introducing significant code complexity. In particular, this 

allows you to be able to multiply two sums without having 

to perform a reduction until the end of the multiplication. 

Smaller pieces increases the size of the internal loops of the 

operations which increases overall run time.  Thus twenty-

two (22) 12-bit pieces is the optimal way for storing 256-bit 

BigIntegers on a PLC. 

 

4.2. Sequencing Complex Mathematical Operations 

Here we discuss how to perform the more complex math 

operations, using the specific example of point 

multiplication which is at the heart of ECC.  Elliptic curve 

point multiplication is the process of repeatedly adding a 

point along an elliptic curve to itself.  This process creates a 

trapdoor function, and the security of ECC is based on the 

intractability of determining a multiplier n from the equation 

Q = n*P where Q and P are given points on the curve.  

There are a number of approaches in performing point 

multiplication, such as the sliding-window method and 

Montgomery ladder.  Discussion of the details of point 

multiplication is beyond the scope of this paper, but what is 

relevant is that it is an extremely complex algorithm to 

implement on a PLC.  If you follow the approach in RFC 

8032 [4] then a single point addition requires nine 256-bit 

multiplications, four 256-bit additions, and four 256-bit 

subtractions. Each of these operations must be repeated for 

each bit in the multiplier in order to perform the point 

multiplication at constant time and avoid a timing side 

channel attack.   

The coding of such an algorithm into ladder logic is a 

challenge in of itself, but even the most efficient 

implementation will not be able to run on the PLC.  This is 

because, as stated above, there is an already known 

optimally efficient way to store the 256-bit value, which 

results in a known optimal number of standard ladder logic 

math instructions such as ADD and MUL to perform a basic 

B256_ADD and B256_MUL.  For example, just looking at 

the number of standard RSLogix5000 MUL instructions in 

one point multiplication gives the following result: 

1 POINT_MUL =  

 (8 B256_MUL + 1 POINT_ADD ) per bit in n 

 
1 POINT_ADD = 9 B256_MUL 

 

1 B256_MUL = 484 MUL 

 

1 POINT_MUL = [ (8 + 9) * 484 ] * 256 =  

2,106,368 MUL 

 

So essentially one point multiplication results in over two 

million ladder logic MUL instructions, not including the 

additions, subtractions, shifts, and other loop instructions 

required.  The result is a massive number of instructions that 

if you attempt to run them all in one scan of a PLC will 

negatively impact the overall scan time and potentially even 

fault out the controller.  This problem is compounded further 

by the fact that ECDH requires multiple point 

multiplications, although not all at the same time. 

The solution to this problem is to break the point 

multiplication algorithm up into a series of sequential pieces, 

so that only a small portion of the total algorithm is run in 

any given scan.  This is similar to a standard sequencer used 

in a batch control process, where the sequencer executes a 

set of commands in each step and waits for a feedback from 

the process indicating that step is complete before executing 

the next step.  In the case of point multiplication, the most 

obvious solution is to break up the algorithm so that each 

point addition is performed on a separate scan.  The 

sequencer waits for a confirmation that the point addition is 

completed, stores the result in a temporary variable, and then 

uses that result in the next scan for the next point addition.  

Appendix B shows a sequence chart for the point 

multiplication 

Using this approach a point multiplication AOI was 

developed that can run on a Rockwell 1756-L83 processor 

with only a 10ms impact to total scan time.  The same 

approach was used on all the other different pieces of the 

Ed25519 digital signature algorithm such as SHA-512.  

Combining all the pieces into a master sequencer produces a 

digital signature implementation capable of running on a 

PLC with a projected scan time of impact of less than 10ms. 

The prototype for the signature is still in development, 

however the projections are based on the known impact of 

the most computationally complex operations which are 

complete, multiplied by 2.  The prototype AOI for the  

Ed25519 digital signature algorithm is shown in Figure 3.  

The AOI is designed to use a externally generated keys that 

can be generated to meet the requirements of RFC 8032 [4]. 

The private key portion is modified so that instead of saving 

the random number as the private key you save the scalar 

and the hash generated from the random number.  This 

improves overall efficiency by removing the requirement to 
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repeatedly perform operations that could be performed once 

offline and then saved for future use.  

 

 

 

 
Figure 3.  Ed25519_SIGN Add-On Instruction 

 

There are downsides to this approach.  The first is that the 

total time to produce a digital signature is significantly 

longer.  Depending on the processor and the amount of 

control code that has to run in a scan (that is not related to 

cryptography) the entire operation could take a couple of 

minutes to complete.  Testing on the point multiplication 

showed that it took less than a minute to complete on a 

1756-L8x series processor.  Regardless, the system itself will 

be able to run without impact during this time.  The message 

traffic will continue to use the old key until negotiation and 

verification of the new key is complete.  The process can 

also be performed during scheduled maintenance windows 

to reduce overall risk.  

The second problem is that this approach increases the 

size of the program significantly since we are essentially 

“trading space for time”.  This is unlikely to cause a concern 

on newer processors, which have significant memory storage 

capabilities.  However for older devices or embedded 

devices this approach could be constrained. 

The third problem is that extending this algorithm across 

multiple scans can potentially make the algorithm vulnerable 

to side channel attacks.  To prevent this two steps must be 

taken: 

 

1) Ensure that the coding of the algorithm prevents a 

timing attack 

2) Severely restrict users from being able to access and 

go online to the PLC 

3) Use built in features of the PLC products to prevent 

uses from being able to read and write  to the tags 

involved in the cryptographic operations 

 

The final problem is that this approach is not usable for an 

HMAC implementation because an HMAC must be 

calculated in its entirety on each scan.  Otherwise you will 

not be able to perform data authentication for each and every 

message to and from the controller.  Therefore an alternative 

approach must be used for HMACs, which is discussed in 

the following section. 

  

4.3. PLC Message Authentication Code 

The use of the HMAC for per-message security vs 

digitally signing each message is the biggest change to the 

work done in the prototype [2].  The HMAC algorithm must 

be designed to meet the following requirements: 

• The algorithm would be fast enough to create the 

HMAC without negatively impacting overall control 

system operation. 

• Any adversary with full knowledge of the software, 

the data, and matching hardware would not be able to 

produce the HMAC without knowing the secret 

session key 

• Provide 128-bit level security (SHA-256 equivalent) 

• For a single bit change in the input produce on 

average approximately 128 bit changes in the output 

and no less than 50 bit changes in the output in the 

worst case (equivalent of SHA-256) 

• Protect against common attacks such as the length 

extension attack and collision attack 

 

The standard HMAC algorithm for producing values at 

128-bit security is HMAC-SHA-256 which is a Θ(n) 

algorithm.  This algorithm was implemented and tested in 

the lab on a Rockwell 1756-L83 processor.  The message 

size was 200 bytes. Initial results in the lab indicated that 

such an algorithm would have a scan time of 50-100ms 

when used in production.  Considering that you would use 

two of them for both send and receive the combined scan 

time impact could reach up to 200ms for only 200 bytes.  

This would have detrimental impact on overall control 

system operation.  Unfortunately, since the entire operation 

would have to be performed per message per scan there is no 

way to practically sequence the code in the same manner as 

was done for point multiplication or other complex 

operations.  Therefore a new HMAC was designed as a 
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compromise between security and performance, using an 

alternative design approach than the Ed25519_SIGN AOI 

discussed previously. 

The standard HMAC-SHA-256 algorithm follows the 

following construction as defined in RFC 2104 [3]: 

 

 
Where H represents the SHA256 algorithm being used twice, 

K’ represents the key, and opad and ipad are constant values. 

 

 

 
Figure 4.  VMAC Add-On Instruction 

 

The proposed Variable Round Message Authentication 

Code (VMAC) shown in Figure 4 was created as a reduced 

round derivative of SHA-256.   Specifically the   number of 

internal rounds of SHA-256 is reduced from 64 to between 

20 and 64 rounds as defined by the parameter 

“Inp_ROUNDS” and the key is mixed into the scheduling of 

the message using the formulas below.  Similar approaches 

are proposed in [6, 7], however this approach has a more 

advanced key indexing, rotation, and message scheduling 

scheme to reduce vulnerabilities to key recover attacks while 

at the same time allowing for reduced rounds. 

 

Step1:  Select one of the eight 32-bit portions of the 256-bit 

key to become the IndexedKey using the algorithm below.  

Note that if each round from 0 to 63 is designated by the 

parameter n, then the selected portion of the key is:   

 

    KeyIndex = n for n=0..7 

KeyIndex = n-5 for n=8..12 

KeyIndex = 1 for n=13 

KeyIndex = 2 for n=14 

KeyIndex = 0 for n=15 

KeyIndex = (63-n) mod 8 for n=16..63 

IndexedKey = Inp_KEY(KeyIndex) 

 

Step2: Calculate the RotationIndex of the key, which causes 

a different rotation amount to be applied each time an 

IndexedKey value is used: 

 

RotationIndex =3*KeyIndex + (n>>3) 

 

Step3: The key is then mixed into the scheduling process of 

the message using the following formula: 

 

W[n] = Fo[n] XOR ROTR (RotationIndex,IndexedKey) 

 

Where Fo represents the original formula to calculate W[n] 

in the SHA-256.  As a result the key is mixed in recursively 

with the data when n is greater than 15.  There is no ipad or 

opad and the hash algorithm is only used once, which means 

that if the AOI was run at 64 rounds using a key of all zeros 

you would get the same output as standard SHA-256. Note 

that Fo for each of the rounds 16 through 63 is a function of 

4 previous values and the IndexedKey.  The custom indexing 

of the key described in Step1 is necessary to ensure that the 

final W value for 20 rounds or more is a function of all 256 

bits of the key.  

   The following table shows the timing results for 

processing the algorithm at different byte lengths with 

varying numbers of rounds on a 1756-L83 processor.  These 

results are typical, as it has been shown in our testing that 

different processors within the same family might produce 

slightly different timing results. 

 

Rounds 200 Bytes 400 Bytes 800 Bytes 

20 7.3 12.9 23.8 

24 9.8 17.1 31.6 

32 14.8 25.7 47.6 

48 23.9 41.7 76.9 

64 33.5 58.7 108.4 

Figure 5.  VMAC Timing Results (in ms) 

 

4.3.1. VMAC Vulnerability to Length Extension Attack 

The length extension attack works when you hash a data 

set that looks like: 

 

H ( Key || Message ) = Hash1 

 

You can add more data to the message and generate a valid 

response (Hash2 below) without knowing the key by taking: 

 

H ( Hash1 || FakeMessage ) = Hash2 

 

This is because 

 

Key || Message || FakeMessage 

 

Is indistinguishable from 

 

Key || SomeDifferentLongerMessage 

 

This assumes that you properly calculate enough padding at 

the end of the real message before you append the fake data 

so that you fall on the next block.  Thus the construction of 

most HMACs based on the SHA2 family need to use two 

hashes that essentially bound the length of the message.  
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Note that SHA3 avoids this limitation by using a sponge 

construction and avoids blocks altogether. 

VMAC avoids this attack vector because it does not prefix 

the key as part of the first block of the message, it injects the 

key into every block of the message.  Thus adding an 

extension to the method would not generate the same result 

because the FakeMessage above would not have been 

processed in the context of the key.   

4.3.2. VMAC Vulnerability to Collision Attack 

Reducing the number of rounds does make the algorithm 

weaker than a typical HMAC because it increases the chance 

of collisions. For starters the first 16 rounds of SHA-256 do 

not utilize the message expansion contained in the remaining 

rounds, so doing only 20 rounds means that you are only 

using 4 rounds of expansion versus 48.  Therefore testing 

was conducted on reduced round SHA-256 to determine how 

reducing the rounds affected the output result when you 

change one bit in the input.  Python code used to test SHA-

256 can be found in Appendix A.  Standard NIST messages 

were used as the input, and the table below gives results for 

changing each bit in the input sequentially over a range of 

512 trials per message per test. 

 

 

Test Rounds Low High Average 

MSG_0 64 101 152 127.6855 

MSG_8 64 103 149 128.1992 

MSG_440 64 103 148 127.3574 

MSG_0 24 101 147 128.0195 

MSG_8 24 110 154 128.4765 

MSG_440 24 100 152 128.2656 

MSG_0 20 101 150 126.5820 

MSG_8 20 96 151 126.9570 

MSG_440 20 92 147 127.0371 

MSG_0 18 38 149 119.7031 

MSG_8 18 44 158 120.2480 

MSG_440 18 42 155 120.1914 

MSG_0 16 2 149 106.3164 

MSG_8 16 2 149 105.8262 

MSG_440 16 2 149 105.2089 

Figure 6.  SHA256 Reduced Round Test Results 

 

The results of the test show that in general you will 

always have the possibility of changing a large number of 

bits in the output on average, however you need to use at 

least 20 rounds to guarantee you will have a significant 

change every time.  Going past 20 rounds you get an 

exponential decrease in returns with a linear increase in time.  

However during the message scheduling process the number 

of input data bits which affect a single bit of W[19] varies 

from 19 to 26, whereas for W[23] that is increased 

significantly to 81 to 106.  Therefore even for 20 rounds it 

may be feasible to do a differential input attack trying 2
19 

to 

2
26  

inputs, but 2
81 

is likely to be infeasible.   

 Additionally a number of papers have been published 

detailing how to create a collision with reduced round SHA-

256, some up to 46 rounds.  It should be noted that these 

papers are using standard SHA-256 without a secret key 

which increases computation complexity assuming the key is 

generated securely.  Therefore, at this time, the author is 

recommending at least between 24 to 32 rounds as a 

compromise to meet both security and performance 

requirements, with the acknowledgement that key changes 

may need to be more frequent to maintain security.  The 

algorithm does allow for the use of only 20 rounds, but that 

is for extreme cases only where the choice is between 

nothing and or 20 rounds and should only be used with 

caution and frequent key changes. 

Reference [6] also notes that when working with a key-

less hash function an advisory can work in finding collisions 

independently of any user or key, which makes brute force 

attacks more feasible.  For a keyed-hash function the 

attacker needs to get “examples” of the messages from a 

legal user who already knows the key.   

The AOI does include a parameter called “Inp_ROUNDS” 

that allows a user to increase the number of rounds from a 

minimum of 20 (minimum of 24 recommended) up to 64 

rounds.  This will allow for additional flexibility in the 

future as the computational power increases with minimum 

impacts to the PLC code.  Since all HMACs run in Θ(n) time 

an increase to the number of rounds will linearly increase the 

running time of the algorithm and impact performance. 

4.3.3. VMAC Vulnerability to Replay Attacks 

A replay attack is an attack in which a valid message to a 

device is captured and later a copy of the message is sent to 

the target device.  The goal is to take a command or data that 

was legitimate at the time it was sent, such as a command to 

stop a motor which was sent intentionally, and be able to 

replay that command to cause the device (in this case a 

motor) to respond to that command again at an unexpected 

time.  The traditional defense against a replay attack is to 

include a timestamp as part of the data used to generate the 

HMAC, and then ensure that when a message is received it 

is newer than the last previously received message before 

even bothering to validate the HMAC. 

Control systems typically cannot rely on using time, 

normally because they don’t have access to a time 

synchronization device and even if they do it creates a 

security dependency on the device.  Therefore it is 

recommended to have the first two DINTs of the data to be 

hashed represent a 64-bit number, called a nonce.  The nonce 

is then incremented with each message and represents a time 

stamp.  It is critical that the start value of the nonce always 

be greater than any previous start value incremented by 

some pseudo-random number, and that the nonce value is 

included in the calculation of the VMAC.  This is action 

would not be performed by the VMAC AOI itself, but be 

performed outside of the VMAC and included as part of the 

data in Inp_MSG[0] and Inp_MSG[1].   

Having the nonce in the beginning of the message, versus 

some other location in the message, is critical as well.  The 
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SHA-2 family in general works such that data towards the 

beginning of the message has a greater impact on the final 

hash then data towards the end.  The VMAC algorithm 

amplifies this with the way the key is used recursively.  A 

control system operating in a steady state condition would, 

ideally, have very little changes and thus the message itself 

would have little to no changes in the data.  Having a nonce 

value at the beginning of the message, which changes all the 

time, would maximize the apparent randomness of the final 

result.  

There is a concern that if the value of the nonce is reset to 

zero or some value lower than the previous value all 

subsequent messages will be rejected by other PLCs as a 

replay attack.  This can happen in one of three ways: 

1. Someone intentionally resets the nonce 

2. Someone re-downloads a program into the PLC 

3. Power loss 

 

PLC passwords and operational procedures must be used 

to prevent someone from resetting the nonce either 

intentionally or thru a download.  The later can easily be 

prevented by viewing the current value of the nonce before 

the download and making sure that a value greater than the 

current value is downloaded to the PLC.  Preventing a nonce 

reset due to a power loss will vary depending on the vendor, 

however in RSLogix5000 we have found that certain 

instructions such as accumulators retain their previous 

values on a power loss. 

4.3.4. VMAC Vulnerability to Key Recovery  

The heart of the VMAC is a reduced round SHA-256, 

which can be reversed when the data only consists of one 

block (i.e. less than 448 bits of data, since padding is always 

added).  This property is a primary reason why 

implementations of SHA-256 with less than 24 rounds are 

vulnerable to attacks.  The goal of this approach is to 

generate valid hashes by reversing the algorithm back a 

number of rounds and then replacing the end of the message 

with false data, then hashing forward to generate a valid 

result.   

This analysis does not use a key, so additional analysis 

was performed to determine the vulnerability of VMAC to 

reversing.  The first 16 rounds of the VMAC, and of SHA-

256 in general, do not use any message scheduling.  

Therefore it is easy to reverse the process and potentially 

recover the key.  Testing on a single “non-standard” message 

block (i.e. a block without the normal padding present in 

SHA-256 and VMAC) showed that all but 8 bits of the key 

could be reversed engineered, with the remaining 8 bits 

found by exhaustive search.   While this analysis is 

limited, it does indicate that it is the rounds past 16 that 

provide the most security benefit.   

When the same approach is performed on rounds past 16 

for a single block, the analysis becomes significantly more 

difficult.   The analysis becomes even more complex when 

multiple blocks of data are being processed.  Since padding 

is always added to the end of a message the message would 

have to be less than 56 bytes to only consist of only one 

block.  A large message, such as the 800 byte message, 

would consist of twelve 512-bit blocks plus a smaller 13
th

 

block of 256 bits with the remaining being padding.   

 

4.3.5. VMAC Recommendations and Final Thoughts  

At the time of this writing a method is not known to 

recover the key when using at least 24 rounds for a single 

data block.  Therefore it is recommended that at least 32 

rounds or more be used for a single block of data, which has 

an estimated scan time impact of less than 5ms (based on the 

results in Figure 5 and the fact that the algorithm is Θ(n) ).  

For large messages such as the 800 byte message it is 

recommended to use 24 rounds or more.  There does appear 

to be some extra security when multiple blocks are involved 

mainly because of the unknown intermediary stage outputs.  

However those outputs are used in a simplistic way in SHA-

256 to initialize the subsequent stage and then just added on 

to the result at the end.  Therefore it may be theoretically 

possible that they could be attacked guessing one bit at a 

time at the output, but at this time we do not know of an 

actual attack that exists.  

Ultimately VMAC represents a compromise between 

security and performance.  The balance between the two is 

non-trivial, since a PLC’s ultimate job is to control a system 

and significant scan time impacts might create an unstable 

control situation.  Future PLCs may become fast enough to 

use the full 64 rounds.   

 

5. RECOMMENDATIONS FOR PLC 

VENDORS 
The bulk of this work was dedicated to creating a 

cryptographic solution that could run on low power devices 

like PLCs with high performance requirements.  The 

implementation itself as a proof of concept was developed in 

ladder logic.  However it would be more ideal for the ideas 

presented in this paper to be pushed down to a firmware 

implementation.  The objective is to create a solution so that 

the user only has to load the controller with the master 

public/private key pair and the public keys of the different 

nodes we want to communicate securely with. 

In order to increase the efficiency of future cryptographic 

algorithms implemented in PLCs, the second 

recommendation is that vendors add 64-bit processors.  The 

inability to do 64-bit math natively becomes very limiting, 

especially in the design of an effective HMAC.  The ability 

to perform 64-bit functions would effectively double the 

amount of data that can be hashed in the same time frame.  

This would be very helpful for large systems with high 

throughput requirements. 

The third recommendation is for PLC vendors to develop 

a couple of different TRNGs capable of fitting in an PLC 

chassis.  The vendor will want to offer at least three different 

options based on different technologies.  If vulnerabilities 

are discovered in one option it might not be possible to 

correct that vulnerability with a firmware update. 
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6. FUTURE WORK 
The purpose of this work was to be able to protect and 

verify data integrity between control system nodes.  

However this work has not defined what an operator should 

do if a problem is detected.  Such decisions are often based 

on a wide range of factors that require further study with the 

goal of producing an automated system that can respond 

intelligently to detected cyber threats.  Further work is 

required to map out these threat profiles and corresponding 

decision trees, and ultimately to develop the response 

solution. 

 

7. CONCLUSION 
 

In this paper it has been demonstrated that PLC data 

authentication and verification is possible without impacting 

overall scan time.  Further work is now required to 

implement this solution on ICS and to define decision trees 

to perform automated responses to detected cyber threats. 
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APPENDIX A – PYTHON SOURCE CODE FOR TESTING REDUCED ROUND 

SHA-256 

 

Section A-1 – sha.py 
 

""" 

SHA-256 constants, functions, processing one block, and testing 

""" 

 

import random, zlib 

 

# offset to add to negative values to make them unsigned 

# 

_offset = (1 << 32); 

 

# mask to just keep 32 bits 

# 

_mask = _offset - 1; 

 

def ROTR(x,n): 

  """Circular Rotate Right by n bits""" 

  return (x >> n) | ((x << 32-n) & _mask) 

 

def ROTL(x,n): 

  """Circular Rotate Left by n bits, not used in SHA-256""" 

  return ((x << n) & _mask) | (x >> 32-n) 

 

def SHR(x,n): 

  """Shift Right by n bits""" 

  return (x >> n); 

 

# ~x produces negative value 

 

def Ch(x,y,z): 

  """SHA-256 Ch Function""" 

  return (x & y) ^ (((~x)+_offset) & z) 

 

def Maj(x,y,z): 

  """SHA-256 Maj Function""" 

  return (x & y) ^ (x & z) ^ (y & z) 

 

def Sigma0(x): 

  """SHA-256 Sigma0 Function""" 

  return ROTR(x,2) ^ ROTR(x,13) ^ ROTR(x,22) 

 

def Sigma1(x): 
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  """SHA-256 Sigma1 Function""" 

  return ROTR(x,6) ^ ROTR(x,11) ^ ROTR(x,25) 

 

def sigma0(x): 

  """SHA-256 sigma0 Function""" 

  return ROTR(x,7) ^ ROTR(x,18) ^ SHR(x,3) 

 

def sigma1(x): 

  """SHA-256 sigma1 Function""" 

  return ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10) 

 

# initial hash value 

_H0 = [ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 

        0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 ] 

 

# constants 

_K = [ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,  

       0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,  

       0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,  

       0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,  

       0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,  

       0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,  

       0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,  

       0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,  

       0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,  

       0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,  

       0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,  

       0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,  

       0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,  

       0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,  

       0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,  

       0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 ] 

 

def SHA256(M, N=64): 

  """ 

  SHA256 on data with size <= 447 bits so it fits in one 512-bit block M 

  e.g. M = 32-bit-data1, ..., data13, 0x80000000, 0x0, data_bit_length 

 

  N >= 16 is required.  N < 64 represents a reduced-round SHA-256. 

  """ 

  W = [0 for t in range(N)] 

  # unpack M into array of 16 32-bit values 

  for t in range(15,-1,-1): 

    W[t] = M & 0xFFFFFFFF 

    M >>= 32 

  for t in range(16,N): 

    W[t] = (sigma1(W[t-2]) + W[t-7] + sigma0(W[t-15]) + W[t-16]) & _mask 

  a = _H0[0]; b = _H0[1]; c = _H0[2]; d = _H0[3] 
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  e = _H0[4]; f = _H0[5]; g = _H0[6]; h = _H0[7] 

  for t in range(N): 

    T3 = sigma1(W[t]) 

    T1 = (h + Sigma1(e) + Ch(e,f,g) + _K[t] + W[t]) & _mask 

    T2 = (Sigma0(a) + Maj(a,b,c)) & _mask 

    h = g; g = f; f = e; e = (d + T1) & _mask 

    d = c; c = b; b = (a + T3) & _mask; a = (T1 + T2) & _mask 

  H =             (a + _H0[0]) & _mask 

  H <<= 32;  H |= (b + _H0[1]) & _mask; 

  H <<= 32;  H |= (c + _H0[2]) & _mask; 

  H <<= 32;  H |= (d + _H0[3]) & _mask; 

  H <<= 32;  H |= (e + _H0[4]) & _mask; 

  H <<= 32;  H |= (f + _H0[5]) & _mask; 

  H <<= 32;  H |= (g + _H0[6]) & _mask; 

  H <<= 32;  H |= (h + _H0[7]) & _mask; 

  return H 

 

def bitstats(MSG,N): 

  """ 

  count how many bits change vs. 1-bit change on input 

  using SHA-256 main loop range 1:N (instead of 1:64) 

 

  measure randomness by size of compressed hash (Z) 

 

  returns (C,Cmin,Cmax,Cavg,Zmin,Zmax,Zavg) 

  """ 

  C = [0 for i in range(257)] 

  Cmin = Zmin = 256; Cmax = Cavg = Zmax = Zavg = 0 

  mask = 1 << 511 

  MD = SHA256( MSG, N) # original hash 

  while mask > 0: 

    # MSG ^ mask flips one bit in MSG 

    # h ^ MD has non-zero bits where result != MD 

    h = SHA256( MSG ^ mask, N) 

    d = h ^ MD 

    n = bin(d).count('1') 

    C[n] += 1 

    if n < Cmin: Cmin = n 

    if n > Cmax: Cmax = n 

    # compressed length will be > 32 bytes if h is very random  

    Z = len(zlib.compress( h.to_bytes((h.bit_length()+7)//8,'big') )) 

    Zavg += Z 

    if Z < Zmin: Zmin = Z 

    if Z > Zmax: Zmax = Z 

    mask >>= 1 

  Zavg /= 512 

  for i in range(257): Cavg += i*C[i] 

  Cavg /= 512 # divide by number of trials 
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  return (C,Cmin,Cmax,Cavg,Zmin,Zmax,Zavg) 

 

def block(MSG): 

  """put 16 32-bit values into one 512-bit block""" 

  M = MSG[0] 

  for i in range(1,16): 

    M = (M << 32) | MSG[i] 

  return M 

 

# some test inputs and outputs from SHA256ShortMsg.rsp 

# http://csrc.nist.gov/groups/STM/cavp/documents/shs/shabytetestvectors.zip 

# 

_MSG_0 = [ 0x80000000, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 

           0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 ] 

MSG_0 = block(_MSG_0) 

MD_0 = 0xe3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855 

 

_MSG_8 = [ 0xd3800000, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 

          0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x8 ] 

MSG_8 = block(_MSG_8) 

MD_8 = 0x28969cdfa74a12c82f3bad960b0b000aca2ac329deea5c2328ebc6f2ba9802c1 

 

MSG_440 = 

0x3ebfb06db8c38d5ba037f1363e118550aad94606e26835a01af05078533cc25f2f39573c04b6

32f62f68c294ab31f2a3e2a1a0d8c2be518000000000000001b8 

MD_440 = 0x6595a2ef537a69ba8583dfbf7f5bec0ab1f93ce4c8ee1916eff44a93af5749c4 

 

del _MSG_0, _MSG_8 
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Section A-2 – test.py 
 

 

from sha import * 

 

tests = [ "MSG_0, 64", "MSG_8, 64", "MSG_440, 64", 

   "MSG_0, 32", "MSG_8, 32", "MSG_440, 32", 

              "MSG_0, 24", "MSG_8, 24", "MSG_440, 24", 

   "MSG_0, 16", "MSG_8, 16", "MSG_440, 16", 

              "MSG_0, 17", "MSG_8, 17", "MSG_440, 17", 

   "MSG_0, 18", "MSG_8, 18", "MSG_440, 18", 

              "MSG_0, 19", "MSG_8, 19", "MSG_440, 19", 

              "MSG_0, 20", "MSG_8, 20", "MSG_440, 20", 

              "MSG_0, 21", "MSG_8, 21", "MSG_440, 21", 

              "MSG_0, 22", "MSG_8, 22", "MSG_440, 22", 

              "MSG_0, 23", "MSG_8, 23", "MSG_440, 23" ] 

 

for what in tests: 

  test = "bitstats(" + what + ")" 

  print(test) 

  (C,Cmin,Cmax,Cavg,Zmin,Zmax,Zavg) = eval(test) 

  print(Cmin,Cmax,Cavg,Zmin,Zmax,Zavg) 
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APPENDIX B – POINT MULTIPLICATION SEQUENCE CHART 
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STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMD_VALUE i j COMMENTS

***0*** 0 ***NOT USED TO ALLOW FOR FIRST SCAN INPUT***

1 x x x 7 0 0 Initialize Variables, Step 1 unique

2 x 8 0 0 Starting J loops

3 x 64

4 x 128

5 x 256

6 x 32 0 1

7 x 64

8 x 128

9 x 256

10 x 32 0 2

11 x 64

12 x 128

13 x 256

14 x 32 0 3

15 x 64

16 x 128

17 x 256

18 x 32 0 4

19 x 64

20 x 128

21 x 256

22 x 32 0 5

23 x 64

24 x 128

25 x 256

26 x 32 0 6

27 x 64

28 x 128

29 x 256

30 x 32 0 7 First complete j-Loop Done

31 x 64 Loop back to i and begin next j Loop

32 x 128

33 x 256

34 x 16 1 0 This block is a representative sample

35 x 8 of what it takes to complete a single i-loop

36 x 64 Ultimately this results in lots of steps but

37 x 128 the objective is to complete the sequence

38 x 256 with minimum impact on overall scan time

39 x 32 1 1

40 x 64

41 x 128

42 x 256

43 x 32 1 2 This subsection is representative of 

44 x 64 what it takes to complete a single j-loop

45 x 128

46 x 256

47 x 32 1 3

48 x 64

49 x 128

50 x 256

51 x 32 1 4

52 x 64

53 x 128

54 x 256

55 x 32 1 5

56 x 64

57 x 128

58 x 256

59 x 32 1 6

60 x 64

61 x 128

62 x 256

63 x 32 1 7

64 x 64

65 x 128

66 x x x -16128

67 x 512 31 7

68 x 8192 31 7 TRIGGER DONE FLAG FOR EXTERNAL STATUS REPORT

69 0 31 7 DONE WITH POINT MULTIPLY, GO BACK TO STEP 0


