
 Page 1 of 10

Advancements in Control System Data Authentication and Verification

Kenneth A. Fischer

Code 516, NSWC Philadelphia Division

5101 South 18
th

 Street, Philadelphia PA 19112

Kenneth.a.fischer@navy.mil

Abstract—The challenge of securing industrial

control systems is significant, and the need to provide

authentication and verification services for control

system commands and data has been well established.

However there is currently a lack of options for the

control system engineer, and the options that do exist

mainly involve purchasing additional hardware.

However these solutions disrupt the use of some real

time communications products such as the

Profinet/iMap combination used on Siemens PLCs.

Previous work demonstrated the use of the Elliptic

Curve Digital Signature Algorithm (ECDSA) on

SoftPLCs, but solutions implemented for traditional

PLCs such as the Rockwell ControlLogix line were

deferred.

There are a number of challenges to implementing

control system data authentication and verification in a

PLC, including performing mathematical operations

on BigIntegers; generating and distributing keys;

generating cryptographically secure hash values;

implementing random number generation; and

ensuring that the operations can be performed without

impacting normal operation / scan times. In this paper

we present a generic solution to these problems for

implementation on any IEC61131-3 compliant PLC, as

well as specific implementations for these solutions on

the ControlLogix platform. Advances in cryptography

are discussed including new algorithms that make use

of twisted Edwards-curves that allow control system

applications such as PLCs to perform advanced

cryptographic functions without impacting overall

performance at the 128-bit security level.

Index Terms—PLC, HMI, Ed25519, EdDSA, ICS

1. INTRODUCTION
The challenge of securing Industrial Control Systems

(ICS) is significant and the need to provide authentication

and verification services for control system commands and

data has been well established [1,2]. Control system

components such as Programmable Logic Controllers (PLCs)

and Human-Machine Interfaces (HMIs) can no longer rely

on simple heartbeat logic algorithms in order to verify

communications. Advanced cryptographic algorithms for

data authentication and verification are needed in messaging

protocols between PLCs, HMIs, and sensors.

Unfortunately, the utilization of cryptographic algorithms

in a control system is a complicated endeavour. The primary

processing component of a control system is a PLC, with

software written in a language known as “ladder logic” that

is based on old electrical relay diagrams. Ladder logic offers

a number of benefits for control systems, primarily the

benefit of being easy to understand and implement.

Additionally it offers the ability to watch the code execute

“live” to debug without the need of more advanced features

such breakpoints common when performing debugging of a

higher level language. In many ways, implementing a

solution in ladder logic is much more similar to

implementing a solution in hardware then in software,

without the cost of expensive hardware components and the

difficulty of changing hardware to meet new requirements.

The result is that control systems are completely unable to

use existing implementations of cryptographic algorithms

such as those found in the OpenSSL library. Even basic

functions such as declaring an unsigned integer and a

standard “for loop” are dramatically more difficult than in a

language like C/C++. Memory is extremely limited in most

PLCs and they do not possess the ability to natively do 64-

bit integer calculations which are required for most

cryptographic algorithms such as SHA-512. Generation of

random numbers, a must for cryptographic algorithms, is all

but impossible by a PLC and concepts such as the storing of

digital certificates are completely foreign to a control system.

All of these challenges require a new approach to solving

control system security that takes the best of our

cryptographic technologies and essentially “translates” them

into an implementation suitable for control systems. A

solution was prototyped [2] using ISaGRAF™ SoftPLCs

that was primarily written in IEC 61131-3 ladder logic with

the addition of five specialized function blocks developed in

C [1]. The specialized function blocks utilized the OpenSSL

library to implement ECDSA and SHA-512 hashing

functionality, key generation and verification functionality,

and signature generation and verification functionality. The

blocks could then be used in the same manner as a regular

ladder logic instruction in the prototype’s implementation.

The intent of the prototype was to develop a solution

written primarily in ladder logic that could be used in

existing control systems if the specialized function blocks in

C could be converted to ladder. Four SoftPLCs were

 Page 2 of 10

configured in a round robin architecture on two different test

strings in order to determine the average time it takes to

generate a message, sign it, transmit it, receive it, and verify

the signature. A self-signing key distribution architecture

was developed which relied on the commissioning process

of PLCs to establish the initial trust relationship.

Results of this work indicated that development of a fully

IEC 61131-3 compliant implementation was justified. Such

an implementation would need to go further and address a

number of design issues of the prototype and present a

solution that could be implemented across a wide range of

platforms without negatively impacting performance. This

paper presents such a solution, providing a cryptographically

secure message authentication protocol without sacrificing

performance.

Section 2 below describes the challenges in implementing

cryptography on an ICS. Section 3 presents the background

and concept of the solution. Section 4 provides details of the

solution with respect to the major challenges described in

Section 2. Section 5 provides recommendations for PLC

vendors to include in future iterations of their products.

Finally Sections 6 and 7 describe future work opportunities

and provide the conclusion to this work.

2. ICS CRYPTOGRAPHY

CHALLENGES
There are a number of problems with implementing

cryptography in ICS, such as the inability to natively

perform 64 bit operations. This section presents the three

most significant challenges the author faced in developing an

ICS cryptography solution.

2.1. Random Numbers

In cryptography, the ability to generate true random

numbers is crucial and failure to do so will result in a

vulnerable system. In the prototype, every message was

digitally signed before being sent to a controller using the

Elliptic Curve Digital Signature Algorithm (ECDSA).

ECDSA requires a random number to be generated for each

signature in order for the algorithm to be secure. While it is

possible to use a pseudo-random number generator (PRNG)

for ECDSA, the PRNG has to be initialized with a true

random seed which is kept secret. The seed itself is partially

consumed with each use of the PRNG, eventually weakening

to the point that the seed must be reinitialized to a new true

random number to maintain security. Since PLCs send a

message anywhere from 20 to 50 times a second, and each

message in the prototype requires a digital signature which

consumes randomness, the seed would be too quickly

consumed to provide long term security.

Unfortunately, the creation of a true random number

generator (TRNG) is a non-trivial task which usually relies

on some kind of quantum effect. The most common sources

for TRNGs include radioactive sources, quantum effects in

semiconductors, and quantum effects in photon polarization

detection. Sources that do not rely on quantum effects

usually rely on “human error” by asking a human to perform

a task such as move a mouse around randomly and calculate

the deltas in time when the human moves a mouse in a

different direction. Software such as Veracrypt, for example,

relies on this “human error” approach.

At this time for most applications the only true reliable

method of obtaining random numbers is to install an external

hardware-based random number generator. There are a

number of products on the market today that make the claim

to be TRNG (evaluation of such claims is beyond the scope

of this paper). However most of those devices were

designed with a more standard computer in mind and are

incompatible for use with a PLC. An example is the

TRNG9815device commercially available at

www.trng98.com and shown in Figure 1 below. This device

is based upon a Zeener diode noise source which is then

amplified to be read by a PC.

Figure 1. TRNG 9815 Device

One problem with this device, and others like it, is that

they usually rely on a USB connection to a PC and external

driver software to function properly. ICS devices like PLCs

do not have the capability to read USB devices let alone

install driver software. Additionally, many control engineers

consider the presence of USB ports on ICS devices to be a

significant security risk.

The good news is that it is possible for ICS vendors to

create a hardware based TRNG using existing technologies

with relative ease. Therefore, while a commercial product is

not available at this time to the best of the author’s

knowledge, it is likely one will be available in the near

future. The bad news though, is that it takes time for a

TRNG to collect enough quantum data to generate a random

number long enough to be cryptographically usable. Given

the high rate of PLC messages it is doubtful a TRNG will be

available in the near term that is fast enough for per-message

authentication. We will have to continue to use a PRNG with

a TRNG to update the PRNG’s seed value.

Ultimately a solution is required that will significantly

decrease our need for random numbers from potentially

380+ million random bits a day to 256 random bits every

couple of months. This would allow us to use PRNGs to

 Page 3 of 10

meet our application needs in the short run and ultimately

loosen the design constraints for an eventual hardware based

TRNG that can be used on a PLC.

2.2. PLC Processing Speed

The single biggest challenge in implementing

cryptography in a PLC is the speed of the processor. Over

the years PLC processing speeds have increased

dramatically, to the point that control system engineers

rarely have to even consider the possibility that their

application might actually run so slow on a PLC that it

would fault the controller. On average, the PLC programs

developed in our offices have scan times between 20ms and

100ms for fairly large applications processing hundreds to

thousands of I/O points. In general, it is the opinion of the

author that a control system program must have a scan time

at least twice as fast as the fastest response rate of a

controlled physical I/O device (i.e a valve or pump). This

typically translates to a required scan time of less than

250ms, and ideally less than 100ms. Additionally, we have

found that scan times of greater than 500ms will actually

cause a Rockwell 1756-L8x series processor (the latest

available at the time of writing) to have a major fault.

Modern computers have multi-core processors that run in

the GHz range and typically do not have real-time

performance requirements (those that do can always have

dedicated cryptographic modules). PLCs on the other hand

have strong real-time performance requirements and have

processors that run in the MHz range due to the lack of

active cooling. To illustrate this challenge a basic SHA-512

algorithm written completely in ladder logic was developed.

Running that algorithm in RSEmulate on a standard PC

running an Intel 2500K processor at 4.2 GHz for 104 bytes

of data gave a scan time of 2ms. Running that same

algorithm on a 1756-L8x series PLC gave a scan time of

26ms, over an order of magnitude higher. While this may not

seem like a lot, consider that operations used in

cryptography such as point multiplication and modular

exponentiation are much more complex. Such operations

could easily consume the entire available scan time of a PLC

and leave no real time to actually perform control work.

Therefore a solution is required that would allow us to

perform these complex operations without impacting scan

time.

2.3. BigIntegers

A BigInteger is a data type that represents an arbitrarily

large integer whose value has no upper or lower bound. This

is distinguished from a DINT or even a LINT, which has an

upper bound limited to the number of bits present in the data

type (32 and 64 respectively). In RSA, a common

cryptographic algorithm used to secure a wide range of

systems, BigIntegers on the order of 2048 to 8192 bits are

used. In previous work [1] it was discussed how Elliptic

Curve Cryptography (ECC) helps reduce the scale of this

problem by allowing us to use smaller BigIntegers to

provide solutions of equivalent strength at reduced bit sizes.

For example, to provide security at the 128-bit level

(common security level for data considered “secret”) the

RSA BigIntegers need to contain 3072 bits according to

NIST SP 800-57. ECC can provide us the same security

using BigIntegers of 256 bits, which dramatically improves

the scope of the problem but does not in itself provide us a

solution to perform 256-bit math in a PLC.

3. PROPOSED SOLUTION OVERVIEW

3.1. Background

In the original prototype, a ladder logic implementation

was used that contained the following custom C function

blocks using the OpenSSL library: MsgGen, KeyGen,

KeyVerify, SigGen, and SigVerify. The prototype had each

controller start with a private-public key pair and knowledge

of the public keys of each controller it needed to talk to. The

prototype then immediately changed its active key and used

a self-signing algorithm to communicate the key change to

each pair. The controllers would regularly use this same

mechanism to update and communicate these keys (on an

approximately every hour basis).

Messages were hashed in the prototype using SHA-512,

but had a limitation of only being able to receive a very fixed

range of input options and to extend the range of input

MsgGen Blocks had to be chained together as shown in

Figure 2 below. The messages were then digitally signed by

the controller using ECDSA and then transmitted to the next

controller. The next controller would receive the data and

the signature. Then it would have to regenerate the hash

from the message and verify the digital signature. If the

signature was not verified it would generate an operator

alarm.

Figure 2. Three MsgGen Blocks Connected Together

This concept worked on the SoftPLC due to the increased

power of the PLC, the ability to use OpenSSL’s BigInteger

data type, and the ability of the SoftPLC to generate random

 Page 4 of 10

numbers using the built-in RDRAND features of the Intel

chipset. Discussion of the security of RDRAND itself and

the potential backdoor compromise is beyond the scope of

this paper, but for the sake of discussion we will assume it to

be secure.

3.2. Concept

This section describes the high level concept of what the

system needs to do in order to provide security. Most of

what follows in this section is a fairly standard description of

establishing a secure session across an unsecure channel.

Assume you have a Distributed Control System (DCS)

that needs to interface with a gas turbine’s Full Authority

Digital Control (FADC) across an unsecure channel. The

DCS has a Remote Terminal Unit (RTU) that will directly

communicate to the FADC via Ethernet. As typical in an

ICS development, an Interface Design Document (IDD) is

developed that defines the parameters the RTU needs to send

and receive from the FADC and how to obtain/send that data.

The first step in this concept is that we add to the IDD a

new parameter, a 256-bit public key A for both the FADC

and the RTU. The public keys are generated offline and

loaded into the controllers, along with corresponding private

keys a which are not shared and considered

CONFIDENTIAL or SECRET. The private key a and the

public key A are mathematically related to each other. The

primary purpose of these keys is to allow control system

nodes to be able to identify each other across unsecure

channels and prevent Man-In-The-Middle (MITM) attacks.

In the proposed design, PLC messages are authenticated

via a Hashed Message Authenticated Code (HMAC)

algorithm, where the data communicated between the RTU

and the FADC is combined with a shared secret session key

K to produce a fixed length result. The session key will be

generated using the Elliptic Curve Diffie-Hellman (ECDH)

algorithm and a cryptographically secure PRNG. ECDH

would have each controller in each pair of nodes generate a

private number q. That number would be used in a point

multiplication algorithm in which a publicly known base

point B on an elliptic curve (also defined in the IDD) is

multiplied by the pseudo-random number to generate a result

Q that is made public.

Simultaneously the public number is digitally signed

within each controller, using the Edwards-curve Digital

Signature Algorithm (EdDSA) [4] and the private key a.

EdDSA offers a number of improvements to standard

ECDSA, such as the formulas being complete along the

curve (no special exceptions that need to be handled) and the

ability to generate secure digital signatures without the need

for a random number. Additionally, the curve Ed25519 is

optimized for performance while still providing 128-bit level

security.

The digital signature [R, S], and the public ECDH value

Q is sent to the other controller. The two controllers each

receive the other’s public value and digital signature. The

controllers then verify the digital signature using only the

public key value A. Once verified the controllers would take

the public number Q and multiply it with their own private

number q to create the 256-bit key K, which is never sent

across the unsecure channel. This process works because:

K = q1*Q2 = q1*q2*B = q2*q1*B = q2*Q1

This entire operation would occur during power-up or

when initiated by an operator. This means that the most

complex mathematical operations would only need to occur

rarely such as once a year, during planned maintenance

availabilities. The HMAC itself is used to protect the system

during operation, allowing the system to identify legitimate

commands versus illegitimate commands, which can then be

alarmed for operator’s situational awareness.

The advantage of this approach is that it significantly

reduces the workload of the controllers during normal

operation compared to digital signatures. It also

significantly reduces the scale of the random number

problem, since now we only need one random number each

time we change the session key (i.e. once every couple of

months to a couple of years depending on the strength of the

HMAC and the data rate). At that rate, a PRNG initialized

with a truly random seed generated offline would be

sufficient, effectively solving the random number problem

without the use of a PLC hardware based TRNG.

The approach as described so far does not address the

other two major concerns: how do you handle BigIntegers

and even more importantly how do you get a PLC to do this

kind of complex math without impacting control system

performance?

4. SOLUTION DETAILS

4.1. Representing BigIntegers in Ladder Logic

Representing a BigInteger can be done a number of ways,

with the most obvious being to simply take an array of 8 32-

bit DINTs, which total 256-bits. The problem with this

approach is that when you perform operations such as

addition and multiplication you end up having to propagate

the carries, and if you use an array of 8 32-bit DINTs you

have to perform a lot of work to propagate the carries which

turns into a very long sequence of bit operations. Bernstein

on his blog [5] states “The standard NIST P-256 reduction

procedure becomes even more painful if integers aren't

represented in radix 232 (or 216 or 28): the word shuffling

required for T,S1,S2,S3,S4,D1,D2,D3,D4 then turns into a long

sequence of bit manipulations. The reason this is important

is that radix 2
32

 isn't the best way to carry out big-integer

arithmetic on most CPUs. Even on CPUs where the largest

multiplier size is exactly 32 bits, it's almost always better to

use a radix smaller than 2
32

, so that carries can be delayed.”

Rockwell Automation has a data type in the RSLogix5000

series called LINT, which is a 64-bit integer. However, the

mathematical operations ADD, SUB, MUL, and others

which are usable on a 32-bit DINT data type cannot be used

with the LINT. Rockwell does provide a series of Add-On

 Page 5 of 10

Instructions (AOIs) that provide this functionality. These

AOIs essentially work by breaking the 64-bit LINT into 3

32-bit DINTs, performing the math operation on the three

different pieces and then reducing the entire array of DINTs

back into one LINT.

Following a similar approach we determined that using

twenty-two (22) 12-bit pieces stored in DINT is the most

efficient method for representing a 256-bit value for the

following reasons:

• Splitting the value into 32-bit pieces significantly

increases the number of bit manipulations which

decreases code efficiency

• Splitting the value into 16-bit pieces works for addition

and subtraction, but when you perform multiplication

the result in the intermediate steps would have 32-bit

pieces which would have to be added together

introducing carries which then require complex code to

handle

The result is that splitting the value into 12-bit pieces is the

largest value that takes up the least amount of space without

introducing significant code complexity. In particular, this

allows you to be able to multiply two sums without having

to perform a reduction until the end of the multiplication.

Smaller pieces increases the size of the internal loops of the

operations which increases overall run time. Thus twenty-

two (22) 12-bit pieces is the optimal way for storing 256-bit

BigIntegers on a PLC.

4.2. Sequencing Complex Mathematical Operations

Here we discuss how to perform the more complex math

operations, using the specific example of point

multiplication which is at the heart of ECC. Elliptic curve

point multiplication is the process of repeatedly adding a

point along an elliptic curve to itself. This process creates a

trapdoor function, and the security of ECC is based on the

intractability of determining a multiplier n from the equation

Q = n*P where Q and P are given points on the curve.

There are a number of approaches in performing point

multiplication, such as the sliding-window method and

Montgomery ladder. Discussion of the details of point

multiplication is beyond the scope of this paper, but what is

relevant is that it is an extremely complex algorithm to

implement on a PLC. If you follow the approach in RFC

8032 [4] then a single point addition requires nine 256-bit

multiplications, four 256-bit additions, and four 256-bit

subtractions. Each of these operations must be repeated for

each bit in the multiplier in order to perform the point

multiplication at constant time and avoid a timing side

channel attack.

The coding of such an algorithm into ladder logic is a

challenge in of itself, but even the most efficient

implementation will not be able to run on the PLC. This is

because, as stated above, there is an already known

optimally efficient way to store the 256-bit value, which

results in a known optimal number of standard ladder logic

math instructions such as ADD and MUL to perform a basic

B256_ADD and B256_MUL. For example, just looking at

the number of standard RSLogix5000 MUL instructions in

one point multiplication gives the following result:

1 POINT_MUL =

 (8 B256_MUL + 1 POINT_ADD) per bit in n

1 POINT_ADD = 9 B256_MUL

1 B256_MUL = 484 MUL

1 POINT_MUL = [(8 + 9) * 484] * 256 =

2,106,368 MUL

So essentially one point multiplication results in over two

million ladder logic MUL instructions, not including the

additions, subtractions, shifts, and other loop instructions

required. The result is a massive number of instructions that

if you attempt to run them all in one scan of a PLC will

negatively impact the overall scan time and potentially even

fault out the controller. This problem is compounded further

by the fact that ECDH requires multiple point

multiplications, although not all at the same time.

The solution to this problem is to break the point

multiplication algorithm up into a series of sequential pieces,

so that only a small portion of the total algorithm is run in

any given scan. This is similar to a standard sequencer used

in a batch control process, where the sequencer executes a

set of commands in each step and waits for a feedback from

the process indicating that step is complete before executing

the next step. In the case of point multiplication, the most

obvious solution is to break up the algorithm so that each

point addition is performed on a separate scan. The

sequencer waits for a confirmation that the point addition is

completed, stores the result in a temporary variable, and then

uses that result in the next scan for the next point addition.

Appendix B shows a sequence chart for the point

multiplication

Using this approach a point multiplication AOI was

developed that can run on a Rockwell 1756-L83 processor

with only a 10ms impact to total scan time. The same

approach was used on all the other different pieces of the

Ed25519 digital signature algorithm such as SHA-512.

Combining all the pieces into a master sequencer produces a

digital signature implementation capable of running on a

PLC with a projected scan time of impact of less than 10ms.

The prototype for the signature is still in development,

however the projections are based on the known impact of

the most computationally complex operations which are

complete, multiplied by 2. The prototype AOI for the

Ed25519 digital signature algorithm is shown in Figure 3.

The AOI is designed to use a externally generated keys that

can be generated to meet the requirements of RFC 8032 [4].

The private key portion is modified so that instead of saving

the random number as the private key you save the scalar

and the hash generated from the random number. This

improves overall efficiency by removing the requirement to

 Page 6 of 10

repeatedly perform operations that could be performed once

offline and then saved for future use.

Figure 3. Ed25519_SIGN Add-On Instruction

There are downsides to this approach. The first is that the

total time to produce a digital signature is significantly

longer. Depending on the processor and the amount of

control code that has to run in a scan (that is not related to

cryptography) the entire operation could take a couple of

minutes to complete. Testing on the point multiplication

showed that it took less than a minute to complete on a

1756-L8x series processor. Regardless, the system itself will

be able to run without impact during this time. The message

traffic will continue to use the old key until negotiation and

verification of the new key is complete. The process can

also be performed during scheduled maintenance windows

to reduce overall risk.

The second problem is that this approach increases the

size of the program significantly since we are essentially

“trading space for time”. This is unlikely to cause a concern

on newer processors, which have significant memory storage

capabilities. However for older devices or embedded

devices this approach could be constrained.

The third problem is that extending this algorithm across

multiple scans can potentially make the algorithm vulnerable

to side channel attacks. To prevent this two steps must be

taken:

1) Ensure that the coding of the algorithm prevents a

timing attack

2) Severely restrict users from being able to access and

go online to the PLC

3) Use built in features of the PLC products to prevent

uses from being able to read and write to the tags

involved in the cryptographic operations

The final problem is that this approach is not usable for an

HMAC implementation because an HMAC must be

calculated in its entirety on each scan. Otherwise you will

not be able to perform data authentication for each and every

message to and from the controller. Therefore an alternative

approach must be used for HMACs, which is discussed in

the following section.

4.3. PLC Message Authentication Code

The use of the HMAC for per-message security vs

digitally signing each message is the biggest change to the

work done in the prototype [2]. The HMAC algorithm must

be designed to meet the following requirements:

• The algorithm would be fast enough to create the

HMAC without negatively impacting overall control

system operation.

• Any adversary with full knowledge of the software,

the data, and matching hardware would not be able to

produce the HMAC without knowing the secret

session key

• Provide 128-bit level security (SHA-256 equivalent)

• For a single bit change in the input produce on

average approximately 128 bit changes in the output

and no less than 50 bit changes in the output in the

worst case (equivalent of SHA-256)

• Protect against common attacks such as the length

extension attack and collision attack

The standard HMAC algorithm for producing values at

128-bit security is HMAC-SHA-256 which is a Θ(n)

algorithm. This algorithm was implemented and tested in

the lab on a Rockwell 1756-L83 processor. The message

size was 200 bytes. Initial results in the lab indicated that

such an algorithm would have a scan time of 50-100ms

when used in production. Considering that you would use

two of them for both send and receive the combined scan

time impact could reach up to 200ms for only 200 bytes.

This would have detrimental impact on overall control

system operation. Unfortunately, since the entire operation

would have to be performed per message per scan there is no

way to practically sequence the code in the same manner as

was done for point multiplication or other complex

operations. Therefore a new HMAC was designed as a

 Page 7 of 10

compromise between security and performance, using an

alternative design approach than the Ed25519_SIGN AOI

discussed previously.

The standard HMAC-SHA-256 algorithm follows the

following construction as defined in RFC 2104 [3]:

Where H represents the SHA256 algorithm being used twice,

K’ represents the key, and opad and ipad are constant values.

Figure 4. VMAC Add-On Instruction

The proposed Variable Round Message Authentication

Code (VMAC) shown in Figure 4 was created as a reduced

round derivative of SHA-256. Specifically the number of

internal rounds of SHA-256 is reduced from 64 to between

20 and 64 rounds as defined by the parameter

“Inp_ROUNDS” and the key is mixed into the scheduling of

the message using the formulas below. Similar approaches

are proposed in [6, 7], however this approach has a more

advanced key indexing, rotation, and message scheduling

scheme to reduce vulnerabilities to key recover attacks while

at the same time allowing for reduced rounds.

Step1: Select one of the eight 32-bit portions of the 256-bit

key to become the IndexedKey using the algorithm below.

Note that if each round from 0 to 63 is designated by the

parameter n, then the selected portion of the key is:

 KeyIndex = n for n=0..7

KeyIndex = n-5 for n=8..12

KeyIndex = 1 for n=13

KeyIndex = 2 for n=14

KeyIndex = 0 for n=15

KeyIndex = (63-n) mod 8 for n=16..63

IndexedKey = Inp_KEY(KeyIndex)

Step2: Calculate the RotationIndex of the key, which causes

a different rotation amount to be applied each time an

IndexedKey value is used:

RotationIndex =3*KeyIndex + (n>>3)

Step3: The key is then mixed into the scheduling process of

the message using the following formula:

W[n] = Fo[n] XOR ROTR (RotationIndex,IndexedKey)

Where Fo represents the original formula to calculate W[n]

in the SHA-256. As a result the key is mixed in recursively

with the data when n is greater than 15. There is no ipad or

opad and the hash algorithm is only used once, which means

that if the AOI was run at 64 rounds using a key of all zeros

you would get the same output as standard SHA-256. Note

that Fo for each of the rounds 16 through 63 is a function of

4 previous values and the IndexedKey. The custom indexing

of the key described in Step1 is necessary to ensure that the

final W value for 20 rounds or more is a function of all 256

bits of the key.

 The following table shows the timing results for

processing the algorithm at different byte lengths with

varying numbers of rounds on a 1756-L83 processor. These

results are typical, as it has been shown in our testing that

different processors within the same family might produce

slightly different timing results.

Rounds 200 Bytes 400 Bytes 800 Bytes

20 7.3 12.9 23.8

24 9.8 17.1 31.6

32 14.8 25.7 47.6

48 23.9 41.7 76.9

64 33.5 58.7 108.4

Figure 5. VMAC Timing Results (in ms)

4.3.1. VMAC Vulnerability to Length Extension Attack

The length extension attack works when you hash a data

set that looks like:

H (Key || Message) = Hash1

You can add more data to the message and generate a valid

response (Hash2 below) without knowing the key by taking:

H (Hash1 || FakeMessage) = Hash2

This is because

Key || Message || FakeMessage

Is indistinguishable from

Key || SomeDifferentLongerMessage

This assumes that you properly calculate enough padding at

the end of the real message before you append the fake data

so that you fall on the next block. Thus the construction of

most HMACs based on the SHA2 family need to use two

hashes that essentially bound the length of the message.

 Page 8 of 10

Note that SHA3 avoids this limitation by using a sponge

construction and avoids blocks altogether.

VMAC avoids this attack vector because it does not prefix

the key as part of the first block of the message, it injects the

key into every block of the message. Thus adding an

extension to the method would not generate the same result

because the FakeMessage above would not have been

processed in the context of the key.

4.3.2. VMAC Vulnerability to Collision Attack

Reducing the number of rounds does make the algorithm

weaker than a typical HMAC because it increases the chance

of collisions. For starters the first 16 rounds of SHA-256 do

not utilize the message expansion contained in the remaining

rounds, so doing only 20 rounds means that you are only

using 4 rounds of expansion versus 48. Therefore testing

was conducted on reduced round SHA-256 to determine how

reducing the rounds affected the output result when you

change one bit in the input. Python code used to test SHA-

256 can be found in Appendix A. Standard NIST messages

were used as the input, and the table below gives results for

changing each bit in the input sequentially over a range of

512 trials per message per test.

Test Rounds Low High Average

MSG_0 64 101 152 127.6855

MSG_8 64 103 149 128.1992

MSG_440 64 103 148 127.3574

MSG_0 24 101 147 128.0195

MSG_8 24 110 154 128.4765

MSG_440 24 100 152 128.2656

MSG_0 20 101 150 126.5820

MSG_8 20 96 151 126.9570

MSG_440 20 92 147 127.0371

MSG_0 18 38 149 119.7031

MSG_8 18 44 158 120.2480

MSG_440 18 42 155 120.1914

MSG_0 16 2 149 106.3164

MSG_8 16 2 149 105.8262

MSG_440 16 2 149 105.2089

Figure 6. SHA256 Reduced Round Test Results

The results of the test show that in general you will

always have the possibility of changing a large number of

bits in the output on average, however you need to use at

least 20 rounds to guarantee you will have a significant

change every time. Going past 20 rounds you get an

exponential decrease in returns with a linear increase in time.

However during the message scheduling process the number

of input data bits which affect a single bit of W[19] varies

from 19 to 26, whereas for W[23] that is increased

significantly to 81 to 106. Therefore even for 20 rounds it

may be feasible to do a differential input attack trying 2
19

to

2
26

inputs, but 2
81

is likely to be infeasible.

 Additionally a number of papers have been published

detailing how to create a collision with reduced round SHA-

256, some up to 46 rounds. It should be noted that these

papers are using standard SHA-256 without a secret key

which increases computation complexity assuming the key is

generated securely. Therefore, at this time, the author is

recommending at least between 24 to 32 rounds as a

compromise to meet both security and performance

requirements, with the acknowledgement that key changes

may need to be more frequent to maintain security. The

algorithm does allow for the use of only 20 rounds, but that

is for extreme cases only where the choice is between

nothing and or 20 rounds and should only be used with

caution and frequent key changes.

Reference [6] also notes that when working with a key-

less hash function an advisory can work in finding collisions

independently of any user or key, which makes brute force

attacks more feasible. For a keyed-hash function the

attacker needs to get “examples” of the messages from a

legal user who already knows the key.

The AOI does include a parameter called “Inp_ROUNDS”

that allows a user to increase the number of rounds from a

minimum of 20 (minimum of 24 recommended) up to 64

rounds. This will allow for additional flexibility in the

future as the computational power increases with minimum

impacts to the PLC code. Since all HMACs run in Θ(n) time

an increase to the number of rounds will linearly increase the

running time of the algorithm and impact performance.

4.3.3. VMAC Vulnerability to Replay Attacks

A replay attack is an attack in which a valid message to a

device is captured and later a copy of the message is sent to

the target device. The goal is to take a command or data that

was legitimate at the time it was sent, such as a command to

stop a motor which was sent intentionally, and be able to

replay that command to cause the device (in this case a

motor) to respond to that command again at an unexpected

time. The traditional defense against a replay attack is to

include a timestamp as part of the data used to generate the

HMAC, and then ensure that when a message is received it

is newer than the last previously received message before

even bothering to validate the HMAC.

Control systems typically cannot rely on using time,

normally because they don’t have access to a time

synchronization device and even if they do it creates a

security dependency on the device. Therefore it is

recommended to have the first two DINTs of the data to be

hashed represent a 64-bit number, called a nonce. The nonce

is then incremented with each message and represents a time

stamp. It is critical that the start value of the nonce always

be greater than any previous start value incremented by

some pseudo-random number, and that the nonce value is

included in the calculation of the VMAC. This is action

would not be performed by the VMAC AOI itself, but be

performed outside of the VMAC and included as part of the

data in Inp_MSG[0] and Inp_MSG[1].

Having the nonce in the beginning of the message, versus

some other location in the message, is critical as well. The

 Page 9 of 10

SHA-2 family in general works such that data towards the

beginning of the message has a greater impact on the final

hash then data towards the end. The VMAC algorithm

amplifies this with the way the key is used recursively. A

control system operating in a steady state condition would,

ideally, have very little changes and thus the message itself

would have little to no changes in the data. Having a nonce

value at the beginning of the message, which changes all the

time, would maximize the apparent randomness of the final

result.

There is a concern that if the value of the nonce is reset to

zero or some value lower than the previous value all

subsequent messages will be rejected by other PLCs as a

replay attack. This can happen in one of three ways:

1. Someone intentionally resets the nonce

2. Someone re-downloads a program into the PLC

3. Power loss

PLC passwords and operational procedures must be used

to prevent someone from resetting the nonce either

intentionally or thru a download. The later can easily be

prevented by viewing the current value of the nonce before

the download and making sure that a value greater than the

current value is downloaded to the PLC. Preventing a nonce

reset due to a power loss will vary depending on the vendor,

however in RSLogix5000 we have found that certain

instructions such as accumulators retain their previous

values on a power loss.

4.3.4. VMAC Vulnerability to Key Recovery

The heart of the VMAC is a reduced round SHA-256,

which can be reversed when the data only consists of one

block (i.e. less than 448 bits of data, since padding is always

added). This property is a primary reason why

implementations of SHA-256 with less than 24 rounds are

vulnerable to attacks. The goal of this approach is to

generate valid hashes by reversing the algorithm back a

number of rounds and then replacing the end of the message

with false data, then hashing forward to generate a valid

result.

This analysis does not use a key, so additional analysis

was performed to determine the vulnerability of VMAC to

reversing. The first 16 rounds of the VMAC, and of SHA-

256 in general, do not use any message scheduling.

Therefore it is easy to reverse the process and potentially

recover the key. Testing on a single “non-standard” message

block (i.e. a block without the normal padding present in

SHA-256 and VMAC) showed that all but 8 bits of the key

could be reversed engineered, with the remaining 8 bits

found by exhaustive search. While this analysis is

limited, it does indicate that it is the rounds past 16 that

provide the most security benefit.

When the same approach is performed on rounds past 16

for a single block, the analysis becomes significantly more

difficult. The analysis becomes even more complex when

multiple blocks of data are being processed. Since padding

is always added to the end of a message the message would

have to be less than 56 bytes to only consist of only one

block. A large message, such as the 800 byte message,

would consist of twelve 512-bit blocks plus a smaller 13
th

block of 256 bits with the remaining being padding.

4.3.5. VMAC Recommendations and Final Thoughts

At the time of this writing a method is not known to

recover the key when using at least 24 rounds for a single

data block. Therefore it is recommended that at least 32

rounds or more be used for a single block of data, which has

an estimated scan time impact of less than 5ms (based on the

results in Figure 5 and the fact that the algorithm is Θ(n)).

For large messages such as the 800 byte message it is

recommended to use 24 rounds or more. There does appear

to be some extra security when multiple blocks are involved

mainly because of the unknown intermediary stage outputs.

However those outputs are used in a simplistic way in SHA-

256 to initialize the subsequent stage and then just added on

to the result at the end. Therefore it may be theoretically

possible that they could be attacked guessing one bit at a

time at the output, but at this time we do not know of an

actual attack that exists.

Ultimately VMAC represents a compromise between

security and performance. The balance between the two is

non-trivial, since a PLC’s ultimate job is to control a system

and significant scan time impacts might create an unstable

control situation. Future PLCs may become fast enough to

use the full 64 rounds.

5. RECOMMENDATIONS FOR PLC

VENDORS
The bulk of this work was dedicated to creating a

cryptographic solution that could run on low power devices

like PLCs with high performance requirements. The

implementation itself as a proof of concept was developed in

ladder logic. However it would be more ideal for the ideas

presented in this paper to be pushed down to a firmware

implementation. The objective is to create a solution so that

the user only has to load the controller with the master

public/private key pair and the public keys of the different

nodes we want to communicate securely with.

In order to increase the efficiency of future cryptographic

algorithms implemented in PLCs, the second

recommendation is that vendors add 64-bit processors. The

inability to do 64-bit math natively becomes very limiting,

especially in the design of an effective HMAC. The ability

to perform 64-bit functions would effectively double the

amount of data that can be hashed in the same time frame.

This would be very helpful for large systems with high

throughput requirements.

The third recommendation is for PLC vendors to develop

a couple of different TRNGs capable of fitting in an PLC

chassis. The vendor will want to offer at least three different

options based on different technologies. If vulnerabilities

are discovered in one option it might not be possible to

correct that vulnerability with a firmware update.

 Page 10 of 10

6. FUTURE WORK
The purpose of this work was to be able to protect and

verify data integrity between control system nodes.

However this work has not defined what an operator should

do if a problem is detected. Such decisions are often based

on a wide range of factors that require further study with the

goal of producing an automated system that can respond

intelligently to detected cyber threats. Further work is

required to map out these threat profiles and corresponding

decision trees, and ultimately to develop the response

solution.

7. CONCLUSION

In this paper it has been demonstrated that PLC data

authentication and verification is possible without impacting

overall scan time. Further work is now required to

implement this solution on ICS and to define decision trees

to perform automated responses to detected cyber threats.

REFERENCES
[1] K. Fischer, “Control System Data Authentication and

Verification Using Elliptic Curve Digital Signature

Algorithm.” Presented at ASNE Intelligent Ships

Symposium X, May 22-23, 2013, Philadelphia, PA.

[2] K. Fischer, “Results and Code for a Software-based

Implementation of ECDSA for Control System Data

Authentication and Verification.” Presented at ASNE

Electric Machines Technology Symposium, May 28-29,

2014, Philadelphia, PA.

[3] H. Krawczyk, M. Bellare, R. Canetti, “Request for

Comments: 2104, HMAC: Keyed-Hashing for Message

Authentication.” http://www.ietf.org/rfc/rfc2104.txt

Last accessed: February 12, 2017

[4] S. Josefsson, I. Liusvaara, “Request for Comments:

8032, Edwards-Curve Digital Signature Algorithm

(EdDSA).” https://tools.ietf.org/html/rfc8032

Last accessed: February 12, 2017

[5] D.J. Bernstein, “The cr.yp.to blog: How to Design an

elliptic-curve signature system”

https://blog.cr.yp.to/20140323-ecdsa.html

Last accessed: February 12, 2017

[6] M. Bellare, R. Canetti, H. Krawczyk, “Keying Hash

Functions for Message Authentication.”

http://cseweb.ucsd.edu/~mihir/papers/kmd5.pdf

Last accessed: May 7, 2017

[7] B. Preneel, P.C. van Oorschot., “MDx-MAC and

building fast MACs from hash functions.”

Crypto'95, Springer LNCS vol.963, 1995.

ACKNOWLEDGEMENTS

The author would like to thank Dr. Richard Perry,

Villanova University, Associate Professor of Electrical and

Computer Engineering, for his support, technical review, and

mentorship in this work. The author would also like to thank

Paul Gucciardi (NSWCPD C511) for his support in testing

the algorithms.

Kenneth A. Fischer, received a BS in Chemical

Engineering from the University of Delaware, an MS in

Computer Engineering from Villanova University, and is a

PhD candidate at Villanova University. Mr. Fischer has

over 14 years of automation and controls experience in

pharmaceutical, power generation, food and beverage,

specialty chemical, and naval applications. He is currently

employed with the Naval Surface Warfare Center,

Philadelphia Division and is the Lead Engineer for DDG

1000 Machinery Control Systems.

“The views expressed herein are the personal opinions of

the author and are not necessarily the official views of the

Department of Defense or any military department thereof.”

 Page A.1 of A.5

APPENDIX A – PYTHON SOURCE CODE FOR TESTING REDUCED ROUND

SHA-256

Section A-1 – sha.py

"""

SHA-256 constants, functions, processing one block, and testing

"""

import random, zlib

offset to add to negative values to make them unsigned

_offset = (1 << 32);

mask to just keep 32 bits

_mask = _offset - 1;

def ROTR(x,n):

 """Circular Rotate Right by n bits"""

 return (x >> n) | ((x << 32-n) & _mask)

def ROTL(x,n):

 """Circular Rotate Left by n bits, not used in SHA-256"""

 return ((x << n) & _mask) | (x >> 32-n)

def SHR(x,n):

 """Shift Right by n bits"""

 return (x >> n);

~x produces negative value

def Ch(x,y,z):

 """SHA-256 Ch Function"""

 return (x & y) ^ (((~x)+_offset) & z)

def Maj(x,y,z):

 """SHA-256 Maj Function"""

 return (x & y) ^ (x & z) ^ (y & z)

def Sigma0(x):

 """SHA-256 Sigma0 Function"""

 return ROTR(x,2) ^ ROTR(x,13) ^ ROTR(x,22)

def Sigma1(x):

 Page A.2 of A.5

 """SHA-256 Sigma1 Function"""

 return ROTR(x,6) ^ ROTR(x,11) ^ ROTR(x,25)

def sigma0(x):

 """SHA-256 sigma0 Function"""

 return ROTR(x,7) ^ ROTR(x,18) ^ SHR(x,3)

def sigma1(x):

 """SHA-256 sigma1 Function"""

 return ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10)

initial hash value

_H0 = [0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,

 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19]

constants

_K = [0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,

 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,

 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,

 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,

 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,

 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,

 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,

 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,

 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,

 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,

 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,

 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,

 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,

 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,

 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,

 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2]

def SHA256(M, N=64):

 """

 SHA256 on data with size <= 447 bits so it fits in one 512-bit block M

 e.g. M = 32-bit-data1, ..., data13, 0x80000000, 0x0, data_bit_length

 N >= 16 is required. N < 64 represents a reduced-round SHA-256.

 """

 W = [0 for t in range(N)]

 # unpack M into array of 16 32-bit values

 for t in range(15,-1,-1):

 W[t] = M & 0xFFFFFFFF

 M >>= 32

 for t in range(16,N):

 W[t] = (sigma1(W[t-2]) + W[t-7] + sigma0(W[t-15]) + W[t-16]) & _mask

 a = _H0[0]; b = _H0[1]; c = _H0[2]; d = _H0[3]

 Page A.3 of A.5

 e = _H0[4]; f = _H0[5]; g = _H0[6]; h = _H0[7]

 for t in range(N):

 T3 = sigma1(W[t])

 T1 = (h + Sigma1(e) + Ch(e,f,g) + _K[t] + W[t]) & _mask

 T2 = (Sigma0(a) + Maj(a,b,c)) & _mask

 h = g; g = f; f = e; e = (d + T1) & _mask

 d = c; c = b; b = (a + T3) & _mask; a = (T1 + T2) & _mask

 H = (a + _H0[0]) & _mask

 H <<= 32; H |= (b + _H0[1]) & _mask;

 H <<= 32; H |= (c + _H0[2]) & _mask;

 H <<= 32; H |= (d + _H0[3]) & _mask;

 H <<= 32; H |= (e + _H0[4]) & _mask;

 H <<= 32; H |= (f + _H0[5]) & _mask;

 H <<= 32; H |= (g + _H0[6]) & _mask;

 H <<= 32; H |= (h + _H0[7]) & _mask;

 return H

def bitstats(MSG,N):

 """

 count how many bits change vs. 1-bit change on input

 using SHA-256 main loop range 1:N (instead of 1:64)

 measure randomness by size of compressed hash (Z)

 returns (C,Cmin,Cmax,Cavg,Zmin,Zmax,Zavg)

 """

 C = [0 for i in range(257)]

 Cmin = Zmin = 256; Cmax = Cavg = Zmax = Zavg = 0

 mask = 1 << 511

 MD = SHA256(MSG, N) # original hash

 while mask > 0:

 # MSG ^ mask flips one bit in MSG

 # h ^ MD has non-zero bits where result != MD

 h = SHA256(MSG ^ mask, N)

 d = h ^ MD

 n = bin(d).count('1')

 C[n] += 1

 if n < Cmin: Cmin = n

 if n > Cmax: Cmax = n

 # compressed length will be > 32 bytes if h is very random

 Z = len(zlib.compress(h.to_bytes((h.bit_length()+7)//8,'big')))

 Zavg += Z

 if Z < Zmin: Zmin = Z

 if Z > Zmax: Zmax = Z

 mask >>= 1

 Zavg /= 512

 for i in range(257): Cavg += i*C[i]

 Cavg /= 512 # divide by number of trials

 Page A.4 of A.5

 return (C,Cmin,Cmax,Cavg,Zmin,Zmax,Zavg)

def block(MSG):

 """put 16 32-bit values into one 512-bit block"""

 M = MSG[0]

 for i in range(1,16):

 M = (M << 32) | MSG[i]

 return M

some test inputs and outputs from SHA256ShortMsg.rsp

http://csrc.nist.gov/groups/STM/cavp/documents/shs/shabytetestvectors.zip

_MSG_0 = [0x80000000, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,

 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0]

MSG_0 = block(_MSG_0)

MD_0 = 0xe3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

_MSG_8 = [0xd3800000, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,

 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x8]

MSG_8 = block(_MSG_8)

MD_8 = 0x28969cdfa74a12c82f3bad960b0b000aca2ac329deea5c2328ebc6f2ba9802c1

MSG_440 =

0x3ebfb06db8c38d5ba037f1363e118550aad94606e26835a01af05078533cc25f2f39573c04b6

32f62f68c294ab31f2a3e2a1a0d8c2be518000000000000001b8

MD_440 = 0x6595a2ef537a69ba8583dfbf7f5bec0ab1f93ce4c8ee1916eff44a93af5749c4

del _MSG_0, _MSG_8

 Page A.5 of A.5

Section A-2 – test.py

from sha import *

tests = ["MSG_0, 64", "MSG_8, 64", "MSG_440, 64",

 "MSG_0, 32", "MSG_8, 32", "MSG_440, 32",

 "MSG_0, 24", "MSG_8, 24", "MSG_440, 24",

 "MSG_0, 16", "MSG_8, 16", "MSG_440, 16",

 "MSG_0, 17", "MSG_8, 17", "MSG_440, 17",

 "MSG_0, 18", "MSG_8, 18", "MSG_440, 18",

 "MSG_0, 19", "MSG_8, 19", "MSG_440, 19",

 "MSG_0, 20", "MSG_8, 20", "MSG_440, 20",

 "MSG_0, 21", "MSG_8, 21", "MSG_440, 21",

 "MSG_0, 22", "MSG_8, 22", "MSG_440, 22",

 "MSG_0, 23", "MSG_8, 23", "MSG_440, 23"]

for what in tests:

 test = "bitstats(" + what + ")"

 print(test)

 (C,Cmin,Cmax,Cavg,Zmin,Zmax,Zavg) = eval(test)

 print(Cmin,Cmax,Cavg,Zmin,Zmax,Zavg)

 Page B.1 of B.1

APPENDIX B – POINT MULTIPLICATION SEQUENCE CHART

S
E

Q
U

E
N

C
E

 C
O

N
T

R
O

L
C

O
M

M
A

N
D

S

In
it

ia
liz

e
 T

e
m

p
 V

a
ri

a
b

le
s

In
it

ia
liz

e
 T

e
m

p
 P

o
in

t

In
it

ia
liz

e
 Q

_
p

3
 T

o
 N

e
u

tr
a

l P
o

in
t

E
x

tr
a

ct
 B

y
te

 f
ro

m
 E

x
p

o
n

e
n

t

In
cr

e
m

e
n

t
i a

n
d

 R
e

se
t

j

In
cr

e
m

e
n

t
j

to
 g

e
t

n
e

x
t

b
it

 in
 e

x
p

o
n

e
n

t
b

y
te

j
Lo

o
p

 P
o

in
t_

a
d

d
 (

 T
_

P
d

,
Q

_
p

3
,

I_
p

1
)

Lo
o

k
 a

t
E

x
p

o
n

e
n

t
B

it
,

Q
_

p
3

=
d

 e
x

le
 Q

_
p

3
=

Q
_

p
3

j
Lo

o
p

 P
o

in
t_

D
b

l (
Q

_
p

3
,

Q
_

p
3

)

A
d

ju
st

 (
Q

_
p

3
.X

),
 A

d
ju

st
 (

Q
_

p
3

.Y
)

S
P

A
R

E

S
P

A
R

E

S
P

A
R

E

S
e

t
D

N
 F

la
g

S
e

t
N

e
x

t_
S

te
p

 =
 3

4
 if

 i<
3

1

In
cr

e
m

e
n

t
N

e
x

t_
S

te
p

 if
 F

A
LS

E
 o

r
i>

=
3

1

STEPS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CMD_VALUE i j COMMENTS

0 0 ***NOT USED TO ALLOW FOR FIRST SCAN INPUT***

1 x x x 7 0 0 Initialize Variables, Step 1 unique

2 x 8 0 0 Starting J loops

3 x 64

4 x 128

5 x 256

6 x 32 0 1

7 x 64

8 x 128

9 x 256

10 x 32 0 2

11 x 64

12 x 128

13 x 256

14 x 32 0 3

15 x 64

16 x 128

17 x 256

18 x 32 0 4

19 x 64

20 x 128

21 x 256

22 x 32 0 5

23 x 64

24 x 128

25 x 256

26 x 32 0 6

27 x 64

28 x 128

29 x 256

30 x 32 0 7 First complete j-Loop Done

31 x 64 Loop back to i and begin next j Loop

32 x 128

33 x 256

34 x 16 1 0 This block is a representative sample

35 x 8 of what it takes to complete a single i-loop

36 x 64 Ultimately this results in lots of steps but

37 x 128 the objective is to complete the sequence

38 x 256 with minimum impact on overall scan time

39 x 32 1 1

40 x 64

41 x 128

42 x 256

43 x 32 1 2 This subsection is representative of

44 x 64 what it takes to complete a single j-loop

45 x 128

46 x 256

47 x 32 1 3

48 x 64

49 x 128

50 x 256

51 x 32 1 4

52 x 64

53 x 128

54 x 256

55 x 32 1 5

56 x 64

57 x 128

58 x 256

59 x 32 1 6

60 x 64

61 x 128

62 x 256

63 x 32 1 7

64 x 64

65 x 128

66 x x x -16128

67 x 512 31 7

68 x 8192 31 7 TRIGGER DONE FLAG FOR EXTERNAL STATUS REPORT

69 0 31 7 DONE WITH POINT MULTIPLY, GO BACK TO STEP 0

