

Control System Data Authentication and
Verification Using Elliptic Curve
Digital Signature Algorithm

By

Kenneth Alan Fischer

Control System Data Authentication and Verification Using
Elliptic Curve Digital Signature Algorithm

By

Kenneth Alan Fischer

Dissertation
Submitted to Department of Electrical and Computer Engineering

College of Engineering
Villanova University

in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

In

Computer Engineering

July, 2014

Villanova, Pennsylvania

III

Copyright © 2014 by Kenneth Alan Fischer

All Rights Reserved

IV

 This page intentionally left blank.

V

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at Villanova University, and is deposited in the University Library to be

made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided

that accurate acknowledgment of source is made. Requests for permission for extended

quotation from or reproduction of this manuscript in whole or in part may be granted by

the head of the major department or the Associate Dean for Graduate Studies and

Research of the College of Engineering when in his or her judgment the proposed use of

the material is in the interests of scholarship. In all other instances, however, permission

must be obtained from the author.

VI

 ACKNOWLEDGEMENTS

This dissertation is the result of my M.Sc studies at Villanova University. Firstly, I

would like to thank my advisor, Dr. Richard Perry, for sharing his time, experience, and

wisdom during my research. I also thank my supervisor, Michael Iacovelli (NSWCCD-

SSES C955 Branch Manager) for his support in enabling me to pursue this work, as well

as all of my colleagues within NSWCCD-SSES who took the time to listen to my ideas

and share with me their own insight and practical experience in the field of Control

System Engineering. Lastly and most importantly, I would like to thank my wife, Ana

Fischer, for all the extra work she did in taking care of our three children while I pursued

this work.

VII

 DEDICATION

I dedicate this dissertation to my daughters Liviya and Dalya, and to my son Isaac,

Whose insatiable curiosity in the world

Inspires me to learn daily

And to the men and women of our armed forces

Who deserve our best

As they defend us around the world.

VIII

 TABLE OF CONTENTS

Section Page

STATEMENT BY AUTHOR ... 5

ACKNOWLEDGEMENTS .. 6

DEDICATION .. 7

TABLE OF CONTENTS .. 8

LIST OF FIGURES .. 12

LIST OF ALGORITHMS ... 14

ABSTRACT .. 15

CHAPTER 1: INTRODUCTION ... 1

1.1 Background .. 1

1.2 Current Practices .. 4

1.3 Literature Review on Smart Grid ... 5

1.3.1 SGiP Cyber Security Working Group NISTIR 7628 8

1.4 Literature Review on NGIPS ... 9

CHAPTER 2: CURRENT PRACTICES .. 12

2.1 Fundamental Objectives ... 12

2.2 Limitations of Control Systems compared to Information / Corporate Systems 13

2.2.1 PLC versus VME .. 15

2.3 Traditional Solutions for Information / Corporate Systems 17

2.3.1 Symmetric-key Cryptography ... 18

2.3.2 Public-key Cryptography .. 19

IX

CHAPTER 3: ELLIPTIC CURVE CRYPTOGRAPHY .. 26

3.1 Background .. 26

3.2 Mathematical Foundations ... 27

3.2.1 Finite Fields .. 27

3.2.2 Elliptic Curves .. 31

3.2.3 Projective Coordinates .. 35

3.2.4 Point Multiplication .. 36

3.3 Domain Parameters .. 37

3.3.1 Prime Field Elliptic Curves ... 38

3.3.2 Binary Field Elliptic Curves ... 38

3.3.3 Standardized Versus Random Curves ... 39

3.4 Known Attack Mechanisms against ECC .. 40

3.4.1 Naïve Method.. 40

3.4.2 Pohlig-Hellman Attack ... 41

3.4.3 Pollard’s rho Attack .. 41

3.4.4 Index-Calculus Attacks ... 42

3.4.5 Isomorphism Attacks .. 42

3.5 Cryptographic Protocols Useful for Control Systems .. 43

3.5.1 Key Generation ... 43

3.5.2 Elliptic Curve Digital Signature Algorithm (ECDSA) 46

3.5.3 Supported Secure Hash Algorithms .. 48

3.6 Comparing RSA Signatures to ECDSA ... 49

3.7 OpenSSL ECC Implementation ... 52

X

3.8 ECC Certificates ... 53

CHAPTER 4: PROTOTYPE OVERVIEW .. 54

4.1 Prototype Objectives .. 54

4.2 System Architecture Overview .. 55

4.3 Hardware Overview ... 58

4.3.1 Test String 1 .. 58

4.3.2 Test String 2 .. 59

CHAPTER 5: SOFTWARE ARCHITECTURE .. 60

5.1 SoftPLC Package .. 60

5.2 OpenSSL Usage ... 61

5.3 Visual Studio 2010 Express ... 63

5.4 Cryptographic Algorithms Used .. 63

5.5 Base64 Encoding / Decoding ... 64

5.6 Self-Signing Keys .. 66

CHAPTER 6: SOURCE CODE WALKTHROUGH ... 70

6.1 C Code Walkthrough .. 70

6.1.1 MsgGen ... 71

6.1.2 KeyGen ... 74

6.1.3 KeyVerify ... 75

6.1.4 SigGen... 76

6.1.5 SigVerify ... 77

6.2 Ladder Logic Walkthrough .. 79

CHAPTER 7: RESULTS, FUTURE WORK, AND CONCLUSION 80

XI

REFERENCES ... 83

APPENDIX A. C SOURCE CODE... 87

A.1 MsgGen .. 87

A.2 KeyGen ... 91

A.3 KeyVerify ... 95

A.4 SigGen .. 100

A.5 SigVerify .. 105

APPENDIX B. LADDER LOGIC CODE ... 110

B.1 Solution Explorer ... 110

B.2 Bindings Sample .. 111

B.3 ECDSA_D4_I... 112

B.4 MAIN ... 119

B.5 SIM_BOOL .. 122

B.6 SIM_REAL .. 123

B.7 ECDSA_KeyCntrl .. 125

XII

LIST OF FIGURES

Figure 2.2.A – PLC Rack………………………………….…………….……………. 14

Figure 2.2.B – VME Rack………………………………………………….………… 14

Figure 3.2.1.2.A – Binary Finite Field Reduction Polynomials………………...……. 30

Figure 3.2.2.A – Sample Elliptic Curves………………………………………….….. 31

Figure 3.2.2.B – Geometric Representation of Point Addition and Point Doubling.… 32

Figure 3.2.2.C – Group Law for E(Fp): y
2=x3+ax+b, char(K) ≠2………….………… 33

Figure 3.2.2.D – Group Law for non-supersingular E(F2m): y2+xy=x3+ax2+b…….… 34

Figure 3.2.2.E – Group Law for supersingular E(F2m): y2+cy=x3+ax+b…………….. 34

Figure 3.2.3.A – Operation Counts on y2 = x3 - 3x+b………………………..……… 36

Figure 3.6.A – Comparable Key Sizes (in bits)…………………………………... 49

Figure 3.6.B – ECC vs RSA Key Generation………………………………………… 50

Figure 3.6.C – ECC vs RSA Signature Generation…………………………...…........ 50

Figure 3.6.D – ECC vs RSA Signature Verification…………………………………. 50

Figure 4.2.A – SoftPLC Round Robin Architecture Concept…….………………….. 56

Figure 4.2.B – Count Increment Lifecycle Per SoftPLC .Scan...……………………. 57

Figure 4.3.2.A – VS275 Board………………………………………………………. 59

Figure 6.1.1.A – Three MsgGen Blocks Connected Together……………………….. 73

Figure 6.1.1.B – MsgGen Input / Output Structure…………………………………... 74

Figure 6.1.2.A – KeyGen Block……………………………………………………… 75

Figure 6.1.2.B – KeyGen Input / Output Structure…………………………………… 75

XIII

Figure 6.1.3.A – KeyVerify Block…………………………………………………… 76

Figure 6.1.3.B – KeyVerify Input / Output Structure………………………………… 76

Figure 6.1.4.A – SigGen Block……………………………………………………….. 77

Figure 6.1.4.B – SigGen Input / Output Structure……………………………………. 77

Figure 6.1.5.A – SigVerify Block…………………………………………………….. 78

Figure 6.1.5.B – SigVerify Input / Output Structure…………………………………. 78

XIV

 LIST OF ALGORITHMS

Algorithm 1.1.A – Traditional Control System “Heartbeat”…………………………. 4

Algorithm 2.3.2.1.A – Generating RSA Key Pair…………………………………… 20

Algorithm 2.3.2.1.B – RSA Encryption……………………………………………… 21

Algorithm 2.3.2.1.C – RSA Decryption……………………………………………… 21

Algorithm 2.3.2.1.D – RSA Signature Generation…………………………………… 21

Algorithm 2.3.2.1.E – RSA Signature Verification…………………………………... 22

Algorithm 2.3.2.2.A – Discrete Logarithm Domain Parameter Generation…………. 23

Algorithm 2.3.2.2.B – Discrete Logarithm Key Pair Generation…………………….. 23

Algorithm 2.3.2.2.C – DSA Signature Generation…………………………………… 24

Algorithm 2.3.2.2.D – DSA Signature Verification…………………………………. 24

Algorithm 3.5.1.A – Generating ECC Key Pair……………………………………… 44

Algorithm 3.5.1.B – ECC Public Key Validation…………………………………….. 45

Algorithm 3.5.2.A – ECDSA Signature Generation………………………………….. 47

Algorithm 3.5.2.B – ECDSA Signature Verification………………………………… 47

XV

 ABSTRACT

Recent endeavors such as the Smart Grid and attacks on control systems such as Stuxnet,

have highlighted the need for improved security in control systems and control system

communications. Control system components such as Programmable Logic Controllers

(PLCs) and Human-Machine Interfaces (HMIs) can no longer rely on simple heartbeat

logic algorithms in order to verify communications. Advanced cryptographic algorithms

for data authentication and verification are needed in messaging protocols between PLCs,

HMIs, and sensors.

Cryptographic algorithms such as RSA or the Digital Signature Algorithm (DSA) appear

to provide a solution, however the key sizes required for implementing these solutions are

not feasible for implementation in a control system. Elliptic Curve DSA (ECDSA) looks

to be a promising solution due to the smaller key sizes and faster computations.

This work implements a prototype implementation of ECDSA that was developed

utilizing ISaGRAF™ SoftPLCs. The implementation is primarily written in IEC 61131-3

ladder logic using specialized function blocks developed in C, utilizing the OpenSSL

library. Four SoftPLCs were configured in a round robin architecture on two different

test strings in order to determine the average time it takes to generate a message, sign it,

transmit it, receive it, and verify the signature. A self-signing key distribution

architecture was developed which relies on the commissioning process of PLCs to

establish the initial trust relationship. Test string 1 gave an average scan time of 26-28ms

ms and test string 2 gave an average time of 55-60ms with PLC scan times of 55-60 ms.

These timing values confirm the potential for ECDSA to be used for control system data

authentication and verification. C and ladder logic source code is included.

1

CHAPTER 1: INTRODUCTION

1.1 Background

Increasing demands in all sectors of an industrial society have led to an ever increasing

need for more sophisticated controls and monitoring equipment and software. Control

systems, once consisting of simple transmitters and relays, have evolved into complex

systems containing dozens of controllers communicating with each other, each containing

tens of thousands of lines of code, for even the simplest processes. Complex Human-

Machine Interface (HMI) mechanisms designed to give system owners and operators

enhanced capabilities to remotely operate, maintain, and troubleshot equipment are being

developed and deployed. At the core of most modern control systems is the

Programmable Logic Controller (PLC), a device whose power lies in the ability of a

Control System Engineer to quickly and easily implement complex control schemes at

minimal cost. As a result, PLCs (originally designed to replace relay panels) have

become prevalent in virtually every industrial environment from pharmaceutical plants to

electrical power distribution systems.

The need for PLCs will significantly expand in the coming years, as countries with

mature economies work tirelessly to develop new sophisticated power distribution

networks required to support our growing economy. Our existing power grids were

designed decades ago, with the main aim of delivering electricity from large power

stations to households and businesses. The increasing efficiency and reliable

requirements necessary to support our developing civilization in the face of increasing

energy demands and the real threat of domestic terrorism and foreign aggression require

2

significant modernization of these power distribution networks. The new “Smart Grid”,

as it commonly called, will be characterized by a two-way flow of electricity and

information creating a widely distributed energy network. The control system required to

support this energy network will be of an unheard of scale, the design of which will

introduce significant challenges never before addressed.

In related efforts, the US Navy has been rapidly migrating to ship designs with

propulsion, auxiliary, and weapons systems with significantly higher energy requirements

than in the past. To address these requirements, modern ship designs such as the USS

ZUMWALT DESTROYER (DDG1000) class are using Integrated Power Systems (IPS)

that provide electrical power to propulsion and electrical loads from a common set of

sources. To provide direction for future IPS development, the Navy initiated the Next

Generation Integrated Power Systems (NGIPS) effort to provide smaller, simpler, more

affordable, and more capable systems for all Navy ships [8].

The NGIPS effort is remarkably similar to the Smart Grid effort in multiple respects, and

in both there is an increasing consensus that the control communication infrastructure

needs fundamental changes. In an automated electrical system, damage to a complex

communication network, a hostile terrorist act, or even a failing component giving

erroneous data can result in a control system taking improper actions that could result in

large scale power failures on land and weapons, propulsion, or a complete electrical

failure at sea or worse. Earlier this year, we at NSWCCD-SSES documented a case

where erroneous data from a failing control system communications component in an

Improved Navy Lighterage System (INLS) Warping Tug (WT) resulted in a complete

loss of propulsion and steering control whenever a ship was placed into full speed, which

3

would have resulted in the ship colliding into the shore if it were not for conveniently

placed Emergency Stop pushbuttons. It has become clear to controls engineers that more

sophisticated methods are needed for verifying the integrity of the data and commands

being issued to and from control systems.

Implementing control systems on a large, highly integrated scale introduces significant

challenges partly because control system networks were not designed with security being

primarily in mind. Historically, control system networks were designed to be completely

physically isolated from other networks and therefore securing those control system

networks seemed unnecessary. Instead, control system networks were designed to have

maximum throughput with minimal to nonexistent data loss. In recent years though

control systems have gradually been getting connected to the Internet, mostly via

corporate network systems, in order to meet business and maintenance requirements. In

order to secure networks, IT administrators have been applying traditional security

measures in order to prevent attackers from gaining access to the corporate networks thus

protecting control system networks. The last year particularly has highlighted the

deficiencies with this model, as viruses such as Stuxnet have become rapidly prevalent.

There is also significantly more risk in a compromised control system than a

compromised corporate system. For example, an attacker could compromise the control

system of a nuclear power plant resulting in a failure of the reactor cooling system.

Therefore control system designers are realizing that not only do we need improved

algorithms to verify that control system data is accurate, we need algorithms to verify that

the data and commands to the control systems are authenticated (i.e. coming from a valid,

recognized source).

4

1.2 Current Practices

Controls engineers have long recognized the need to verify that components within a

control system are communicating and that the failure of communications between

control system components should result in critical high priority alarms with possible

equipment shutdowns. Since control system communications operate in real time, 24

hours a day, 7 days a week, algorithms are needed to detect a failure in communications

as soon as it occurs. Traditionally, “heartbeat” logic is implemented between each pair of

communication devices. Algorithm 1.1.A below illustrates an example of commonly

used “heartbeat” logic.

Algorithm 1.1.A – Traditional Control System “Heartbeat”

1. Initialize a bit to a known condition (typically 1 as will be used in this algorithm).

2. Transmit bit (call it B1) to communication partner. Start a 3 second timer (call it

T1)

3. Communication partner receives the bit B1. Communication partner sets another

bit (call it B2) to 1 to match the state of B1 and starts its own 3 second timer (call

it T2).

4. Receive bit B2 from the partner. Verify that the state of B2 matches the state of

B1 and that timer T1 has not timed out. If true, restart timer T1. Change state of

B1 to be opposite that of B2. Transmit B1 back to partner.

5

5. Partner receives bit B1. Partner verifies that the state of B1 does not match the

state of B2 and that timer T2 has not timed out. If true, partner restarts timer T2.

Partner changes B2 to match state of B1, retransmits bit back, and go to step 4.

6. If T1 or T2 times out, generate alarm for communications failure.

As long as a communications failure alarm does not occur, then the data being

transmitted between the two PLCs is considered to be both valid and sourced between the

communicating pair. This kind of logic has proven to be very effective for general

network health monitoring. Issues in communication, primarily in the physical or

transport layer, can be easily detected using this method. For control system networks

that are physically isolated from any other network, this is generally sufficient to

implement an effective control scheme. Unfortunately, this method does not protect

against any kind of more sophisticated failure or attack such as that documented for the

INLS WT described earlier or a “man-in-the-middle” attack.

1.3 Literature Review on Smart Grid

A number of papers have been written to introduce the Smart Grid concepts and provide

a general overview of the requirements and challenges involved in developing a Smart

Grid.

Bouhafs, Mackay, and Merabti (2012) [1] identified a number of general requirements

including communications and electrical generation needed in order to fully realize the

Smart Grid vision. They noted that underlying communications protocols will need to be

more flexible and enable horizontal (vice a master/slave top-down) data exchange

6

between controllers and remote terminal units (RTUs). The current “heartbeat” logic

concept would not be useful in an implementation where data could flow from a source

through multiple sources to a target since it only verifies the link between pairs and not

the data itself. They went on to note that in the event the Internet is used to connect

equipment in the Smart Grid, strong encryption and authentication measures must be

taken to ensure the security of the data in transit.

Yan, Qian, Sharif, and Tipper (2012) [2] noted that it is necessary to have guaranteed

Quality of Service (QoS) for the communications and networking technology. In

particular they highlighted the latency, bandwidth, interoperability, scalability, and

security requirements. Of particular interest is the authors’ analysis of bandwidth

requirements which showed that there will be significant challenges in this area.

Therefore, adding a significant number of bits in any communications protocol for

control systems could have a profoundly negative impact on the operation of the Smart

Grid as a whole. The authors also noted that the effort required to provision symmetric

keys (i.e. keys between each pair of communicating devices) into thousands of devices

would be too expensive or insecure. They noted that the development of key and trust

management schemes for large network deployments would be required. While Navy

systems are small enough that they would not suffer from the same kinds of limitations, it

seems obvious that a solution must be developed for Navy systems that would be

applicable to all future controls systems including the Smart Grid, particularly in support

of modernized shore power connections for Navy systems.

Yan, Qian, Sharif, and Tipper (2012) [3] in a related paper noted that new functions in

the Smart Grid such as demand response introduce significant new cyber attack vectors

7

such as a malware that initiates a massive coordinated and instantaneous drop in demand.

This attack could result in substantial damage to distribution, transmission, and

generation facilities. Research ongoing at NSWCCD-SSES has also noted this risk as

applicable to Navy systems, particularly in combat scenarios with the use of advanced

weapon systems such as the railgun. The authors also noted that a major difference

between Smart Grid controls communication and the Internet is that the controls data is

significantly more concerned with message delay and timing constraints.

Liu, Ning, and Reiter (2009) [4] in their work presented a notable example of a new type

of attack, called false data injection attacks, that highlights the very real risk of attacks

targeting data integrity.

Baumeister (2011) [5] noted that most information systems use a Public Key

Infrastruction (PKI) solution, but that the nature of power grid systems creates additional

PKI requirements not present in traditional information systems. This same statement

can be generalized to apply to all control systems. For example, Baumeister noted that

control systems must make informed decisions regularly, and that it is unreasonable to

expect a control system to go down or revert to a less efficient predecessor every time a

certificate is unavailable. For example, what happens when a certificate from a sensor

expires? In an information system, the impact of expired certificates is insignificant and

they can be renewed when discovered. However, in a control system this could cause the

process (such as electric flows) to be incorrectly altered.

8

1.3.1 SGiP Cyber Security Working Group NISTIR 7628

In response to the number of concerns related to the Smart Grid and Cyber Security,

NIST established the Smart Grid Interoperability Panel (SGiP) Cyber Security Working

Group which published NISTIR 7628 (2010) [6]. This document broke down the various

kinds of communications that would be prevelant in a full international Smart Grid

system into a number of categories such as “Category 10 – Interface between Control

Systems and Non-Control / Corporate Systems”. SGiP then identifies the unique security

requirements for each of these categories, focusing on the three areas of confidentiality,

integrity, and availability.

Most, but not all of the categories identified by SGiP are directly or indirectly applicable

to control systems (some that have little to no bearing such as categories 13 through 18

are not shown here) operating in the Smart Grid and are shown in the list below:

 Category 1: Interface between control systems and equipment with high

availability, and with compute and/or bandwidth constraints

 Category 2: Interface between control systems and equipment without high

availability, but with compute and / or bandwidth constraints

 Category 3: Interface between control systems and equipment with high

availability, without compute or bandwidth constraints

 Category 4: Interface between control systems and equipment without high

availability, without compute or bandwidth constraints

 Category 5: Interface between control systems within the same organization

 Category 6: Interface between control systems in different organizations

9

 Category 10: Interface between control systems and non-control / corporate

systems

 Category 12: Interface between sensor networks and control systems

 Category 19: Interface between operations decision support systems

 Category 20: Interface between engineering / maintenance systems and control

equipment

 Category 21: Interface between control systems and their vendors for standard

maintenance and service

 Category 22: Interface between security / network / system management consoles

and all networks and systems

In reviewing the categories, it becomes obvious that all of them have significant overlap

with NGIPS efforts as well as industrial control systems in general. On looking through

the requirements of these categories as identified by SGiP, it is seen that the primary

concern in these categories is that of data integrity and authentication. Data encryption

can be useful in some circumstances, but it is not as critical as the other two

requirements.

1.4 Literature Review on NGIPS

Most of the literature on the NGIPS effort has focused on areas such as electrical

generation, propulsion, power conversion and distribution, energy storage, and zonal

survivability. The NGIPS architecture is broken up into seven modules types:

 Power Generation Modules (PGM)

 Power Distribution Modules (PDM)

10

 Power Conversion Modules (PCM)

 Energy Storage Modules (ESM)

 Power Loads

 Propulsion Motor Modules (PMM)

 Power Control Modules (PCON)

The PCON module is of particular interest to controls engineers, as it consists of the

software and communications protocols necessary to operate the system. Doerry (2009)

[8] noted that PCON should implement the following functions listed below. He also

noted that the software should be developed for robustness in anticipation of future

changes in the life of a ship, and for modifying for use across multiple ship classes.

 Remote monitoring and control of NGIPS modules and controllable loads

 Resource Planning

 System Configuration

 Mission Priority Load Shedding

 Quality of Service Load Shedding

 Fault Detection and Isolation

 Maintenance Support

 Training

These functions are remarkably similar to the control system functions required for the

development of a Smart Grid, with the notable exceptions of the electrical distribution

Quality of Service (QoS) and Mission Priority Load Shedding. As a result, the same

need for data authentication and verification in the Smart Grid would be applicable to

NGIPS, particularly in functions such as maintenance support where it becomes

11

increasingly common for ships to transmit data to and from shore based services for

software upgrades and maintenance / troubleshooting support.

Desired requirements for QoS also introduce the need to ensure that commands being

transmitted across the ship for electrical service are genuine. As noted by Doerry, a

typical cause of a QoS failure is the shifting of electrical power sources from ship to

shore, and that communications will be required with the terrestrial power system

command and control centers. Failure of the ship and shore to properly establish valid

communications could result in power instabilities for both.

The increasing prevalence of computer viruses specifically targeting control systems will

introduce new challenges to the mission readiness of a ship in times of war. By attacking

PCON, an enemy may be able to cause a control system to incorrectly transfer loads

which could result in a failure of propulsion or weapon systems (or both) at a critical

moment. Modern weapon systems produce substantial electrical loads that may require

realigning of the ship’s electrical distribution prior to being operational (such as

performing bus-tie operations and shedding non-critical loads).

The Navy has been putting significant effort into open architecture approaches in the

development of control system software for fleet wide applications, encompassing a

much larger scope then NGIPS. Doerry, Scherer, Cohen, and Guertin (2011) [9] pointed

out that information assurance and security needs to be thought of at the outset of any

new machinery control system design, stating that confidentiality, integrity, and

availability of data must be assured. They also highlight that the software should perform

error detection (and error correction if possible) along with filtering of the sensor data.

12

CHAPTER 2: CURRENT PRACTICES

2.1 Fundamental Objectives

Within the field of cryptography, there are multiple solutions providing various degrees

of secure communication. In order to be effectively used to establish secure

communications these solutions have the following fundamental objectives:

 Confidentiality – ensuring that the data can only be read by those authorized to

see it

 Data Integrity – ensuring that the data has not been modified by unauthorized

means

 Data Origin Authentication – ensuring that the data supposedly sent by a source

actually originated with that source

 Entity Authentication – ensuring that an entity participating in a data transfer is

who it claims to be

 Non-repudiation – ensuring that a source of data is unable to later deny sending

the data

Information / Corporate systems are concerned with meeting each of the above

objectives. Control systems are also equally concerned with the above objectives, with

confidentiality to a significantly lesser degree, but also have unique requirements not

present in information systems. When an information system receives a piece of data

through an insecure means, it can disregard the information with reasonably low risk.

Control systems, on the other hand, need to make critical decisions with the information

at hand. If the data received is insecure, the control system is placed in a position of

13

having to make critical decisions about the operation of real world machinery without

knowing which decision to take. Unfortunately, the control system will be regularly in

the position where it must take some critical action or shut down the equipment, with

each scenario resulting in possible equipment damage and injury/death to personnel

operating that equipment.

2.2 Limitations of Control Systems compared to Information / Corporate

Systems

Information / Corporate Systems typically consist of x86-based architecture computers

running either Windows or Linux operating systems and a host of other software

programs provided by multiple vendors to provide an integrated solution. In contrast, at

the heart of the Control System are Programmable Logic Controllers (PLCs), which use

vendor specific developer environments to write software following IEC 61131-3

guidelines (ladder logic, function blocks, etc) to implement a solution that is both easy

and cheap to design and is very effective for controls. The downside of these PLCs is

that they tend to have significantly less processing power and storage capabilities as they

are designed to run very specific software programs extremely efficiently, non-stop, for

20 years or more.

An alternative to PLCs are VERSAmodule Eurocards (VME) which tend to have greater

processing power and contain the same input / output processing capabilities as PLCs but

add significant complexity to the design of a control system. The pros and cons of PLCs

and VMEs are described below. Another alternative to PLCs are SoftPLCs. SoftPLCs

are essentially programmed in the same manner as regular PLCs, but contain additional

14

underlying base code designed to interface with an operating system (typically Windows

NT based operating systems) in order to run the IEC 61131-3 code on an x86-based

architecture. Figures 2.2A and 2.2.B show running PLC and VME racks on control

systems for Navy Ships

Figure 2.2.A PLC Rack

Figure 2.2.B VME Rack

15

Since VME cards can be obtained that use the x86 architecture, in recent years the Navy

has been implementing control systems on ship classes that use SoftPLCs running on

VMEs to obtain the best of both worlds. This can be a complicated and expensive

solution that is still more in the research and development stage and will likely not be

implemented in either the Smart Grid or regular industrial control systems. However it is

possible from a research perspective to perform cryptographic testing on SoftPLCs using

VMEs to do “proof of concept” testing in order to determine the validity of a solution

before expending significant resources in developing an independent and complete PLC

solution.

2.2.1 PLC versus VME

In order to give greater perspective on the usage of PLCs versus VMEs in control

systems, the pros and cons of both technologies are listed below. These SoftPLCs may

become more prevalent in industrial control systems with the advent of new projects such

as OpenPLC which aims to develop an open source software and hardware platform for

industrial control systems.

VME Pros

 Analog and digital I/O boards are available from a large number of vendors

 VME components are open architecture

 Standardized circuit card form factor and data bus

16

 Significantly greater flexibility in software for VME than compared to PLC,

allowing for advanced processing not available with PLCs (such as required for

the Navy’s new advanced guided missile destroy program)

 Ability to implement secure communication protocols

 Operating Temperature range of -40oC to +85oC

VME Cons

 Development of software is complex and difficult, developer must design not only

the control system application but also the low-level system interactions

 Widespread use of proprietary operating systems often creates a virtual sole-

source situation

 Instability in VME Operating System market means it is unlikely developers will

have experience with the operating system chosen for a new project, leading to

longer ramp-up time and increased risk for software defects

 Obsolescence is a major problem

 Integration of new components into an existing system is NOT “plug-and-play”

PLC Pros

 Cost is less than for VME systems

 Programming time is reduced due to ease of programming language (ladder-logic)

 Risk is significantly reduced when using all products from the same vendor

 Integration of new components into an existing system is typically “plug-and-

play”

17

 PLC vendors have a strong record of supporting their products for 20 years or

longer

 Enhanced software troubleshooting features not available with VMEs

PLC Cons

 PLC vendor products generally not compatible with another vendor’s products,

requiring a single vendor to provide all processor, I/O, and network

communication boards

 No standards for PLC form factor or electrical characteristics

 Secure communication protocols are not a common feature with many PLC

vendors

 Increased risk in relying on a single vendor to support their products

 Operating Temperature range of only 0oC to +60oC

2.3 Traditional Solutions for Information / Corporate Systems

While traditional solutions for Information / Corporate Systems will not be feasible for

implementation in Control Systems due to the different requirements and architectures, it

is important to establish an understanding of current solutions used in Information

Systems. There are essentially two main categories of cryptographic solutions,

symmetric-key cryptography and public-key cryptography.

18

2.3.1 Symmetric-key Cryptography

Symmetric-key Cryptography includes schemes such as the Data Encryption Standard

(DES) (now obsolete), RC4, and the Advanced Encryption Standard (AES) to achieve

confidentiality. They may also be used with a message authentication code (MAC)

algorithm such as HMAC to achieve data integrity and data origin authentication. In a

typical symmetric-key cryptography scheme two parties already share a secret key k that

has been communicated to the parties by some other means (typically a physical secure

channel such as a trusted courier, or by using a public-key cryptography scheme to

negotiate a shared secret key). Party A wishing to transmit to B uses one of the

previously mentioned schemes to compute a ciphertext c = ENCk(m) to be sent to B. B

then receives the message and uses the same k (and knowing the same scheme used to

encrypt m used by A) to recover the plaintext message m = DECk(c).

If data integrity and data origin authentication are desired, then the same principles apply

however instead of encrypting the message m into ciphertext c a tag t is first computed

where t =MACk(m) of the plaintext message using a MAC algorithm (of which there are

many) and the key. The plaintext message and the tag are both transmitted, and the

receiver can use the plaintext message to compute its own tag t’. If t = t’ then the

receiver can accept the message as having originated from the source.

While symmetric-key cryptography can be very efficient, the key distribution and key

management problems tend to render it ineffective for large scale systems

communicating to multiple partners [10]. In a network of N entities, each entity may

have to maintain keying material with each of the other N-1 entitites. Some symmetric-

key systems attempt to alleviate this problem by using an online trusted third party that

19

distributes the keys as required, however for control systems this creates a single critical

point of failure that will be unacceptable as control systems become more and more

distributed and de-centralized. Additionally, while key distribution in symmetric-key

cryptography may be possible through a physical courier on a ship (for NGIPS) it will not

be practical for large scale systems such as the Smart Grid.

2.3.2 Public-key Cryptography

Public-key cryptography began in 1975 to address the aforementioned limitations in

symmetric-key cryptography. Unlike symmetric-key schemes, public-key schemes

require the keying material that is exchanged to only be authentic, but not secret.

Additionally, instead of each pair of entities sharing a secret key, each entity selects a

single pair of keys (e, d) consisting of a public key e and a related private key d. The

entity keeps the private key a secret from all other entities and shares the public key with

all other entities. The keys are mathematically related but it is computationally infeasible

to determine the private key solely from knowledge of the public key. Deriving the

private key from the public key is equivalent to solving a computational problem that is

believed to be intractable.

2.3.2.1 RSA

The most commonly used public-key cryptography scheme is RSA, named after its

inventors Rivest, Shamir, and Adleman [11]. It was first proposed in 1977 shortly after

the discovery of public-key cryptography. In RSA, the public key consists of a pair of

integers (n, e) where n is the modulus. The modulus is a product of two randomly

20

generated (and secret) primes p and q which are of the same bitlength. Algorithm

2.3.2.1.A below shows how to generate an RSA key pair. RSA encryption and signature

schemes use the fact that med = m (mod n). Algorithms 2.3.2.1.B and 2.3.2.1.C show how

basic RSA encryption and decryption work respectively. The hardness in breaking RSA

is based on the integer factorization problem, i.e. determining the secret primes p and q

from the public key for large values of bitlength l.

The RSA signature generation and signature verification algorithms are shown in

algorithm 2.3.2.1.D and 2.3.2.1.E. As in all signature schemes, the signer first generates

a cryptographic hash function H which acts in a similar manner as the tag in symmetric-

key encryption. The signer then generates the signature and transmits the message m

along with the signature s to a verifying party.

In order to increase the efficiency of RSA, smaller exponents can be selected. In

practice, the most commonly chosen values of e are e = 3 and e = 65537 for encryption

and signature verification [11]. Note that there is no known attack against using small

public exponents as long as proper padding is used. Decryption and signature generation

always use the exponent d (the private key) which is the same bitlength as n. Thus RSA

encryption and signature verification with small values of e are significantly faster than

RSA decryption and signature generation.

Algorithm 2.3.2.1.A [10] – Generating RSA Key Pair

 INPUT: bitlength l

OUTPUT: RSA public key (n, e) and private key d

1. Randomly select two primes p and q of the same bitlength l / 2

21

2. Compute n = pq and Φ = (p-1)(q-1)

3. Select an arbitrary integer e with 1 < e < Φ and gcd(e, Φ) = 1

4. Compute the integer d satisfying 1 < d < Φ and ed ≡ 1 (mod Φ)

5. Return (n, e, d)

Algorithm 2.3.2.1.B [10] – RSA Encryption

 INPUT: RSA public key (n, e), plaintext m ϵ [0, n-1]

OUTPUT: Ciphertext c

1. Compute c = me mod n

2. Return (c)

Algorithm 2.3.2.1.C [10] – RSA Decryption

 INPUT: RSA public key (n, e), RSA private key d, ciphertext c

OUTPUT: Plaintext m

1. Compute m = cd mod n

2. Return (m)

Algorithm 2.3.2.1.D [10] – RSA Signature Generation

 INPUT: RSA public key (n, e), RSA private key d, message m

OUTPUT: Signature s

1. Compute h = H(m) where H is a cryptographic hash function

2. Compute s = hd mod n

3. Return (s)

22

Algorithm 2.3.2.1.E [10] – RSA Signature Verification

 INPUT: RSA public key (n, e), message m, signature s

OUTPUT: Acceptance or rejection of the signature

1. Compute h = H(m) where H is the same cryptographic hash function used by the

signing party

2. Compute h’ = se mod n

3. If h = h’ then accept the signature, else reject

2.3.2.2 Digital Signature Algorithm

In 1976 Diffie and Hellman proposed developing a key agreement protocol based on the

discrete logarithm problem (DLP) [10], which like the integer factorization problem used

in RSA is computationally infeasible to solve. Discrete logarithms are group-theoretic

analogues of ordinary logarithms. For example, an ordinary logarithm loga(b) is a

solution of the equation ax = b for x. In a discrete logarithm, you have a group G which

consists of a range of integer values from 0 to n-1. If a and b are elements in the group

then a solution of x of the equation ax = b is called a discrete logarithm to the base a of b

in the group G. In a discrete logarithm public-key cryptography system a key pair is

associated with a set of domain parameters (p, q, g). Algorithm 2.3.2.2.A shows how

these domain parameters are generated, and Algorithm 2.3.2.2.B shows how to generate

corresponding key pairs.

In 1984 ElGamal described discrete logarithm public-key encryption and signature

schemes, and since then many different variants have been proposed leading up to the

23

establishment of the Digital Signature Algorithm (DSA) [10]. DSA was proposed in

August 1991 by the U.S. National Institute of Standards and Technology (NIST) and was

specified in a U.S. Government Federal Information Processing Standard (FIPS 186),

adopted in 1993. A minor revision was issued in 1996 as FIPS 186-1, which was

expanded further in 2000 as FIPS 186-2 and again in 2009 as FIPS 186-3 [12].

Algorithms 2.3.2.2.C and 2.3.2.2.D shown below give the procedures respectively for

DSA signature generation and verification.

Algorithm 2.3.2.2.A [10] – Discrete Logarithm Domain Parameter Generation

 INPUT: Parameters l and t

OUTPUT: Discrete logarithm domain parameters (p, q, g)

1. Select a t-bit prime q and an l-bit prime p such that q divides p-1

2. Select an element g of order q

a. Select arbitrary h ϵ [1, p-1] and compute g = h(p-1)/q mod p

b. If g = 1 then repeat 2.a.

3. Return (p, q, g)

Algorithm 2.3.2.2.B [10] – Discrete Logarithm Key Pair Generation

 INPUT: Discrete logarithm domain parameters (p, q, g)

OUTPUT: Public key y and private key x

1. Select x ϵR [1, q-1]

2. Compute y = gx mod p

3. Return (y, x)

24

Algorithm 2.3.2.2.C [10] – DSA Signature Generation

 INPUT: Discrete logarithm domain parameters (p, q, g), private key x, message m

OUTPUT: Signature (r, s)

1. Select k ϵR [1, q-1]

2. Compute T = gk mod p

3. Compute r = T mod q, if r = 0 then go to step 1

4. Compute h = H(m), where H is a cryptographic hash function

5. Compute s = k-1(h+xr) mod q, if s = 0 then go to step 1

6. Return (r, s)

Algorithm 2.3.2.2.D [10] – DSA Signature Verification

 INPUT: Discrete logarithm domain parameters (p, q, g), public key y, message m,

signature (r, s)

OUTPUT: Acceptance or rejection of the signature

1. Verify that r and s are integers in the interval [1, q-1], if either verification fails

then reject the signature

2. Compute h = H(m), where H is the same cryptographic hash function used by the

signing party

3. Compute w = s-1 mod q

4. Compute u1 = hw mod q and u2 = rw mod q

5. Compute T = gu1 yu2 mod p

6. Compute r’ = T mod q

25

7. If r’ = r then accept the signature, else reject

2.3.2.3 Limitations Using Public-Key Cryptography

In cryptography, the security of an algorithm cannot exceed its key length (measured in

bits) since any algorithm can be cracked by brute force. A key therefore should be

sufficiently large enough such that a brute force attack is infeasible – i.e. it would take

too long to execute. If there is some indicator that an attack may exist to feasibly break a

key for a particular algorithm in an efficient manner for some bit length, then the size of

the key is increased to provide additional security. The key size to security level ratio is

not the same for all categories of algorithms.

As of 2003 [13] RSA Security claims that 1024-bit RSA keys are equivalent in strength

to 80-bit symmetric keys, 2048-bit RSA keys to 112-bit symmetric keys and 3072-bit

RSA keys to 128-bit symmetric keys. RSA claims that 1024-bit keys are likely to become

insecure sometime between 2006 and 2010 and that 2048-bit keys are sufficient until

2030. An RSA key length of 3072 bits should be used if security is required beyond

2030. NIST key management guidelines further suggest that 15360-bit RSA keys are

equivalent in strength to 256-bit symmetric keys. These key lengths, while

implementable in Information / Corporate systems, are infeasible in Control Systems

where processing power and data storage is limited. Therefore an alternative public-key

algorithm is needed that provides the benefits of algorithms such as RSA and DSA

without the excessive key lengths required by these algorithms.

26

CHAPTER 3: ELLIPTIC CURVE CRYPTOGRAPHY

3.1 Background

Elliptic curve public key cryptosystems were first independently proposed by V.S. Miller

(1985) [14] and by N. Koblitz (1987) [15]. They have only recently begun to be used in

commercial systems, and adoption has been slow. This is primarily due to concerns

about intellectual property, as a number of optimizations and special algorithms used to

increase efficiency have been patented in recent years. Despite these concerns, elliptic

curve cryptography (ECC) has grown resulting in its inclusion in standards by accredited

standards organizations such as ANSI (American National Standards Institute) [16, 17],

IEEE (Institute of Electrical and Electronics Engineers) [18], ISO (International

Standards Organization [19, 20], and NIST (National Institute of Standards and

Technology [21].

The most prominent group for the standardization and propagation of ECC technology is

SECG (Standards for Efficient Cryptography Group) [22]. They have published

numerous and detailed works on the subject, including documents on how to implement

ECC and on recommended elliptic curve domain parameters [23, 24]. The SECG

consists of a number of organizations including NIST and key industrial partners such as

VISA, Fujitsu, and Certicom. Certicom, which is a wholly owned subsidiary of Research

in Motion (RIM), is the main industrial leader in ECC, with over 350 patents and patents

pending worldwide covering key aspects of the technology [25].

In order to promote the use of ECC technology, NIST has licensed 26 patents held by

Certicom with the right to grant sublicenses for free to industrial vendors for developing

27

products used for protecting national security information [6]. NIST has also identified a

subset of key ECC technologies for use in Smart Grid and related applications, such as

the Elliptic Curve Digital Signature Algorithm as part of its NSA Suite B collection of

approved encryption, key exchange, digital signature, and hashing protocols. It is also

worth noting that ECC implementation strategies based on the fundamental algorithms of

ECC, which were published prior to filing dates of many patents can be found in the

IETF Memo “Fundamental Elliptic Curve Cryptography Algorithms.” [26]

3.2 Mathematical Foundations

This section presents an overview of the mathematical techniques and concepts required

for an intermediary level of understanding of elliptic curve cryptography. This material

is sufficient for engineering purposes to develop ECC systems using standardized

existing mathematic implementations and standardized elliptic curve domain parameters.

The works of Koblitz [15], Miller [14], Hankerson et al [10], and the SECG [23] can be

referred to for more advanced mathematical concepts that may be helpful should the need

arise for development of new implementations or the use of random elliptic curve domain

parameters.

3.2.1 Finite Fields

A finite field Fqm consists of a finite set of objects called field elements together with the

description of two operations – addition and multiplication – that can be performed on

pairs of field elements. Subtraction and division within a finite field are defined in terms

of an additive inverse and multiplicative inverse, respectively. In ECC there are two

28

kinds of fields that are primarily used: prime finite fields Fp with q=p and m=1, with q

being prime; and binary fields F2m where q=2 for some m ≥ 1. A third type of field less

commonly used is known is Optimal Extension Fields (OEF). The general idea in OEFs

is to select values of q and m, along with a reduction polynomial to more closely match

underlying hardware characteristics [10]. At this time there are no recommended

implementations of ECC by SECG that utilize OEFs, and therefore they are only

mentioned here for completeness.

Equations involving finite fields do not explicitly denote the mod p operation, but it is

understood to be implicit.

3.2.1.1 Prime Finite Fields [23]

Elements in a prime finite field Fp should be represented by the set of integers:

{0, 1, …, p-1}

Operations on prime finite fields are defined as follows:

 Addition: If a, b ϵ Fp, then a + b = r in Fp, where r ϵ [0, p-1] is the remainder

when the integer a + b is divided by p.

 Multiplication: If a, b ϵ Fp, then ab = s in Fp where s ϵ [0, p-1] is the remainder

when the integer ab is divided by p.

 Additive inverse: If a ϵ Fp, then the additive inverse (-a) of a in Fp is the unique

solution to the equation a + x ≡ 0 mod p.

 Multiplicative inverse: If a ϵ Fp, a ≠ 0, then the multiplicative inverse a-1 of a in

Fp is the unique solution to the equation ax ≡ 1 mod p.

29

In order to increase efficiency and to facilitate interoperability, prime finite fields using

the NIST primes should be use. These finite fields have:

[log
2
p] ϵ {192, 224, 256, 384, 521]

Except for 521, p is aligned with word size to increase efficiency in computation and

communication. 521 is an anomaly that is often included to align with the U.S.

government’s recommended elliptic curve domain parameters.

3.2.1.2 Binary Finite Fields [23]

Elements of a binary finite field F2m should be represented by the set of binary

polynomials of degree m-1 or less:

{a
m-1

x
m-1

 + a
m-2

x
m-2

+ … + a
1
x + a

0
 : a

i
 ϵ {0,1} }

and an irreducible polynomial f(x).

Operations on binary finite fields are defined as follows:

 Addition: If a = a
m-1

x
m-1

+a
m-2

x
m-2

+…+ a
0
, b = b

m-1
x

m-1
+b

m-2
x

m-2
+…+ b

0
 ϵ F2m,

then a + b = r in F2m where r = r
m-1

x
m-1

+r
m-2

x
m-2

+…+ r
0
 with r

i
 ≡ a

i
+b

i
 mod 2

 Multiplication: If a = a
m-1

x
m-1

+a
m-2

x
m-2

+…+ a
0
, b = b

m-1
x

m-1
+b

m-2
x

m-2
+…+ b

0
 ϵ

F2m, then ab = s in F2m where s = s
m-1

x
m-1

+s
m-2

x
m-2

+…+ s
0
 is the remainder when

the polynomial ab is divided by f(x) with all coefficient arithmetic performed

modulo 2.

 Additive inverse: If a ϵ F2m, then the additive inverse (-a) of a in F2m is the unique

solution to the equation a + x ≡ 0 in F2m.

30

 Multiplicative inverse: If a ϵ F2m, a ≠ 0, then the multiplicative inverse a-1 of a in

F2m is the unique solution to the equation ax ≡ 1 in F2m.

In order to increase efficiency and interoperability, the characteristic binary finite fields

used should have:

m ϵ {163, 233, 239, 283, 409, 571]

These fields were chosen in order to construct a suitable Koblitz curve whose order is 2

or 4 times a prime over F2m. The field with m = 239 is an anomaly shown here because it

has already been widely used in practice. The field with m = 283 is an anomaly that is

often included to align with the U.S. government’s recommended elliptic curve domain

parameters.

Multiplication should be performed using one of the irreducible binary polynomials of

degree m in Figure 3.2.1.2.A below. These polynomials enable efficient calculation of

field operations, except for the polynomial with m = 239 which is an anomaly shown

here because it has been widely deployed.

Field Reduction Polynomial(s)

F2163 f(x) = x163+x7+x6+x3+1

F2233 f(x) = x233+x74+1

F2239 f(x) = x239+x36+1 or x239+x158+1

F2283 f(x) = x283+x12+x7+x5+1

F2409 f(x) = x409+x87+1

F2571 f(x) = x571+x10+x5+x2+1

Figure 3.2.1.2.A Binary Finite Field Reduction Polynomials

31

3.2.2 Elliptic Curves

Elliptic curves are most commonly shown in the form of the simplified Weierstrass

equation in the form of:

y2 = x3 + ax +b

where

4a3 + 27b2 ≠ 0

This condition is critical to ensure that the elliptic curve is “smooth”, i.e. that there are no

points at which the curve has two or more distinct tangent lines. The curves shown in

Figure 3.2.2.A illustrate examples of elliptic curves satisfying this condition.

Figure 3.2.2.A Sample Elliptic Curves [10]

The security of ECC is based on the elliptic curve discrete logarithm problem (ECDLP),

which arises when elliptic curves are used over finite fields. The ECDLP is [10]: given

an elliptic curve E defined over a finite field Fq, a point P ϵ E(Fq) of order n, and a point

32

Q ϵ <P>, find the integer l ϵ [0, n-1] such that Q = lP, where <P> is the subgroup

generated by P. The integer l is called the discrete logarithm of Q to the base P, denoted l

= log
P
Q. The elliptic curve domain parameters for cryptographic schemes should be

carefully chosen in order to resist all known attacks on the ECDLP. However, since the

methods for computing solutions to the ECDLP are much less efficient then methods

used for computing solutions to integer factorization (used in RSA) ECC can provide the

same level of security as RSA with smaller key lengths, and ECC scales much better at

higher levels of security than RSA.

When an elliptic curve E is defined over a field (call it K) there exist rules for adding two

points in E(K) to give a third point in E(K). This operation is commonly known as point

addition. Furthermore, there also exist rules for doubling a point as to obtain another

point, an operation commonly known as point doubling. Figure 3.2.2.B below shows a

geometric representation of both of these rules.

Figure 3.2.2.B Geometric Representation of Point Addition and Point Doubling [10]

33

Algebraic formulas for these operations can be derived from the geometric

representation. The exact formulas themselves (the group law) will vary depending on

whether you are using a simplified Weierstrass form or the complete form. They will

also vary depending on the characteristic q of the underlying field [10]. We consider

these cases:

 The characteristic of the underlying field K is not 2 or 3 (e.g. K = Fp where p > 3

is a prime)

 The curve E is non-supersingular of the form over K = F2m

 The curve E is supersingular of the form over K = F2m

The easiest group law to understand is for that of the simplified Weierstrass form for

char(K)≠2,3, shown in Figure 3.2.2.C. Group laws for the simplified Weierstrass form

for char(K)=2 are shown in Figures 3.2.2.D and 3.2.2.E for non-supersingular and

supersingular curves respectively.

Figure 3.2.2.C Group Law for E(Fp): y
2=x3+ax+b, char(K) ≠2,3 [10]

34

Figure 3.2.2.D Group Law for non-supersingular E(F2m): y2+xy=x3+ax2+b [10]

Figure 3.2.2.E Group Law for supersingular E(F2m): y2+cy=x3+ax+b [10]

35

3.2.3 Projective Coordinates

The group laws shown in section 3.2.2 illustrate that the formulas for point addition and

point doubling require field inversions and field multiplications. These are complex

operations for the very large fields typically used in cryptographic applications. If

inversion in a field K is significantly more expensive than multiplication (and it typically

has a cost of roughly 80 field multiplications [10]), then the use of a technique known as

projective coordinates may be advantageous to use.

Projective coordinates essentially works by defining an equivalence relationship between

a field K and a set K3\{0,0,0}. The relationship is obtained by replacing x with X/Zc and y

with Y/Zd, and clearing the denominators. We end up with a 1-1 relationship between the

affine points that lie on E and the projective points on E. There are a number of different

versions of projective coordinates, with varying values of c and d.

In the “standard projective coordinates” c and d are both set to one. Another form of

projective coordinates known as “Jacobian coordinates” sets c=2 and d=3. This changes

the simplified Weierstrass equation from:

y2 = x3 + ax +b

to the projective form:

Y2 = X3 + aXZ4 + bZ6

The result of this change allows a new group law to be formed in which point doubling

can be computed using six field squarings and four field multiplications [10]. The use of

field inversions is now no longer required. Algorithms also exist to perform point

multiplication between points in different coordinate systems, such as affine and

36

Jacobian. Jacobian coordinates yield the fastest point doubling, while mixed Jacobian-

affine coordinates yield the fastest point addition.

A third type of coordinate system is “Chudnovsky coordinates”. In Chudnovsky

coordinates Jacobian coordinates (X:Y:Z) are represented as (X:Y:Z:Z2:Z3). There are

some point multiplication algorithms that make use of the redundancy in Chudnovsky

coordinates and use mixed Jacobian-Chudnovsky and mixed Chudnovsky-affine

coordinates for point addition. Figure 3.2.3.A below gives some example operation

counts for using projective coordinates in point addition. In the figure A represents affine

coordinates, P represents standard projective coordinates, J represents Jacobian

coordinates, and C represents Chudnovsky coordinates. The mathematical operations of

field inversion, field multiplication, and field squaring are representated as I, M, and S

respectively.

Figure 3.2.3.A Operation Counts on y2 = x3 - 3x+b [10]

3.2.4 Point Multiplication

In cryptographic applications point multiplication (the computation of kP where P is a

point on the curve and k is an integer) dominates the execution time of ECC schemes.

There are three cases where point multiplication occurs:

 kP where precomputation must be online

 kP for P known in advance and precomputation may be offline

37

 kP + lQ where only the precomputation for P may be done offline

The last two cases are motivated by the Elliptic Curve Digital Signature Algorithm

(ECDSA), where signature generation requires a calculation kP where P is fixed, and

signature verification requires a calculation kP + lQ where P is fixed and Q is known a

priori.

There are a number of mathematical techniques that can be used in order to increase the

efficiency of point multiplications. Some methods, such the “sliding-window methods”,

require that extra memory be available. Additionally, if the point P is fixed and some

storage is available, then the point multiplication kP can be accelerated by pre-computing

some of the data dependent on P using a type of fixed-base windowing method such as

that proposed by Brickell, Gordon, McCurley, and Wilson [10]. Shamir’s Trick is yet

another method used specifically to speed up the calculation of kP + lQ by performing

simultaneous multiple point multiplication [10].

3.3 Domain Parameters

As stated previously, the elliptic curve domain parameters for cryptographic schemes

should be carefully chosen in order to resist all known attacks on the ECDLP. In general,

for elliptic curves over a finite field Fqm , the following domain parameters are required to

be specified:

D = (q, FR, S, a, b, P, n, h)

Where:

q – field order

FR – field representation

38

S – seed, used if the elliptic curve was generated randomly

a & b – coefficients in the field Fqm that define the equation over the field

P – the base point P=(xp, yp) ϵ Fqm that has prime order

n – the order of P

h – the cofactor h=#E(Fqm) / n

This section describes the domain parameters needed to generate curves for the prime and

binary finite fields used in ECC. We then go on to discuss the use of standardized special

curves and the generation of new random curves, discussing the pros and cons of each.

3.3.1 Prime Field Elliptic Curves

For elliptic curve domain parameters over Fp the domain parameters are the sextuple:

D = (p, a, b, P, n, h)

They consist of an integer p specifying the finite field along with certain general domain

parameters defined above. Elliptic curve domain parameters over Fp precisely specify an

elliptic curve and a base point. This is necessary to define public-key cryptography

schemes based on ECC [24]. If the elliptic curve domain parameters are verifiably

random than they should be accompanied by the seed value S from which they are

derived [24].

3.3.2 Binary Field Elliptic Curves

For elliptic curve domain parameters over F2m the domain parameters are the septuple:

D = (m, f(x), a, b, P, n, h)

39

They consist of an integer m specifying the finite field F2m, an irreducible binary

polynomial f(x) of degree m specifying the representation of F2m, along with certain

general domain parameters defined above. Elliptic curve domain parameters over F2m

precisely specify an elliptic curve and a base point. This is necessary to define public-

key cryptography schemes based on ECC [24]. If the elliptic curve domain parameters

are verifiably random than they should be accompanied by the seed value S from which

they are derived [24].

3.3.3 Standardized Versus Random Curves

In order to increase efficiency of cryptographic implementations and to prevent all known

attacks, various standardized domain parameters have been developed for elliptic curves

over both prime and finite fields. These standardized, or “special”, curves have been

published by the SECG [24] and are recommended by NIST for use in U.S. government

applications. However, in order to guard against future attacks against these curves one

might decide to generate a new curve randomly but that has a validation process that

proves the new curve resists all known attacks on the ECDLP. Fortunately algorithms

exist to accomplish this very task [10].

The conventional wisdom of ECC has been, as described by Koblitz [27]:

 For greatest security choose parameters as randomly as possible

 It is safest to choose the defining equation to have random coefficients

 It is okay to use special curves for reasons of efficiency if you insist, however that

choice may one day come back to bite you

40

Recent work on isogenies in elliptic curve cryptography has shown that there are various

scenarios in which a special curve is better than a random curve. Isogenies, simply put,

allow one to transport the discrete logarithm problem from one curve to another. It is

“random self-reducible” within a set of endomorphism classes with small conductor gaps.

Work in this area has shown that we need to assume that some version of a Weil Descent

attack or another approach someday will lead to a faster-than-sqrt attack on a small but

non-negligible portion of random curves [27].

It is unknown at this time whether random curves are truly more secure than special

curves. Therefore, for control systems for the Smart Grid and NGIPS following the NIST

recommendation seems to be the most prudent.

3.4 Known Attack Mechanisms against ECC

This section presents a basic overview of the theory behind various attacks against ECC,

focusing more on the implications of these attack methods and the countermeasures to

these attacks. Attacks against ECC focus on finding ways to solve the ECDLP in sub-

exponential time. It should be noted that using ECC technologies such as the Elliptic

Curve Digital Signature Algorithm (ECDSA) using any of the SECG recommended

elliptic curve domain parameters [24] will provide protection against all known attacks

(i.e. render these attacks computationally infeasible).

3.4.1 Naïve Method

The most naïve method for solving the ECDLP is to perform an exhaustive search where

one computes the sequence of points 1P, 2P, 3P,…lP until Q is encountered. On average

41

this will take n/2 steps. Therefore the naïve method can be circumvented by selecting

elliptic curve domain parameters with n being sufficiently large to represent an infeasible

number of calculations (e.g. n = 280) [10]. Therefore other methods of solving the

ECDLP must be sought.

The best general-purpose attack known on the ECDLP is the combination of the Pohlig-

Hellman algorithm and Pollard’s rho algorithm [10]. Even these attacks can have an

exponential running time depending on the selection of the domain parameters.

However, it should be noted that there exists no mathematical proof that there does not

exist an efficient algorithm for solving the ECDLP. Some evidence for the intractability

of the ECDLP does exist and researchers have been studying the problem extensively

since 1985 when it was first proposed [10].

3.4.2 Pohlig-Hellman Attack

The Pohlig-Hellman attack uses an algorithm that reduces the computation of l = log
p
Q

to the computation of discrete logarithms in the prime order subgroups of <P>.

Therefore in order to maximize resistance to the attack domain parameters should be

selected such that the order n of P is divisible by a large prime so that the subgroup field

is large.

3.4.3 Pollard’s rho Attack

The idea of Pollard’s rho attack is to find distinct pairs (c’, d’) and (c’’, d’’) of integers

modulo n such that:

c’P + d’Q = c”P + d”Q

42

Hence l = log
p
Q can be obtained by computing

L = (c’-c”)(d’-d”)-1 mod n

This attack on its own takes roughly the same expected time as the naïve method but has

negligible storage requirements [10]. There are multiple ways of speeding up this attack,

including methods of parallelizing the attack to allow multiple processors to work

together to solve an ECDLP instance in which the speedup is linear to the number of

processors used. The processors also do not have to communicate to each other and

need only limited communications to a central server.

3.4.4 Index-Calculus Attacks

Index-calculus algorithms are the most powerful methods known for computing discrete

logarithms in groups such as the multiplicative group of a finite field. The question that

naturally arises is whether these algorithms can be used to solve the ECDLP in sub-

exponential time. The problem for the ECDLP is that no one knows yet how to

efficiently lift points in E(Fp) to E(Q). Additionally, it has been proven under some

reasonable assumptions that the number of points of the small height required for these

algorithms is extremely small so that only an insignificant proportion of the points can be

lifted. Therefore, so far no one has found an index-calculus approach that yields a

general subexponential-time (or better) algorithm for the ECDLP [10].

3.4.5 Isomorphism Attacks

Isomorphism attacks essentially try to reduce the ECDLP to the DLP in groups for which

subexponential-time (or faster) algorithms are known. Consequently the ECDLP for

43

curves on which an isomorphism attack are found can be efficiently solved. Weil and

Tate pairing attacks and Weil descent attacks are examples of isomorphism attacks [10].

3.5 Cryptographic Protocols Useful for Control Systems

As discussed in section 1.3.1 the primary need for control systems is to verify data

integrity and authentication. This need is fulfilled in corporate / non-control systems

through the use of the Digital Signature Algorithm discussed in section 2.3.2.2.

However, as discussed in section 2.3.2.3 the use of this algorithm is infeasible for control

systems. Elliptic curves offer us an alternative path through the use of the Elliptic Curve

Digital Signature Algorithm (ECDSA). There are also a number of other alternative

elliptic curve signature schemes, such as Elliptic Curve ElGamal Signatures (ECES) and

Abbreviated ECES Signatures (AECES). Since ECDSA is approved by NIST and

included in their NSA Suite B it is therefore the most suitable candidate for use in control

systems. The subsections below detail the algorithm, beginning with generating private

and public keys for use in ECDSA.

3.5.1 Key Generation

ECC key pairs are associated with the particular elliptic curve domain parameters used in

the generation of the key pair. The public key is a randomly selected point Q in the

group <P> generated by P. The private key that corresponds to the public key is the

solution to the ECDLP d = log
p
Q. The entity that is generating the key pair must have

the assurance that the domain parameters are valid (i.e. resistant to all known attacks),

44

and the association between the domain parameters and the public key must be verifiable

by all entities in the communication.

In non-control / corporate systems this would normally be done by a certification

authority that generates a certificate attesting to the association between a public key and

its domain parameters. Large scale control systems such as the Smart Grid will need to

perform the same function on some level. For smaller control systems, such as those

planned for use on US Navy ships for NGIPS, this association can be achieved by context

(i.e. all entities in the system use the same domain parameters).

Algorithm 3.5.1.A below illustrates how to generate an ECC key pair assuming valid

domain parameters. It is critical that the number d generated be random, as in the

likelihood that any particular value of d would be chosen over any other value is so small

that an adversary is unable to narrow down the search space for d. This is akin to the idea

that one should not select a password that includes their spouse’s name.

Algorithm 3.5.1.A [10] – Generating ECC Key Pair

 INPUT: Domain Parameters D = (q, FR, S, a, b, G, n, h)

OUTPUT: Public key Q, Private key d

1. Randomly select d ϵ
R
 [1, n-1]

2. Compute Q = dP

3. Return (Q, d)

Entities that receive a public key Q and a set of associated domain parameters will need

to validate the public key to ensure that the private key actually exists and that the keys

45

lie on the curve. Failure to perform public key validation could allow an attacker to try to

get you to use the invalid public key in such a way that information about your private

key could be revealed. Algorithm 3.5.1.B illustrates how to perform the required

validation.

Algorithm 3.5.1.B [10] – ECC Public Key Validation

 INPUT: Domain Parameters D = (q, FR, S, a, b, G, n, h), public key Q

OUTPUT: Acceptance or rejection of the validity of Q

1. Verify that Q ≠ ∞

2. Verify that x
Q
 and y

Q
 are properly represented elements of Fq (i.e. integers in the

interval [0, q-1] if the field is prime, and bit strings of length m bits if the field is

a binary field of order 2
m

)

3. Verify that Q satisfies the elliptic curve equation defined by a and b

4. Verify that nQ = ∞

5. If any verification fails then return invalid, else return valid

Note that the check is step 4 of Algorithm 3.5.1.B involves an expensive point

multiplication. Faster methods do exist for certain curves. For example, if the cofactor h

of a prime field curve is equal to 1 (which is usually the case in practice and for all of the

SECG recommend prime field curves [24]) then successful completion of the checks in

steps 1 through 3 imply that nQ = ∞ [10].

46

3.5.2 Elliptic Curve Digital Signature Algorithm (ECDSA)

Algorithms 3.5.2A and 3.5.2.B below define how to generate and verify ECDSA

signatures, respectively. In these algorithms, H denotes some cryptographic hash

function whose outputs have bitlength no more than that of n. If this condition is not

satisfied though, the outputs of H can be truncated. More information on hash functions

can be found in section 3.5.3.

ECDSA uses a per-message secret k that if discovered by an adversary can be used to

recover the private key since:

d = r
-1

(ks-e) mod n where e = H(m)

Furthermore it has been shown that if an adversary obtains even a few consecutive bits of

the secret k then the adversary can easily compute the private key. It is therefore of

utmost importance that k be randomly and securely generated, securely stored, and

securely destroyed after it has been used. The reason why k should be generated

randomly is to help ensure that k does not repeat. If the same per-message secret k was

used to generate ECDSA signatures (r, s1) and (r, s2) on two messages m1 and m2 then if

s1 ≠ s2 (which with overwhelming probability they will not be equal) it can be shown

that:

k ≡ (s
1
-s

2
)
-1

(e
1
-e

2
) mod n where e

1
 = H(m

1
) and e

2
 = H(m

2
) [10]

Thus an adversary could determine k and then use it to determine the private key d.

47

Algorithm 3.5.2.A [10] – ECDSA Signature Generation

INPUT: Domain Parameters D = (q, FR, S, a, b, P, n, h), private key d, message m

OUTPUT: Signature (r, s)

1. Randomly select k ϵ
R
 [1, n-1]

2. Compute kP = (x
1
, y

1
) and convert x

1
 to an integer x

1

3. Compute r = x
1

 mod n and if r =0 go to step 1

4. Compute e = H(m)

5. Compute s = k
-1

(e + dr) mod n and if s = 0 go to step 1

6. Return (r, s)

Algorithm 3.5.2.B [10] – ECDSA Signature Verification

INPUT: Domain Parameters D = (q, FR, S, a, b, P, n, h), public key Q, message m,

signature (r, s)

OUTPUT: Acceptance or rejection of the signature

1. Verify that r and s are integers in the interval [1, n-1], if any verification fails then

reject the signature

2. Compute e = H(m)

3. Compute w = s
-1

 mod n

4. Compute u
1
 = ew mod n and u

2
 = rw mod n

5. Compute X = u
1
P + u

2
Q

6. If X = ∞ then reject the signature

7. Convert the x-coordinate x
1
 of X to an integer x

1
 ; compute v = x

1
 mod n

48

8. If v = r then accept the signature, else reject

3.5.3 Supported Secure Hash Algorithms

Cryptographic hash functions are used in many applications within ECC, including

verifiably random curve and base point generators, key derivation functions, and

ECDSA. According to the SECG [24] supported hash functions for ECC are:

 SHA-1

 SHA-224

 SHA-256

 SHA-384

 SHA-512

On October 2, 2012 NIST concluded a competition for a new SHA-3 algorithm, selecting

Keccak as the winner. Future versions of SECG standards are likely to allow use of the

new SHA-3 [23].

The security level associated with a hash function depends on its application. Collision

resistance is generally needed for computing message digests in ECDSA, and where

collision resistance is needed the security level is at most half the output length (in bits)

of the hash function. Recent results have shown that SHA-1 provides less than 80 bits of

collision resistance [23] and therefore should be used with ECDSA only when providing

backwards compatibility.

49

3.6 Comparing RSA Signatures to ECDSA

It has already been stated that ECDSA offers security equivalent to RSA using much

smaller key sizes which can lead to increased efficiency. Figure 3.6.A below shows a

chart of comparable key sizes for equivalent levels of security. Figures 3.6.B through

3.6.D below show published literature execution times for ECDSA and RSA algorithms

for key generation, signature generation, and signature verification.

These times were taken from tests performed on an Intel Pentium 4 2.0 GHz machine

with 512MB of RAM, on a 100KB text file used as a message [29]. The authors used the

RSA Crypto++ Library 5.1™ and EC Borzoi 1.02 in their work. As discussed previously

though, the architecture for control system components such as PLCs is radically

different than that of an x86 architecture, and therefore these timings only provide a very

basic indication of what the performance of ECC might look like in control system

applications. Further research is required in this area to determine what the actual

timings would be on control system hardware.

Figure 3.6.A ECC vs RSA Comparable Key Sizes (in bits) [29]

50

Figure 3.6.B ECC vs RSA Key Generation [29]

Figure 3.6.C ECC vs RSA Signature Generation [29]

Figure 3.6.D ECC vs RSA Signature Verification [29]

The results show that ECC outperforms RSA significantly in key generation time, and

performs signature generation faster than RSA for higher key sizes. RSA outperforms

ECC in signature verification significantly for all key sizes. The times appear to show

that RSA signature verification time is fairly independent of key size and for practical

51

purposes this is true, however this is really just due to the resolution at which testing was

performed (for example RSA signature verification at 7680 bit key size should be

approximately 0.008 seconds while signature verification at 15360 bit key size should be

approximately 0.032 seconds). ECC signature verification grows linearly with an increase

in key size, however the times show that RSA significantly outperforms ECC in this area.

Signature verification is therefore of particular concern in looking at implementing ECC

signature algorithms for control systems. At stronger levels of security with larger key

sizes, ECDSA will outperform RSA for the total message transmission (including both

signature generation and verification) since ECC signature verification timing scales

linearly while RSA signature generation timing scales exponentially (due to the

exponential increase in key sizes) for equivalent levels of security.

A variant of ECDSA, known as the Elliptic Curve Korean Certificate-based Digital

Signature Algorithm (EC-KCDSA) may hold promise if ECDSA does not prove to be

efficient for use in control systems. In EC-KCDSA the signer’s private key is an integer d

ϵ
R
 [1, n-1] as is in ECDSA, but the public key is instead Q= d-1P (instead of dP). This

allows for the design of signature generation and verification procedures that do not

require performing modular inversion and therefore could potentially be more applicable

in meeting control system needs should ECDSA prove impractical. EC-KCDSA has

been proven secure under the assumptions that the discrete logarithm problem is

intractable and that the hash function is a random function.

An alternative variant of ECDSA, proposed by Antipa et al (2005) [32], involves

reconstructing the ephermeral elliptic curve point R from the signature component r. In

other words one converts the ECDSA signature (r, s) over some message m to a new

52

ECDSA* signature (R, s). Antipa et al provide a general procedure for this change which

accepts the ECDSA signature as an input, performs the reconstruction/conversion, and

returns either acceptance or rejection of the signature. This speeds up ECDSA signature

verification by 35-40% at the cost of only a small number of bits appended to traditional

ECDSA signatures.

Unfortunately, the EC-KCDSA algorithm and the ECDSA*algorithms are non-compliant

with any of the existing ECDSA standards.

3.7 OpenSSL ECC Implementation

As much as has been discussed up to this point on the underlying mathematics and

implementation theory of ECC and ECDSA, in particular, most engineers never develop

their own implementations. They instead rely on existing implementations which they

incorporate into their own products. OpenSSL provides a suite of cryptographic toolkits

including toolkits for ECC written in C that can be readily incorporated into new

products.

The ECC implementations present in OpenSSL were contributed by Sun (now Oracle)

and offered freely with “patent peace provision” language (meaning they will not sue

anyone for using their implementation and ask, but not require, that you do not sue them

if they use a product you develop with their technology). This implementation was

theoretically written in a way that avoids any patented method by basing the

implementation on the current IETF [26] draft [30]. However the issue of patents

appears to be far from settled, and some versions of Linux such as Red Hat do not include

53

the ECC toolkits in their versions of OpenSSL. There also exist JAVA and .NET

implementations.

While it is true that in control systems the OpenSSL toolkit cannot be used by PLCs

(since they cannot run C binaries), VME technologies including SoftPLC may be able to

leverage the OpenSSL implementation. Currently there are no known implementations

of ECC written specifically for control systems that are compliant with IEC 61131-3 or

IEC 61499.

3.8 ECC Certificates

As discussed in section 3.5.1, certificates play a key role in cryptographic systems. In

ECC, they are used in order to associate a public key with a set of domain parameters.

The problem with ECC is that current there are no Certificate Authorities supported by

major web browsers for ECC, causing some to not consider ECC a true public-key

cryptography scheme. SECG is working hard on changing this, establishing itself as an

ECC certificate authority and publishing standards to indicate ECC keys and their usage

within X.509 certificates [31]. However there is still significant work to do in this area in

order to truly make ECC a viable solution for complex control systems such as that in the

Smart Grid. For smaller control systems such as those planned for usage in NGIPS

(which are still vastly complex by industry standards with tens of thousands of I/O

points) the lack of a strong ECC certificate authority is not as much of a roadblock.

54

CHAPTER 4: PROTOTYPE OVERVIEW

4.1 Prototype Objectives

ECDSA shows promise for use in control systems, however there are a number of

questions that arise from the perspective of a controls engineer such as:

 How difficult will this be to implement?

 What impacts will this have on the performance of my controls algorithms?

 What kind of software maintenance is needed to support ECDSA in control

systems?

 What are the costs of implementing these algorithms?

In order to begin to answer these questions, we developed a prototype control system

that matches architectures used in real applications to run actual control algorithms. The

primary objective of the prototype was be to determine the viability of using ECDSA in

control system data authentication and verification.

Given the sheer complexity of developing a brand new implementation of ECDSA in IEC

61131-3 code a “proof of concept” study was needed to more accurately assess the

validity of using ECC technology in control systems before significant time and money

are invested. SoftPLCs provide a unique opportunity to perform this analysis by

developing a prototype system that is predominately written in IEC 61131-3 code but

allows the use of specialized custom function blocks written in other high level

languages. This allows the development of a prototype implementation of a control

system ECDSA algorithm that is able to reuse existing software libraries in order to avoid

the expense of developing ladder logic cryptographic functions. The prototype

implementation, being predominately written in ladder logic, can then be reused for a full

55

IEC61131-3 implementation by simply replacing the custom function blocks with

IEC61131-3 versions.

Please note that currently there are a large number of SoftPLC based control systems in

use in both Naval and industrial control system applications which would be better suited

for the prototype implementation. Therefore, an auxiliary goal of the project beyond

testing the capability of ECDSA is to create a software template that can be easily reused

by control system engineers in other applications at minimal cost. The prototype project

also included additional features beyond messaging such as enhanced alarming functions

that not only indicates communications status but failures in signature verifications,

indicating a potential hardware failure or adversary attack.

The remainder of this dissertation presents the system architecture, source code, timing

results, and stability results for a prototype ISaGRAF™ SoftPLC implementation of

ECDSA for control systems. ISaGRAF™ SoftPLCs are currently in use on a wide range

of industrial control applications around the world, and are currently employed by the

Navy in two major programs: the Littoral Combat Ship (LCS) Class and the Mobile

Landing Platform (MLP) Class for ship wide machinery control. The challenges and

solutions uncovered when developing the implementation are discussed, and guidelines

for converting the prototype into a full IEC 61131-3 compliant implementation is

presented.

4.2 System Architecture Overview

The primary goal of the prototype is to determine the overhead the ECDSA

implementation would have on control system operation. In order to have effective

56

control, the scan times for the logic must be sufficiently low enough to approximate real

time operation (less than 100 ms and ideally less than 50 ms). Additionally, for PLC to

PLC communications effective control requires transmitting and processing at least one

set of actions every 300 ms or less (ideally every 100 ms or less). There are a number of

different things that can impact both scan times and transmission times, particularly for

SoftPLCs running on a Windows OS, such as network latency and individual hardware

I/O access rates.

In order to obtain averages for scan times and transmission times a simple “round robin”

architecture was chosen as shown in Figure 5.A below. Four SoftPLCs, labelled 1

through 4, were configured so that each SoftPLC processes a piece of data and then

subsequently transmits it down the line, repeating the process in an indefinite loop. The

data transmitted included a number of simulated signals, including BOOL, INT, REAL,

DATE, and STRING values that were part of a small logic simulation routine.

Figure 4.2.A. SoftPLC Round Robin Architecture Concept

The primary data point of interest for this system is a DINT value called COUNT.

COUNT is a number that is initialized to 0 at the very start of the system. Each SoftPLC

receives COUNT as an input from its predecessor, verifies the digital signature that came

with the COUNT value, and if verification is successful it increments the COUNT value

57

by 1, generates a new message, and transmits the new message to the next PLC in the

loop. Figure 5.B below illustrates the count increment lifecycle within the PLC’s

execution processes. As can be seen, each value of count represents a complete set of

signature generation, data transmission, and signature verification actions. Transmission

time is then synonymous with the timing of the COUNT lifecycle. In order to determine

an average time, the system was run until it had reached a certain value of COUNT. The

runtime was then captured and the runtime divided by the COUNT gives us the average

transmission time.

 Figure 4.2.B. Count Increment Lifecycle Per SoftPLC Scan

Please note that some SoftPLC products offer an additional “WAIT” option as a step after

the DATA TRANSMISSION step in their PLC. This feature normally works by

predefining a PLC execution cycle time, like 100 ms, and essentially takes the 100 ms

minus the time it took to complete all of the above steps and then waits for that time until

it begins executing the next cycle. This is normally used to add a bit more determinism

to the SoftPLC and provides a window of opportunity for the operating system to execute

tasks. Since the goal of this prototype to determine loads by monitoring scan and

transmission times the WAIT feature was disabled.

58

The PLC scan times are monitored by using built-in tools that come with all major

SoftPLC and regular PLC packages. Scan time is not synonymous with transmission

time since the PLCs are not synchronized (as is typical with industrial operations).

Additionally, it is possible that a PLC might receive an invalid signature in a data

transmission due to events like network transmission errors that have damaged the data.

Any COUNT with an invalid signature is disregarded, making COUNT representative for

only successful transmissions with correct signature generation and verification.

4.3 Hardware Overview

Hardware Two test strings were used in the development and testing of the prototype,

Test String 1 and Test String 2.

4.3.1 Test String 1

Test String 1 used four Windows 7 virtual machines running on VMWare Player on top

of a Windows 7 Pro 64-bit machine. This system was primarily used for initial

development and testing. The ISaGRAF software was run on the main machine in order

to view the PLC code. The four virtual machines were bridged to the host NIC card

which was then connected to a router. DHCP was used to assign IP addresses to both the

host and virtual machines.

The main machine had the following relevant hardware specifications:

• I5-2500K processor, 4C, overclocked to 4.3 GHz, with 4x256KB of L2

Cache and 6MB of L3 Cache

• 16 GB RAM

59

• 1 GB Hardwired NIC

• 1.5 TB SATA 3 HDD

4.3.2 Test String 2

Test String 2 used four General Micro System VS275 Single Board Computer VME

boards in the same VME chassis. No communications across the VME backplane were

used. Each board was running Windows XP Professional, 32-bit, SP2. Figure X below

shows the front panel of the VS275.

Figure 4.3.2.A. VS275 Board

Each VS275 board had the following specifications:

• 2.16 GHz Core 2 Duo Processor, 4-MB L2 cache

• 3 GB of 667-MHz DDR-2 SDRAM

• 1 GB Hardwired NIC

• 64 GB SATA2 SSD

Hardwired Ethernet communications were used via the ENET port on the front of the

board. All four boards were connected to an 8 port flat 10/100 MB hub that was in turn

connected to a 10/100/1000MB router. A development station running ISaGRAF was

connected to the router directly in order to download the software to the boards and to go

online to the SoftPLCs. DHCP was used to assign IP addresses to each of the boards and

development station.

60

CHAPTER 5: SOFTWARE ARCHITECTURE

5.1 SoftPLC Package

There are two popular SoftPLC packages currently in use by the Navy: Rockwell

Canada’s ISaGRAF package and Siemens WinAC. Both packages can be used to

develop IEC 61131-3 ladder logic and include custom C function blocks. The primary

difference between the packages is that Siemens WinAC includes additional functionality

installed on the target hardware that adds real-time determinism and disables certain

functions in Windows that could result in a “blue screen of death” error. ISaGRAF, on

the other hand, is more comparable to Java in that it includes a simple executable known

as the ISaVM that in turn executes the logic. Like Java, ISaGRAF has multiple ISaVM

implementations that allow the software to be used with multiple platforms including

both Linux and Windows. Ultimately, ISaGRAF was chosen for this implementation

because it used on more US Navy Ships than Siemens WinAC and because Rockwell

Canada was willing to provide free licenses to support development of this prototype

(special thanks to Stephen Mizera at Rockwell Canada for his support).

The ISaVM executable lives with a collection of related executables in a folder that is

collectively referred to as the “target”. The target is installed onto the hardware via a

simple copy operation which can be performed anywhere within the file structure of the

SoftPLC’s operating system. The target includes a main program, “ISaGRAF.exe” that is

manually started by the user. This program then starts up the subprograms including both

ISaVM.exe and the default Ethernet communications program “ETCP.exe”. The target

also includes a text file known as the “target definition” file that describes details about

the target such as what custom C function blocks are available.

61

In order to develop custom C function blocks for inclusion in the ladder logic a tool

called TDBuild (Target Definition Builder) is used to define the input and output

variables of the function blocks. The tool is then used to auto-generate C code which

essentially provides the API between the ladder logic and the custom C code that was

developed as part of this prototype. TDBuild is also used to update the target definition

files, which are then read into the main ISaGRAF program in order to allow the software

to include the specialized function blocks in the ladder logic.

For Windows-based targets the custom C code is eventually compiled as a dynamic link

library (DLL) which is then copied into the target folder. This DLL, combined with the

target definition files discussed previously, provide full runtime access to the custom C

code for program execution. Note that you do not have to register the DLL with

Windows which greatly simplifies the install.

5.2 OpenSSL Usage

As stated previously, developing a custom IEC 61131-3 implementation of ECDSA is a

complicated endeavour and a prototype system that utilizes existing implementations is a

necessary first step. For this prototype the OpenSSL ECC implementation discussed in

Section 3.7 was been chosen for both its efficiency and its free and open source

availability to all controls engineers. There are three methods by which OpenSSL can be

included in a project:

1. By installing OpenSSL onto the target system and using its command line

interface.

62

2. By performing a fresh compile of OpenSSL as a dynamic library which

can then be copied onto the target system and used after first properly registering

the DLL.

3. By performing a fresh compile of OpenSSL as a static library which can

then be included in your application without having to first install OpenSSL onto

the target system or register any DLLs including the DLL used by the ISaGRAF

software itself.

For this prototype OpenSSL was compiled as a static library in order to simplify the

installation process onto the target machines (i.e. to keep the ISaGRAF target install

down to a simple copy operation). The downside to this option is that it does complicate

the structure of the actual C source code and increases the development time of the

prototype. It was decided that the increase in development time is justified by the

increased ability to use the prototype on existing Navy ship classes that are using

SoftPLCs and do not require a 100% IEC 61131-3 implementation, such as Littoral

Combat Ships (LCS) and Mobile Landing Platform (MLP) ships.

The following steps were performed to compile OpenSSL as a static library on a

Windows 7 machine:

1. Install Visual Studio 2010

2. Install Active Pearl 32-bit

3. Download the latest version of OpenSSL

4. Open the Visual Studio Command Prompt

5. Unzip OpenSSL to a directory such as C:\openssl-src-32

6. CD to the directory

63

7. Run the command: perl Configure VC-WIN32 –prefix=C:\Build-

OpenSSL-VC-32

8. Run the command: ms\do_ms

9. Run the command: nmake –f ms\nt.mak

10. Run the command: nmake –f ms\nt.mak install

The compiled library will end up in the C:\Build-OpenSSL-VC-32 directory.

5.3 Visual Studio 2010 Express

Visual Studio 2010 Express (a free product) was used to develop and compile the custom

C function blocks into a DLL. Importing the C code and header files generated by

TDBuild and to the Visual Studio project is a simple matter, but there are additional steps

that must be taken in order to configure the compiler to properly utilize the dependent

libraries in order to generate the DLL. The two critical steps required are:

1. Under Linker – General – Additional Library Dependencies add the

OpenSSL static library.

2. Under Linker – Input – Additional Dependencies add the libeay32.lib and

the ssleay32.lib.

Note that Visual Studio 2012 was also used successfully in the later stages of the project

to recompile the DLL and other C source code developed for the prototype as needed.

5.4 Cryptographic Algorithms Used

As discussed previously, creating a digital signature requires the use of two different

cryptographic algorithms: a hash function and a public-key cryptography function. The

64

hash function is performed first in order to process the arbitrarily long amount of data

into a fixed length tag. The cryptographic function then encrypts the data using the

private key, which can then be decrypted using the public key by an agent desiring to

verify the public signature.

For this work the SHA-512 algorithm was used in combination with the P-521 ECDSA

algorithm. The goal was to use the strongest measure of security possible at the time of

development, and it is worth noting that the weaker P-384 ECDSA algorithm is

considered valid for even TOP SECRET data. OpenSSL includes implementations of

both algorithms in the static library that was compiled.

Using the SHA-512 algorithm was relatively trivial, but the P-521 algorithm proved to be

a bit trickier than originally anticipated. The P-521 algorithm consists of 65 bytes of data

plus 1 bit. The extra bit, when true, results in an output of 66 bytes. When the extra bit is

false, the result is an output of 65 bytes. As will be illustrated in the walkthrough of the

C code (and as is shown in the source code comments) special considerations were

needed to monitor the output of the algorithm to ensure that the correct amount of data

was read.

5.5 Base64 Encoding / Decoding

Transmitting cryptographic keys and digital signatures between PLCs is not a trivial task.

PLCs only include a predefined number of data types such as BOOL, INT, DINT, and

STRING which can be transmitted between devices. All of the data types except for

STRING are therefore unsuitable for transmitting the keys and signatures due to the

insufficient bit length.

65

In most PLC products, the STRING variable can consist of any ASCII character array up

to a length of 255 characters according to the literature of the various vendors. This

would appear to give a data value of 2040 bits using ASCII encoding, sufficiently long

enough to transmit ECDSA keys and signatures. Note that this length is still too short for

the use of RSA keys and digital signatures which is one of the reasons why ECC

technologies were chosen.

The problem is that the 255 character set is misleading, since in ISaGRAF and in other

PLC products 3 of the 255 characters are reserved to process the STRING. One of the

three character slots must be used for the NULL character (which should indicate to the

experienced C programmer that the STRING data type is really a C-String and not the

more advanced string data type found in C++ or other high level languages).

Additionally, the STRING must begin with an apostrophe and end with an apostrophe.

The “apostrophe” problem becomes our greatest concern. When representing an ECDSA

signature or key in ASCII it is possible that the resulting ASCII string will output an

apostrophe in the middle of the key or signature. The PLC will interpret the second

apostrophe (and note that you must always start with an apostrophe) as the end of the

string and subsequently cut off the remaining data.

In order to work around this problem, a different character encoding must be used that

maximizes the data compression of the string representation. Hexadecimal representation

of the data was considered, but at only 4 bits per character it was considered insufficient.

A custom variant of ASCII was considered that didn’t use the apostrophe, but in the

interests of conforming to widely accepted standards this idea was dropped. Base64

encoding, using 6 bits per character, became the most logical choice.

66

Base64 encoding allows the cryptographic keys to be transmitted as a single string

variable for each key. The private key is represented by a 88 character string (plus 3 for

the null and the leading/lagging apostrophes). The public key, which represents a point

on an elliptic curve, is represented by a 178 character string (plus 3). The digital

signature is represented by two values, SIG_R and SIG_S, each with a length equivalent

to the private key. These values were transmitted as two separate strings to help facilitate

the need for possible future expansion.

Note that the STRING variables themselves which are storing the data in the PLC ladder

logic are required to be set to a fixed length. This is a fairly standard requirement by

most PLC manufacturers. In order to facilitate the need for future strong cryptography it

was decided to set the length for these variables in the ladder logic to the largest possible

value. As a consequence, the PLC STRING variables include padded data in addition to

the cryptographic keys or digital signatures.

5.6 Self-Signing Keys

One of the largest areas of discussion with using a public-key cryptography system for

control system security has been a concern about how to setup a public-key infrastructure

(PKI). In order for two systems to be able to communicate securely, there needs to be

some initial trust relationship established so that a receiving system which obtains a

public key from a sending system knows that the public key really belongs to that system.

Put another way, how does the receiver really know that the sender is who it claims to

be?

67

 In traditional information systems a Certificate Authority (CA) is used to issue

certificates to users. This certificate contains the identity of the key pair owner, the

owners public key, and a digital signature of the Certificate Authority. When users

communicate securely, they receive a copy of each other’s signed certificate (minus the

private key) and they establish trust in each other’s identity based on the successful

validation of the CA’s signature. Put another way, they trust each other because someone

else told them it was okay. Ultimately, even trusting the digital signature of a CA is

based on the idea that some human ultimately made the decision that the CA who issued

the certificates is of good repute.

This kind of complicated infrastructure is necessary in IT systems, since two

communicating systems may send a wide range of different kinds of data with a wide

disparity in both timing and content. Furthermore, an IT system may communicate only

once with another system it never heard of before and then never communicate to that

system again. This constant flux requires a PKI in order to establish trust relationships

with CAs and individual users. Unfortunately, running a PKI system requires a

significant amount of processing power and adds significant complexity to a control

system. Research is ongoing to develop a modified version of a PKI that can be executed

on operational technology platforms, however most of these are simply slightly modified

versions of the same technologies used in IT systems.

We believe that implementing a PKI for control systems is unnecessary. The two central

problems that a PKI system solves are 1) establishing a trust relationship between two

systems and 2) handling the large amount of flux in data transmitted between systems. In

Operational Technology systems, neither of these problems really exists. OT systems are

68

designed to communicate in a very consistent and precise manner, transmitting the same

basic message structure at a consistent interval to the exact same targets. The

relationship between these targets is established when the system is first commissioned

for operation (i.e. on the day of birth) and no new communication partnerships are ever

established without significant software changes and a recommissioning of the system.

Therefore, in designing this prototype, a different system for establishing

communications and updating keys was created. During commissioning, each system is

preconfigured with a public / private key pair, and the public keys of each part of the

system are given to each of the other parts. When an agent in the system decides to

change its public / private key pair (this decision is made at regular intervals with the

interval length configured at commissioning) it first generates a new key pair and then

signs the new public key with the old private key. This information is then transmitted to

each of the other agents in the system who then verify the key change message with the

old public key they currently have on file. If the digital signature is valid, the new public

key is accepted and the old public key is disregarded.

In order to ensure that an adversary will not be able to attack the system using the

original preconfigured public/private key pair each agent immediately changes its key to

a new random key pair at startup, before any other logic is processed. Additionally, since

there is no certificate authority and communications are highly deterministic there is little

risk in changing the key pairs at a much more frequent interval than what is typically

found in Information Technology systems (where certificates and keys can be valid for

years). In the prototype, each of the four SoftPLC agents were configured to change their

key pairs at 53 minutes, 59 minutes, 61 minutes, and 67 minutes respectively.

69

As a result, this system effectively generates keys 175,000 to 265,000 times more often

the PKI CA systems used in IT applications and greatly weakens an adversaries

capabilities to brute force crack the system. Ultimately, this allows for smaller key sizes

to be used by OT systems and thus reduces the required processing power and memory

required to effectively implement an ECDSA algorithm.

The major downside with this implementation is that an agent in the control system

which is powered down must retain their current public/private key pair in memory and

resume use of that key pair upon startup (though it can immediately change it). A agent

which does not have this capability may default back to the original pre-commissioned

key pair and will therefore be considered to be a bad actor by the other agents in the

system, requiring a complete re-initialization of the entire system. Fortunately, this

problem is easily solved by adding the required memory capabilities and is mitigated by

the fact that these kinds of systems are highly redundant and designed to run

uninterrupted for years without failures.

One alternative variation of this system under consideration is to commission each PLC

with a master public-private key pair, and then subsequently generate session public-

private key pairs which are used for the actual data verification signatures. An advantage

of this method is that the system is much more robust and capable of dealing with

circumstances such as power outages that may result in significant downtime. The

disadvantage is that more stringent controls will have to be put in place on the PLC

source code and design artifacts which may contain a particular PLC’s master public-

private key pair.

70

CHAPTER 6: SOURCE CODE WALKTHROUGH

Copies of the source code developed for this prototype with comments are available as

appendices to this dissertation, and key details and decisions made in designing the

software have been presented in the previous sections. This subsection presents a high

level description of each of the modules that together make up the prototype, in an effort

to provide context for the source code modules.

Note that for the C code, the portions of the ISaGRAF code generated by the TDBuild

tool are not shown as that code is considered proprietary. Fortunately, the code not

shown simply serves as the API to the PLC ladder logic and is specific to the ISaGRAF

platform. Current users of ISaGRAF will be able to use the same tools with the

information provide in this document to quickly regenerate this code. Users of other

SoftPLC products should be able to develop their own variations using the information

provided here.

6.1 C Code Walkthrough

The subsections below describe the model and C code for each of the custom function

blocks that are used in the IEC61131-3 ladder logic. A fully compliant IEC61131-3

implementation will replace the C code inside each of these function blocks with a ladder

logic version.

In developing the prototype, debug logic was added into each of the function blocks.

Two different mechanisms for debug logic were included. The first is that each block

outputs an integer status variable, with a 1 indicating successful operation and a negative

number indicating a failure. The code of the blocks is organized internally in steps as

71

shown in the source code and comments. A failed step will output a negative number

equal to the step number (i.e. a fail on step 3 will output a -3 value for the status).

The second debug logic is normally turned off for full operation and was only added for

development. This logic generates text files during operation that contain key status

variables useful for debugging the code. This adds overhead to the program execution

and creates a security risk, but is extremely valuable for debugging. In order to turn the

logic on or off, the variable “ISaDEBUG” must be set true for on or false for off. This

variable is located in the “debug.h” file, and a change in the status of the variable requires

a recompile of the DLL. All the timing results presented are with the ISaDEBUG

variable set to false.

The custom C source code developed for the ISaGRAF implementation can be found in

Appendix A. Please note that only the parts of the C code written by the author are

included in this Appendix. Auto-generated code from the ISaGRAF TD Build tool is not

included. Presence of auto-generated code in the source files below is indicated by the

tag “---autocode---“.

6.1.1 MsgGen

Figures 8.1.1.A and 8.1.1.B below define the details of the MsgGen block. In digital

signature applications, the first step of an algorithm is to hash the data to be signed into

one single value of fixed length, that will later be encrypted by the private key. The

MsgGen block generates that hash value using the SHA-512 algorithm. The data to be

signed is inputted into the B#, I#, R#, and STRING fields. The DATE and TIME fields

should always be used for the current date and time stamps of the message or the entire

72

algorithm is potentially subject to a replay attack. The block outputs the hash as a

hexadecimal string.

Creating one generic message generation block that can be used in a wide range of

applications is tricky, since one application could only need a few Booleans and another

application could require 40 different real values. Therefore the block was structured

generically in order to allow the widest range of possible inputs, and then a HASH_I

value was added that allows the user to chain multiple blocks together. Readers familiar

with the SHA-512 algorithm will recognize that there is no loss in processing the data in

this manner, since the algorithm generates the hash in a “chain” fashion naturally. This

implementation simply extends the chain, and there is no limit to the number of MsgGen

blocks that can be chained together.

The key for implementing this function is that the data to be signed must have a hash

generated on both the source PLC and the destination PLC. Therefore, during system

design, it is critical that the layout of the MsgGen blocks is the same on each endpoint or

the signature will never verify successfully.

73

Figure 6.1.1.A Three MsgGen Blocks Connected Together

74

Variable
Name

I/O Type Description

DATE IN DATE Used to date the message in order
to prevent replay attacks. Has

resolution up to the second.

TIME IN TIME Used to timestamp the message
in order to prevent replay attacks
occurring within the last second.

Has resolution up to the
millisecond.

HASH_I IN STRING(252) Hash from previous MsgGen.
Used to string multiple blocks
together in order to generate
messages containing large

amounts of data.

B1 Thru B8 IN BOOL Boolean data inputs.

I1 Thru I4 IN DINT Integer data inputs.

R1 Thru R4 IN REAL Real data inputs.

STRING IN STRING(252) String data inputs.

STATUS OUT INT Status of the computation.

HASH_Q OUT STRING(252) Hash of the message.

Figure 6.1.1.B MsgGen Input / Output Structure

6.1.2 KeyGen

The KeyGen block generates an ECC-521 prime public/private key pair. Ladder logic

should be placed in the application to only enable the block at specific intervals when

generation of a new key is desired. The new keys are outputted as base64 encoded

strings. Figures 6.1.2.A and 6.1.2.B below define the details of the KeyGen block.

75

Figure 6.1.2.A KeyGen Block

Variable Name I/O Type Description

PUBLIC_KEY OUT STRING(252) ECC 521 public key

PRIVATE_KEY OUT STRING(252) ECC 521 private key

STATUS OUT INT Status of the computation

Figure 6.1.2.B KeyGen Input / Output Structure

6.1.3 KeyVerify

The KeyVerify block is used as an added check to verify the integrity of the

public/private key pair by using the private key to first sign an internal dummy hash and

then using the public key to verify the signature. This block is solely used in the

prototype to verify that the system is functioning correctly. As the maturity of the design

improves this block may be removed, thus reducing system overhead and improving

communications results. Figures 6.1.3.A and 6.1.3.B below define the details of the

KeyVerify block.

76

Figure 6.1.3.A KeyVerify Block

Variable Name I/O Type Description

PUBLIC_KEY IN STRING(252) ECC 521 public key

PRIVATE_KEY IN STRING(252) ECC 521 private key

STATUS OUT INT Status of the computation

Figure 6.1.3.B KeyVerify Input / Output Structure

6.1.4 SigGen

The SigGen block is the heart of the ECDSA implementation, and takes the hash from the

MsgGen block and the PrivateKey from the KeyGen block to output an ECDSA P-521

signature. The signature itself is composed of two components, SIG_R and SIG_S,

which are each a base64 encoded string. Figures 8.1.4.A and 8.1.4.B below define the

details of the SigGen block.

77

Figure 6.1.4.A SigGen Block

Variable Name I/O Type Description

PRIVATE_KEY IN STRING(252) ECC 521 private key

HASH IN STRING(252) Data hash to be signed from the
MsgGen block.

SIG_R OUT STRING(252) ECDSA P-521 signature, R
component.

SIG_S OUT STRING(252) ECDSA P-521 signature, S
component.

STATUS OUT INT Status of the computation

Figure 6.1.4.B SigGen Input / Output Structure

6.1.5 SigVerify

The SigVerify block is used to verify the validity of a digital signature by the receiving

agent. The receiving agent first uses the MsgGen block to generate the same hash that

the original sender generated, and then uses the public key of the sender along with the

signature to determine if the signature and the hash match. Figures 6.1.5.A and 6.1.5.B

below define the details of the SigVerify block.

78

The SigVerify block is also used in the prototype system on the sender side to ensure that

a signature is properly generated before transmission. As the design matures, the usage

of the block on the sender side can be eliminated, reducing system overhead and

improving communications results.

Figure 6.1.5.A SigVerify Block

Variable Name I/O Type Description

PUBLIC_KEY IN STRING(252) ECC 521 public key

HASH IN STRING(252) Data hash to be verified from the
MsgGen block.

SIG_R IN STRING(252) ECDSA P-521 signature, R
component.

SIG_S IN STRING(252) ECDSA P-521 signature, S
component.

STATUS OUT INT Status of the computation

Figure 6.1.5.B SigVerify Input / Output Structure

79

6.2 Ladder Logic Walkthrough

For the prototype system, the ladder logic for each of the four SoftPLC agents is

structured identically, and execution of the logic proceeds in the following order:

1. ECDSA_D#_I – process digital signatures for incoming data transmissions,

including the validation of new public keys sent to the SoftPLC

2. MAIN – general logic such as determining current date, setting ALWAYS_ON

and ALWAYS_OFF bits, and incrementing the counter value received during

ECDSA_D#_I

3. SIM_BOOL and SIM_REAL – generic simulation routines that fill the place for

where actual PLC logic would normally occur

4. ECDSA_KeyCntrl – controls the generation and validation of the SoftPLC’s own

private / public key pair

5. ECDSA_Q – generates digital signatures for the outgoing data transmissions

Full details for each of the ladder logic routines can be found in Appendix B below. This

appendix includes a screenshot of the solution explorer detailing the layout of all four

SoftPLC agents (indicated as Device 1 through Device 4). There is also a screenshot of

the Device 1 to Device 2 data communication bindings which is representative of how

each SoftPLC is binded to the next in the round-robin configuration. Additional

information can be found in the comments section for each rung, indicated in the green

highlighted fields above each ladder logic rung.

80

CHAPTER 7: RESULTS, FUTURE WORK, AND CONCLUSION

There were two main goals of this project:

1. Determine the validity of ECDSA for control system authentication and data

verification by determining if an implementation can be developed that could be

executed within the confines of a typical PLC scan time, and to decide if the

development of a fully compliant IEC 61131-3 implementation is justified.

2. Determine an appropriate alternative method for key generation and distribution

to solve the complexities of the public-key infrastructure problem discussed in the

literature.

In order to satisfy goal 1, the prototype implementation was run on both test strings for

periods ranging from several days to several weeks. COUNT values, reflecting the

number of completed message transmissions (including both the signature generation and

signature verification components) ranged from 10,000 to 4 million. In all scenarios the

timing results were independent of the count length for values over 10,000. Test String 1

gave an average time of 26-28ms with PLC scan times of 22-24 ms. Test string 2 gave

an average time of 55-60ms with PLC scan times of 55-60 ms. As expected, timing of

the completed transmission is linearly related to PLC scan time.

Values under 10,000 counts gave slightly higher results (1-5 ms increase). During the

first scan of the PLCs when the system is initializing there is an additional load on the

system to establish TCP communications resulting in an increased scan time and

transmission time for that cycle. For low COUNT values this initial time has a stronger

effect on the average. As a result, for approximately the first 10 minutes of system

81

runtime the average transmission time gradually decreased until the system settled at the

values stated above.

It is believed that the timing results are the worst case scenario given that no real-time

modifications were added to the operating system (which would be untypical for a

SoftPLC control system). The entire timing cycle is in the order of tens of milliseconds

(as opposed to seconds), falling within the confines of a typical PLC scan time and

satisfying the first goal of the project. Based on these timings it has been concluded that

future work on the development of a fully IEC 61131-3 compliant implementation is

justified.

In order to satisfy goal 2, the self-signing key mechanism has been proposed which relies

on the deterministic properties of a control system and the commissioning process to

establish the initial trust relationship. Additional focus needs to be placed on the self-

signing keys mechanism and is reserved for future work. While the prototype used an

implementation that completely changed the public-private key pair the author does feel

that the use of permanent master keys followed by individual session key pairs may

increase system stability.

The difficulty of protecting the master keys from access by unauthorized individuals who

obtain an offline copy of the code specifically needs further investigation. Most PLC

vendors include a feature with their software that allows for developers to protect the

source code with a password to prevent unauthorized viewing of the code both online and

offline. The problem with this mechanism is that typically third party code reviews are

necessary which means that the developer would need to supply this password to multiple

parties, which would increase the exposure of the master key pair. A potential solution

82

would be the inclusion of two different passwords by PLC vendors, one that is used to

protect the ladder logic and another that is specifically to protect both the master and the

session key pairs. This would allow third party audits and maintenance users to have

access to the ladder logic code without exposing the key pairs.

83

REFERENCES

1. Bouhafs, F., Mackay, M., Merabti, M. (2012). “Links to the Future.” IEEE Power

and Energy Magazine 1540-7977/12, pp. 24-32

2. Yan, Y., Qian, Y., Sharif, H., Tipper, D. (2012) “A Survey on Smart Grid

Communication Infrastructures: Motivations, Requirements, and Challenges.”

IEEE Communications Surveys & Tutorials, Vol. 15 #1, pp. 5-20

3. Yan, Y., Qian, Y., Sharif, H., Tipper, D. (2012) “A Survey on Cyber Security for

Smart Grid Communications.” IEEE Communications Surveys & Tutorials,

Accepted for Publication 1553-877X/12

4. Liu, Y., Ning, P., Reiter, M. (2009) “False data injection attacks against state

estimation in electric power grids.” In Proc. ACM Conference on Computer and

Communications Security (CCS 09)

5. Baumeister, T. (2011) “Adapting PKI for the Smart Grid.” IEEE

SmartGridComm, 978-1-4577-1702-4/11

6. NISTIR 7628 Volume 1 (2010) “Guidelines for Smart Grid Cyber Security: Vol.

1, Smart Grid Cyber Security Strategy, Architecture, and High-Level

Requirements.”

7. Naval Sea Systems Command (2007) “Next Generation Integrated Power System

Technology Development Roadmap.” Ser 05D/349 of 30 Nov 2007

8. Doerry, N., CAPT USN, "Next Generation Integrated Power Systems for the

Future Fleet," Presented at the Corbin A. McNeill Symposium, United States

Naval Academy, Annapolis, MD, March 30, 2009

84

9. Doerry, N., Scherer, T., Cohen, J., Guertin, N., "Open Architecture Machinery

Control System ," Presented at ASNE Intelligent Ships Symposium 2011, May

25-26, 2011, Philadelphia, PA.

Also Published in ASNE Naval Engineers Journal, Mar 2012, Vol 124 No. 1, pp.

101-114.

10. Hankerson, D., Menezes, A., Vanstone, S. (2004) Guide to Elliptic Curve

Cryptography, ©2004, Springer-Verlag New York, Inc.

11. Wikipedia: RSA Algorithm

(http://en.wikipedia.org/wiki/RSA_%28algorithm%29) Accessed: 18 June, 2014

12. Wikipedia: Digital Signature Algorithm

(http://en.wikipedia.org/wiki/Digital_Signature_Algorithm) Accessed: 18 June,

2014

13. Wikipedia: Key Size (http://en.wikipedia.org/wiki/Key_size) Accessed: 18 June

2014

14. Miller, V.S. (1985). “Use of elliptic curves in cryptography.” Advances in

Cryptology Proc. Crypto ’85, LNCS 218, H.C. Williams, Ed., Springer-Verlag,

pp. 417-426

15. Koblitz, N. (1987). “Elliptic curve cryptosystems.” Mathematics of Computation,

Vol. 48, No. 177, p. 279-287

16. ANSI X9.62 (1999). “Public Key Cryptography for the Financial Services

Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)

17. ANSI X9.63 (2000- Working Draft). “Public Key Cryptography for the Financial

Services Industry: Elliptic Curve Key Agreement and Key Transport Protocols.”

85

18. IEEE 1363-2000 (2000) “Standard Specifications for Public-Key Cryptography.”

19. ISO/IEC 14888-3 (1998). “Information Technology – Security Techniques –

Digital Signatures with Appendix – Part 3: Certificate Based Mechanisms.”

20. ISO/IEC 15946 (1999 – Committee Draft). “Information Technology – Security

Techniques – Cryptographic Techniques Based on Elliptic Curves.”

21. NIST FIPS Pub 186-4 (2013). “Digital Signature Standard.”

(http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf) Accessed: 28th July

2014

22. Standards For Efficient Cryptography Group (SECG) (http://www.secg.org)

Accessed: 9th July 2012

23. SECG SEC 1 Version 2.0 (2009). “SEC 1: Elliptic Curve Cryptography.”

(http://www.secg.org) Accessed: 9th July 2012

24. SECG SEC 2 Version 2.0 (2010). “SEC 2: Recommended Elliptic Curve Domain

Parameters.” (http://www.secg.org) Accessed: 9th July 2012

25. Certicom (http://www.certicom.com) Accessed: 9th July 2012

26. McGrew, D. (IETF) (2009-Working Draft). “Fundamental Elliptic Curve

Cryptography Algorithms.” (http://tools.ietf.org/html/draft-mcgrew-fundamental-

ecc-01) Accessed: 15th May 2012

27. Koblitz, N. (2010) “My Last 24 Years in Crypto: A Few Good Judgments and

Many Bad Ones” (http://2010.eccworkshop.org/slides/Koblitz.pdf)

Accessed: 18 June, 2014

86

28. Wikipedia: NIST hash function competition

(http://en.wikipedia.org/wiki/NIST_hash_function_competition) Accessed: 18

June 2014

29. Jansma, N., Arrendondo, B. (2004). “Performance Comparison of Elliptic Curve

and RSA Digital Signatures.”

(http://nicj.net/files/performance_comparison_of_elliptic_curve_and_rsa_digital_

signatures.pdf) Accessed 12th July 2012

30. Oracle Labs: FAQ (related to ECC)

(https://labs.oracle.com/projects/crypto/FrequenlyAskedQuestions.html)

Accessed: 12th July 2012

31. SECG X.509 WG Working Group Draft Version 0.2 (1999). “ECC in X.509.”

32. Antipa, A., Brown, D., Gallant, R., Lambert, R., Struik, R., Vanstone, S. (2005).

“Accelerated Verification of ECDSA Signatures.”

(http://www.mathnet.or.kr/mathnet/preprint_file/cacr/2005/cacr2005-28.pdf)

Accessed: 14th July 2012

87

APPENDIX A. C SOURCE CODE

A.1 MsgGen

/**
File: msggen.c
Author: kfischer
Creation date: 05/11/2013 ‐ 19:52
POU name: MsgGen
***/

‐‐‐autocode‐‐‐

//START OF CUSTOM CODE HEADERS
#include <debug.h>
#include <stdio.h>
#include <stdlib.h>
#include <openssl/sha.h> //for SHA512
//END OF CUSTOM CODE HEADERS

‐‐‐autocode‐‐‐

 //START OF CUSTOM CODE

 //‐‐Declarations
 /*debug variables*/
 #if ISaDEBUG
 FILE *fp;
 #endif

 /*string and hash variables*/
 #define P_PTR_HASH_I_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐
>hash_i))+2)
 #define P_PTR_STRING_I_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐
>string))+2)
 unsigned char digest[SHA512_DIGEST_LENGTH];
 char mdString[SHA512_DIGEST_LENGTH*2+1];
 char *hash_Q;
 const char *string;
 char *tstring;
 char str[STRLEN];
 char tstr[STRLEN/4];
 int i;

 /*base64 variables*/

 //‐‐Logic

 /*STEP 0 ‐ Initialization*/
 P_STATUS = 0;

 memset(digest,0,SHA512_DIGEST_LENGTH);
 memset(mdString,0,SHA512_DIGEST_LENGTH*2+1);
 memset(str,0,STRLEN);
 memset(tstr,0,STRLEN/4);

88

 hash_Q = mdString;
 string = str;
 tstring = tstr;

 /*STEP 1 ‐ build string for hashing*/
 strcpy(str, "DATE=");
 sprintf(tstring,"%u,",P_DATE);
 strcat(str,tstring);

 strcat(str, "TIME=");
 sprintf(tstring,"%u,",P_TIME);
 strcat(str,tstring);

 strcat(str, "HASH_I=");
 sprintf(tstring,"%s,",P_PTR_HASH_I_DATA);
 strcat(str,tstring);

 strcat(str,"P_B1=");
 sprintf(tstring,"%s,", (P_B1)?"TRUE":"FALSE");
 strcat(str,tstring);

 strcat(str,"P_B2=");
 sprintf(tstring,"%s,", (P_B2)?"TRUE":"FALSE");
 strcat(str,tstring);

 strcat(str,"P_B3=");
 sprintf(tstring,"%s,", (P_B3)?"TRUE":"FALSE");
 strcat(str,tstring);

 strcat(str,"P_B4=");
 sprintf(tstring,"%s,", (P_B4)?"TRUE":"FALSE");
 strcat(str,tstring);

 strcat(str,"P_B5=");
 sprintf(tstring,"%s,", (P_B5)?"TRUE":"FALSE");
 strcat(str,tstring);

 strcat(str,"P_B6=");
 sprintf(tstring,"%s,", (P_B6)?"TRUE":"FALSE");
 strcat(str,tstring);

 strcat(str,"P_B7=");
 sprintf(tstring,"%s,", (P_B7)?"TRUE":"FALSE");
 strcat(str,tstring);

 strcat(str,"P_B8=");
 sprintf(tstring,"%s,", (P_B8)?"TRUE":"FALSE");
 strcat(str,tstring);

 strcat(str,"P_I1=");
 sprintf(tstring,"%d,",P_I1);
 strcat(str,tstring);

 strcat(str,"P_I2=");
 sprintf(tstring,"%d,",P_I2);
 strcat(str,tstring);

 strcat(str,"P_I3=");

89

 sprintf(tstring,"%d,",P_I3);
 strcat(str,tstring);

 strcat(str,"P_I4=");
 sprintf(tstring,"%d,",P_I4);
 strcat(str,tstring);

 strcat(str,"P_R1=");
 sprintf(tstring,"%f,",P_R1);
 strcat(str,tstring);

 strcat(str,"P_R2=");
 sprintf(tstring,"%f,",P_R2);
 strcat(str,tstring);

 strcat(str,"P_R3=");
 sprintf(tstring,"%f,",P_R3);
 strcat(str,tstring);

 strcat(str,"P_R4=");
 sprintf(tstring,"%f,",P_R4);
 strcat(str,tstring);

 strcat(str, "P_STRING = ");
 sprintf(tstring,"%s,",P_PTR_STRING_I_DATA);
 strcat(str,tstring);

 if (NULL == str)
 {
 P_STATUS = ‐1; /*failed to create string*/
 }
 else
 {
 /*STEP 2 ‐ hash string*/
 SHA512_CTX ctx;
 SHA512_Init(&ctx);
 SHA512_Update(&ctx, string, strlen(string));
 SHA512_Final(digest, &ctx);

 for(i = 0; i < SHA512_DIGEST_LENGTH; i++)
 {
 sprintf(&mdString[i*2], "%02x", (unsigned int)digest[i]);
 }

 if (NULL == mdString)
 {
 P_STATUS = ‐2; /*failed to create hash*/
 }
 else
 {
 /*STEP 3 ‐ output result*/
 strcpy(P_HASH_Q,hash_Q);
 HASH_Q_MAXLEN = 128;
 HASH_Q_CURLEN = 128;
 P_STATUS = 1;
 }
 }

90

 /*debug logic*/
 #if ISaDEBUG
 fp = fopen("debug‐message.txt", "w");
 if (fp == NULL) {
 P_STATUS = 666;
 exit(0);
 }

 fprintf(fp, "string = %s\n", string);
 fprintf(fp, "digest = %s\n", digest);
 fprintf(fp, "mdString = %s\n", mdString);

 fprintf(fp, "\n\nDATE = %u\n", P_DATE);
 fprintf(fp, "HASH_I = %s\n", P_PTR_HASH_I_DATA);
 fprintf(fp, "BOOL1 = %s\n", (P_B1)?"TRUE":"FALSE");
 fprintf(fp, "BOOL2 = %s\n", (P_B2)?"TRUE":"FALSE");
 fprintf(fp, "BOOL3 = %s\n", (P_B3)?"TRUE":"FALSE");
 fprintf(fp, "BOOL4 = %s\n", (P_B4)?"TRUE":"FALSE");
 fprintf(fp, "BOOL5 = %s\n", (P_B5)?"TRUE":"FALSE");
 fprintf(fp, "BOOL6 = %s\n", (P_B6)?"TRUE":"FALSE");
 fprintf(fp, "BOOL7 = %s\n", (P_B7)?"TRUE":"FALSE");
 fprintf(fp, "BOOL8 = %s\n", (P_B8)?"TRUE":"FALSE");
 fprintf(fp, "INT1 = %i\n", P_I1);
 fprintf(fp, "INT2 = %i\n", P_I2);
 fprintf(fp, "INT3 = %i\n", P_I3);
 fprintf(fp, "INT4 = %i\n", P_I4);
 fprintf(fp, "REAL1 = %f\n", P_R1);
 fprintf(fp, "REAL2 = %f\n", P_R2);
 fprintf(fp, "REAL3 = %f\n", P_R3);
 fprintf(fp, "REAL4 = %f\n", P_R4);

 fclose(fp);
 #endif

 //END OF CUSTOM CODE

}

/* eof **/

91

A.2 KeyGen

/**
File: keygen.c
Author: kfischer
Creation date: 15/06/2013 ‐ 20:02
POU name: KeyGen
***/

‐‐‐autocode‐‐‐

//START OF CUSTOM CODE HEADERS
#include <debug.h>
#include <stdio.h>
#include <stdlib.h>
#include <openssl/ec.h> // for EC_GROUP_new_by_curve_name, EC_GROUP_free,
EC_KEY_new, EC_KEY_set_group, EC_KEY_generate_key, EC_KEY_free
#include <openssl/obj_mac.h> // for NID_secp384r1
#include <openssl/bn.h> // for BIGNUM conversions
#include <openssl/bio.h>
#include <openssl/evp.h> // for base64 conversions
#include <openssl/buffer.h>
#include <math.h>
#include <base64.h> // for base64 conversions

//END OF CUSTOM CODE HEADERS
‐‐‐autocode‐‐‐

 //START OF CUSTOM CODE

 //‐‐Declarations

 /*debug variables*/
 #if ISaDEBUG
 FILE *fp;
 FILE *fpa;
 FILE *fpb;
 int i,j;
 #endif

 /*status variables*/
 const int set_group_success = 1;
 const int gen_success = 1;
 int set_group_status;
 int gen_status;

 /*key and base 64 variables*/

 const BIGNUM *PrivateKeyBN;
 BIGNUM *PublicKeyBN;
 const EC_POINT *PublicKeyPoint;
 EC_KEY *eckey;
 EC_GROUP *ecgroup;

92

 unsigned char *PublicKeyBinaryUnsigned, PublicKeyBinaryUnsignedArray[250];
 unsigned char *PrivateKeyBinaryUnsigned, PrivateKeyBinaryUnsignedArray[250];

 int encodedSize;
 char *buffer, BufferArray[250];
 unsigned char *PrivateKeyBase64, PrivateKeyBase64Array[250];

 int encodedSize_b;
 char *buffer_b, BufferArray_b[250];
 unsigned char *PublicKeyBase64, PublicKeyBase64Array[250];

 //‐‐Logic

 /*STEP 0 ‐ Initialization*/
 P_STATUS = 0;

 memset(PrivateKeyBinaryUnsignedArray,0,250);
 PrivateKeyBinaryUnsigned = PrivateKeyBinaryUnsignedArray;

 memset(PublicKeyBinaryUnsignedArray,0,250);
 PublicKeyBinaryUnsigned = PublicKeyBinaryUnsignedArray;

 memset(PrivateKeyBase64Array,0,250);
 PrivateKeyBase64 = PrivateKeyBase64Array;

 memset(PublicKeyBase64Array,0,250);
 PublicKeyBase64 = PublicKeyBase64Array;

 memset(BufferArray,0,250);
 buffer = BufferArray;
 memset(BufferArray_b,0,250);
 buffer_b = BufferArray_b;

 /*STEP 1 ‐ create key object*/
 eckey=EC_KEY_new();
 if (NULL == eckey)
 {
 P_STATUS = ‐1; /*failed to create key object*/
 }
 else
 {
 /*STEP 2 ‐ create EC_GROUP object*/
 //ecgroup = EC_GROUP_new_by_curve_name(NID_secp384r1); ‐‐worked for 384
ECDSA, will want to come back and add an option to turn this on and off
 ecgroup = EC_GROUP_new_by_curve_name(NID_secp521r1);
 if (NULL == ecgroup)
 {
 P_STATUS = ‐2; /*failed to create new EC Group*/
 }
 else
 {
 /*STEP 3 ‐ associate key with group*/
 set_group_status = EC_KEY_set_group(eckey,ecgroup);
 if (set_group_success != set_group_status)
 {
 P_STATUS = ‐3; /*failed to associate key with group*/
 }

93

 else
 {
 /*STEP 4 ‐ create PRIVATE and PUBLIC keys*/
 gen_status = EC_KEY_generate_key(eckey);
 if (gen_success != gen_status)
 {
 P_STATUS = ‐4; /*failed to generate EC Key*/
 }
 else
 {
 /*STEP 5 ‐ extract PRIVATE keys*/
 PrivateKeyBN = EC_KEY_get0_private_key(eckey);
 if (PrivateKeyBN == NULL)
 {
 P_STATUS = ‐5; /*failed to extract
PRIVATE key*/
 }
 else
 {
 /*STEP 6 ‐ extract PUBLIC KEY*/
 PublicKeyPoint =
EC_KEY_get0_public_key(eckey);
 if (PublicKeyPoint == NULL)
 {
 P_STATUS = ‐6; /*failed to extract
PUBLIC key*/
 }
 else
 {
 /*STEP 7a ‐ Private Key convert
from BN to binary and then encode as base64*/

 BN_bn2bin(PrivateKeyBN,PrivateKeyBinaryUnsigned);
 encodedSize =
EVP_EncodeBlock(PrivateKeyBase64,PrivateKeyBinaryUnsigned,89);

 /*STEP 7b ‐ Public Key convert
from Point to BN to binary and then encode as base64*/

 PublicKeyBN = BN_new();

 EC_POINT_point2bn(ecgroup,PublicKeyPoint,POINT_CONVERSION_UNCOMPRESSED,Publ
icKeyBN,NULL);

 BN_bn2bin(PublicKeyBN,PublicKeyBinaryUnsigned);
 encodedSize_b =
EVP_EncodeBlock(PublicKeyBase64,PublicKeyBinaryUnsigned,179);

 /*STEP 7c ‐ set outputs*/

 buffer = (char*) PrivateKeyBase64;
 buffer_b = (char*)
PublicKeyBase64;

94

 strcpy(P_PRIVATE_KEY_BUFADD,
buffer);
 PRIVATE_KEY_MAXLEN = 250;
 PRIVATE_KEY_CURLEN = encodedSize;

 strcpy(P_PUBLIC_KEY_BUFADD,
buffer_b);
 PUBLIC_KEY_MAXLEN = 250;
 PUBLIC_KEY_CURLEN = encodedSize_b;

 P_STATUS = 1; /*success*/
/*debug logic*/
#if ISaDEBUG
 fpb = fopen("debug‐keygen‐BIGNUM.txt", "w");
 fprintf(fpb, "PublicKeyBigNumber = ");
 BN_print_fp(fpb, PublicKeyBN);
 fprintf(fpb, " \n");
 fprintf(fpb, " \n");
 fprintf(fpb, "PrivateKeyBigNumber = ");
 BN_print_fp(fpb, PrivateKeyBN);
 fclose(fpb);

 fp = fopen("debug‐keygen‐Private.txt", "w");
 fprintf(fp, "hello world\n");
 fprintf(fp,"encodedSize = %i\n", encodedSize);
 fprintf(fp,"encodedSize_b = %i\n", encodedSize_b);
 fprintf(fp,"array dump = ");
 for (i = 0; i<250; i++)
 {
 fprintf(fp, "%c", PrivateKeyBinaryUnsignedArray[i]);
 }
 fprintf(fp, " \n");
 fprintf(fp,"PrivateKeyBinaryUnsigned = %s\n", PrivateKeyBinaryUnsigned);
 fprintf(fp,"PrivateKeyBase64 = %s\n", PrivateKeyBase64);
 fprintf(fp,"buffer = %s\n", buffer);
 fclose(fp);
#endif
 }
 }
 }
 }
 }
 }
 //END OF CUSTOM CODE

}

/* eof **/

95

A.3 KeyVerify

/**
File: keyverify.c
Author: kfischer
Creation date: 15/06/2013 ‐ 13:53
POU name: KeyVerify
***/

‐‐‐autocode‐‐‐

//START OF CUSTOM CODE HEADERS
#include <debug.h>
#include <stdio.h>
#include <stdlib.h>
#include <openssl/ec.h> // for EC_GROUP_new_by_curve_name, EC_GROUP_free,
EC_KEY_new, EC_KEY_set_group, EC_KEY_generate_key, EC_KEY_free
#include <openssl/ecdsa.h> // for ECDSA_do_sign, ECDSA_do_verify
#include <openssl/obj_mac.h> // for NID_secp384r1
#include <openssl/bn.h> // for BIGNUM conversions
#include <openssl/bio.h>
#include <openssl/evp.h>
#include <openssl/buffer.h>
#include <math.h>
#include <base64.h> // for base64 conversions
//END OF CUSTOM CODE HEADERS

‐‐‐autocode‐‐‐

 //START OF CUSTOM CODE

 //‐‐Declarations

 /*debug variables*/
 #if ISaDEBUG
 FILE *fp;
 FILE *fpa;
 FILE *fpb;
 int i, j;
 #endif

 /*status variables*/
 #define P_PTR_PUBLIC_KEY_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐
>public_key))+2)
 #define P_PTR_PRIVATE_KEY_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐
>private_key))+2)

 const int set_group_success = 1;
 const int gen_success = 1;
 const int set_public_success = 1;
 const int set_private_success = 1;
 const int verify_success = 1;

 int set_group_status;

96

 int set_public_status;
 int set_private_status;
 int verify_status;

 unsigned char hash[] = "c7fbca202a95a570285e3d700eb04ca2";

 /*base64 variables*/
 EC_KEY *eckey;
 EC_GROUP *ecgroup;
 EC_POINT *PublicKeyPoint;
 BIGNUM *PrivateKeyBN;
 BIGNUM *PublicKeyBN;
 ECDSA_SIG *signature;

 unsigned char *buffer;
 unsigned char *buffer_b;

 unsigned char *PublicKeyBinaryUnsigned, PublicKeyBinaryUnsignedArray[250];
 unsigned char *PrivateKeyBinaryUnsigned,
PrivateKeyBinaryUnsignedArray[250];

 const unsigned char *PublicKeyBinaryConst;
 const unsigned char *PrivateKeyBinaryConst;

 //‐‐Logic
 P_STATUS = 0;

 memset(PrivateKeyBinaryUnsignedArray,0,250);
 PrivateKeyBinaryUnsigned = PrivateKeyBinaryUnsignedArray;

 memset(PublicKeyBinaryUnsignedArray,0,250);
 PublicKeyBinaryUnsigned = PublicKeyBinaryUnsignedArray;

 /*STEP 1 ‐ create key object*/
 eckey=EC_KEY_new();
 if (NULL == eckey)
 {
 P_STATUS = ‐1; /*failed to create key object*/
 }
 else
 {
 /*STEP 2 ‐ create EC_GROUP object*/
 ecgroup = EC_GROUP_new_by_curve_name(NID_secp521r1);
 if (NULL == ecgroup)
 {
 P_STATUS = ‐2; /*failed to create new EC Group*/
 }
 else
 {
 /*STEP 3 ‐ associate key with group*/
 set_group_status = EC_KEY_set_group(eckey,ecgroup);
 if (set_group_success != set_group_status)
 {
 P_STATUS = ‐3; /*failed to associate key with group*/
 }

97

 else
 {
 /*STEP 4 ‐ set public key*/
 PublicKeyPoint = EC_POINT_new(ecgroup);
 PublicKeyBN = BN_new();

 buffer_b = (unsigned char*) P_PTR_PUBLIC_KEY_DATA;

 EVP_DecodeBlock(PublicKeyBinaryUnsigned,buffer_b,240);

 PublicKeyBinaryConst = (const unsigned char*)
PublicKeyBinaryUnsigned;

 BN_bin2bn(PublicKeyBinaryConst,133,PublicKeyBN);

 EC_POINT_bn2point(ecgroup,PublicKeyBN,PublicKeyPoint,NULL);

 set_public_status =
EC_KEY_set_public_key(eckey,PublicKeyPoint);
 if (set_public_success != set_public_status)
 {
 P_STATUS = ‐4; /*failed to set public key*/
 }
 else
 {
 /*STEP 5 ‐ set private key*/
 PrivateKeyBN = BN_new();
 buffer = (unsigned char*)
P_PTR_PRIVATE_KEY_DATA;

 EVP_DecodeBlock(PrivateKeyBinaryUnsigned,buffer,120);
 PrivateKeyBinaryConst = (const unsigned char*)
PrivateKeyBinaryUnsigned;

/*521 ECDSA is unique due to the extra bit resulting in a length of 65.125 bytes,
which means that when converting from bin to bn we will alternatively be
converting 66 or 65 bytes depending on if the extra bit is a 1 or not. The
presence of the extra bit is encoded in the in the first base64 characters. The
byte 0000 0001 will be broken in base64 to a pair of 0000000 and 1XXXXXX, which
will result in the key having a leading A character representing the 0000000.
However, the byte 0000 0000 will not be encoded at all, which will result in the
key not having a leading A. Detection of the leading A is therefore critical to
properly convert the bin to BN.*/

 if (P_PTR_PRIVATE_KEY_DATA[0] == 'A')
 {

 BN_bin2bn(PrivateKeyBinaryConst,66,PrivateKeyBN);
 }
 else
 {

 BN_bin2bn(PrivateKeyBinaryConst,65,PrivateKeyBN);
 }

98

 set_private_status =
EC_KEY_set_private_key(eckey,PrivateKeyBN);
 if (set_private_success != set_private_status)
 {
 P_STATUS = ‐5; /*failed to set private
key*/
 }
 else
 {
 /*STEP 6 ‐ create signature on dummy
hash*/
 signature = ECDSA_do_sign(hash,32,eckey);
 if (NULL == signature)
 {
 P_STATUS = ‐6; /*failed to
generate signature*/
 }
 else
 {
 /*STEP 7 ‐ verify signature*/
 verify_status =
ECDSA_do_verify(hash,32,signature,eckey);
 if (verify_success !=
verify_status)
 {
 P_STATUS = ‐7;
/*verification failed*/
 }
 else
 {
 P_STATUS = 1; /*keys
verified*/
 }
 }
 }
 }
 }
 }
 }

 /*CLEANUP ‐ Release memory structures to prevent memory leaks*/
 EC_KEY_free(eckey); /*frees EC_KEY memory allocation*/
 EC_GROUP_clear_free(ecgroup); /*destroys any sensitive data in the group
and then frees the memory*/
 EC_POINT_free(PublicKeyPoint); /*frees EC_POINT memory allocation*/
 BN_clear_free(PrivateKeyBN); /*overwrites the BN before returning memory
to the system*/
 BN_clear_free(PublicKeyBN);
 ECDSA_SIG_free(signature); /*frees ECDSA_SIG memory allocation*/

/*debug logic*/
#if ISaDEBUG
 fpa = fopen("debug‐keyverify‐public.txt", "w");
 fprintf(fpa, "hello world \n");
 fprintf(fpa, "P_PTR_PUBLIC_KEY_DATA = %s\n", P_PTR_PUBLIC_KEY_DATA);
 fprintf(fpa, " \n");
 fprintf(fpa, " \n");

99

 fprintf(fpa, "Public Key Array dump = ");
 for (j = 0; j<250; j++)
 {
 fprintf(fpa, "%c", PublicKeyBinaryUnsignedArray[j]);
 }
 fprintf(fpa, " \n");
 fprintf(fpa, " \n");
 fclose(fpa);

 fp = fopen("debug‐keyverify‐private.txt", "w");
 fprintf(fp, "hello world\n");
 fprintf(fp, "P_PTR_PRIVATE_KEY_DATA = %s\n", P_PTR_PRIVATE_KEY_DATA);
 fprintf(fp, "P_PTR_PRIVATE_KEY_DATA[0] = %c\n", P_PTR_PRIVATE_KEY_DATA[0]);
 fprintf(fp, "Private Key Array dump = ");
 for (i = 0; i<250; i++)
 {
 fprintf(fp, "%c", PrivateKeyBinaryUnsignedArray[i]);
 }
 fprintf(fp, " \n");
 fclose(fp);

 fpb = fopen("debug‐keyverify‐BIGNUM.txt", "w");
 fprintf(fpb, "PublicKeyBigNumber = ");
 BN_print_fp(fpb, PublicKeyBN);
 fprintf(fpb, " \n");
 fprintf(fpb, " \n");
 fprintf(fpb, "PrivateKeyBigNumber = ");
 BN_print_fp(fpb, PrivateKeyBN);
 fprintf(fpb, " \n");
 fprintf(fpb, " \n");
 fprintf(fpb, "bnlen = %i\n", bnlen);
 fclose(fpb);
#endif

 //END OF CUSTOM CODE

}

/* eof **/

100

A.4 SigGen

/**
File: siggen.c
Author: kfischer
Creation date: 10/07/2013 ‐ 22:27
POU name: SigGen
***/

‐‐‐autocode‐‐‐

//START OF CUSTOM CODE HEADERS
#include <debug.h>
#include <stdio.h>
#include <stdlib.h>
#include <openssl/ec.h> // for EC_GROUP_new_by_curve_name, EC_GROUP_free,
EC_KEY_new, EC_KEY_set_group, EC_KEY_generate_key, EC_KEY_free
#include <openssl/ecdsa.h> // for ECDSA_do_sign, ECDSA_do_verify
#include <openssl/obj_mac.h> // for NID_secp384r1
#include <openssl/bn.h> // for BIGNUM conversions
#include <openssl/bio.h>
#include <openssl/evp.h>
#include <openssl/buffer.h>
#include <math.h>
#include <base64.h> // for base64 conversions
//END OF CUSTOM CODE HEADERS

‐‐‐autocode‐‐‐

 //START OF CUSTOM CODE

 //‐‐Declarations

 /*debug variables*/
 #if ISaDEBUG
 FILE *fp;
 int i;
 #endif

 /*status variables*/

 #define P_PTR_PRIVATE_KEY_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐
>private_key))+2)
 #define P_PTR_HASH_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐>hash))+2)

 const int set_group_success = 1;
 const int gen_success = 1;
 const int set_public_success = 1;
 const int set_private_success = 1;
 const int verify_success = 1;

 int set_group_status;
 int set_private_status;

101

 unsigned char hash[128];

 /*EC Variables*/
 EC_KEY *eckey;
 EC_GROUP *ecgroup;
 ECDSA_SIG *signature;

 /*base64 variables for decomposing private key*/
 BIGNUM *PrivateKeyBN;
 unsigned char *buffer;
 unsigned char *PrivateKeyBinaryUnsigned, PrivateKeyBinaryUnsignedArray[250];
 const unsigned char *PrivateKeyBinaryConst;

 /*base64 variables for encoding SIG_R and SIG_S*/

 int SIG_R_EncodedSize;
 unsigned char *SIG_R_BinaryUnsigned, SIG_R_BinaryUnsignedArray[250];
 unsigned char *SIG_R_Base64, SIG_R_Base64Array[250];
 int SIG_S_EncodedSize;
 unsigned char *SIG_S_BinaryUnsigned, SIG_S_BinaryUnsignedArray[250];
 unsigned char *SIG_S_Base64, SIG_S_Base64Array[250];

 char *SIG_R_Buffer, SIG_R_BufferArray[250];
 char *SIG_S_Buffer, SIG_S_BufferArray[250];

 //‐‐Logic

 /*STEP 0 ‐ Initialization*/
 P_STATUS = 0;

 memcpy(hash,P_PTR_HASH_DATA,128);

 memset(PrivateKeyBinaryUnsignedArray,0,250);
 PrivateKeyBinaryUnsigned = PrivateKeyBinaryUnsignedArray;

 memset(SIG_R_BinaryUnsignedArray,0,250);
 SIG_R_BinaryUnsigned = SIG_R_BinaryUnsignedArray;
 memset(SIG_R_Base64Array,0,250);
 SIG_R_Base64 = SIG_R_Base64Array;
 memset(SIG_R_BufferArray,0,250);
 SIG_R_Buffer = SIG_R_BufferArray;

 memset(SIG_S_BinaryUnsignedArray,0,250);
 SIG_S_BinaryUnsigned = SIG_S_BinaryUnsignedArray;
 memset(SIG_S_Base64Array,0,250);
 SIG_S_Base64 = SIG_S_Base64Array;
 memset(SIG_S_BufferArray,0,250);
 SIG_S_Buffer = SIG_S_BufferArray;

 /*STEP 1 ‐ create key object*/
 eckey=EC_KEY_new();
 if (NULL == eckey)
 {
 P_STATUS = ‐1; /*failed to create key object*/
 }
 else

102

 {
 /*STEP 2 ‐ create EC_GROUP object*/
 ecgroup = EC_GROUP_new_by_curve_name(NID_secp521r1);
 if (NULL == ecgroup)
 {
 P_STATUS = ‐2; /*failed to create new EC Group*/
 }
 else
 {
 /*STEP 3 ‐ associate key with group*/
 set_group_status = EC_KEY_set_group(eckey,ecgroup);
 if (set_group_success != set_group_status)
 {
 P_STATUS = ‐3; /*failed to associate key with group*/
 }
 else
 {
 /*STEP 4 ‐ set private key*/
 PrivateKeyBN = BN_new();

 buffer = (unsigned char*) P_PTR_PRIVATE_KEY_DATA;
 EVP_DecodeBlock(PrivateKeyBinaryUnsigned,buffer,120);

 PrivateKeyBinaryConst = (const unsigned char*)
PrivateKeyBinaryUnsigned;

/*521 ECDSA is unique due to the extra bit resulting in a length of 65.125 bytes,
which means that when converting from bin to bn we will alternatively be
converting 66 or 65 bytes depending on if the extra bit is a 1 or not. The
presence of the extra bit is encoded in the in the first base64 characters.
The byte 0000 0001 will be broken in base64 to a pair of 0000000 and 1XXXXXX,
which will result in the key having a leading A character representing the
0000000. However, the byte 0000 0000 will not be encoded at all, which will
result in the key not having a leading A. Detection of the leading A is therefore
critical to properly convert the bin to BN.*/

 if (P_PTR_PRIVATE_KEY_DATA[0] == 'A')
 {

 BN_bin2bn(PrivateKeyBinaryConst,66,PrivateKeyBN);
 }
 else
 {

 BN_bin2bn(PrivateKeyBinaryConst,65,PrivateKeyBN);
 }

 set_private_status =
EC_KEY_set_private_key(eckey,PrivateKeyBN);
 if (set_private_success != set_private_status)
 {
 P_STATUS = ‐4; /*failed to set private key*/
 }
 else
 {
 /*STEP 5 ‐ create signature on dummy hash*/
 signature = ECDSA_do_sign(hash,128,eckey);
 if (NULL == signature)

103

 {
 P_STATUS = ‐5; /*failed to generate
signature*/
 }
 else
 {
 /*STEP 6 ‐ base64 encode SIG_R and SIG_S
and output result*/

 BN_bn2bin(signature‐
>r,SIG_R_BinaryUnsigned);
 SIG_R_EncodedSize =
EVP_EncodeBlock(SIG_R_Base64,SIG_R_BinaryUnsigned,89);

 BN_bn2bin(signature‐
>s,SIG_S_BinaryUnsigned);
 SIG_S_EncodedSize =
EVP_EncodeBlock(SIG_S_Base64,SIG_S_BinaryUnsigned,89);

 SIG_R_Buffer = (char *) SIG_R_Base64;
 SIG_S_Buffer = (char *) SIG_S_Base64;

 strcpy(P_SIG_R_BUFADD,SIG_R_Buffer);
 SIG_R_MAXLEN = 250;
 SIG_R_CURLEN = SIG_R_EncodedSize;

 strcpy(P_SIG_S_BUFADD,SIG_S_Buffer);
 SIG_S_MAXLEN = 250;
 SIG_S_CURLEN = SIG_S_EncodedSize;

 P_STATUS = 1; /*success*/
 }
 }
 }
 }
 }

 ///*CLEANUP ‐ Release memory structures to prevent memory leaks*/
 EC_KEY_free(eckey); /*frees EC_KEY memory allocation*/
 EC_GROUP_clear_free(ecgroup); /*destroys any sensitive data in the group
and then frees the memory*/
 BN_clear_free(PrivateKeyBN); /*overwrites the BN before returning memory
to the system*/
 ECDSA_SIG_free(signature); /*frees ECDSA_SIG memory allocation*/

/*debug logic*/
#if ISaDEBUG
 fp = fopen("debug‐siggen.txt", "w");
 fprintf(fp, "hello world\n");
 fprintf(fp, " \n");
 fprintf(fp, "PrivateKeyBigNumber = ");
 BN_print_fp(fp, PrivateKeyBN);
 fprintf(fp, " \n");
 fprintf(fp, "signature‐>r = ");
 BN_print_fp(fp, signature‐>r);
 fprintf(fp, " \n");
 fprintf(fp, "signature‐>s = ");

104

 BN_print_fp(fp, signature‐>s);
 fprintf(fp, " \n");
 fclose(fp);

#endif

 //END OF CUSTOM CODE

}

/* eof **/

105

A.5 SigVerify

/**
File: sigverify.c
Author: kfischer
Creation date: 12/07/2013 ‐ 18:52
POU name: SigVerify
***/

‐‐‐autocode‐‐‐

//START OF CUSTOM CODE HEADERS
#include <debug.h>
#include <stdio.h>
#include <stdlib.h>
#include <openssl/ec.h> // for EC_GROUP_new_by_curve_name, EC_GROUP_free,
EC_KEY_new, EC_KEY_set_group, EC_KEY_generate_key, EC_KEY_free
#include <openssl/ecdsa.h> // for ECDSA_do_sign, ECDSA_do_verify
#include <openssl/obj_mac.h> // for NID_secp384r1
#include <openssl/bn.h> // for BIGNUM conversions
#include <openssl/bio.h>
#include <openssl/evp.h>
#include <openssl/buffer.h>
#include <math.h>
#include <base64.h> // for base64 conversions
//END OF CUSTOM CODE HEADERS

‐‐‐autocode‐‐‐

 //START OF CUSTOM CODE

 //‐‐Declarations

 /*debug variables*/
 #if ISaDEBUG
 FILE *fp;
 int i;
 #endif

 /*status variables*/
 #define P_PTR_PUBLIC_KEY_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐
>public_key))+2)
 #define P_PTR_HASH_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐>hash))+2)
 #define P_PTR_SIG_R_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐
>sig_r))+2)
 #define P_PTR_SIG_S_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐
>sig_s))+2)

 const int set_group_success = 1;
 const int gen_success = 1;
 const int set_public_success = 1;
 const int set_private_success = 1;
 const int verify_success = 1;

106

 int set_group_status;
 int set_public_status;
 int verify_status;

 unsigned char hash[128];

 /*EC Variables*/
 EC_KEY *eckey;
 EC_GROUP *ecgroup;
 EC_POINT *PublicKeyPoint;
 ECDSA_SIG *signature;

 /*base64 variables for decoding public key*/
 BIGNUM *PublicKeyBN;
 unsigned char *buffer;
 unsigned char *PublicKeyBinaryUnsigned, PublicKeyBinaryUnsignedArray[250];
 const unsigned char *PublicKeyBinaryConst;

 /*base64 variables for decoding SIG_R key*/
 BIGNUM *SIG_R_BN;
 unsigned char *SIG_R_buffer;
 unsigned char *SIG_R_BinaryUnsigned, SIG_R_BinaryUnsignedArray[250];
 const unsigned char *SIG_R_BinaryConst;

 /*base64 variables for decoding SIG_S key*/
 BIGNUM *SIG_S_BN;
 unsigned char *SIG_S_buffer;
 unsigned char *SIG_S_BinaryUnsigned, SIG_S_BinaryUnsignedArray[250];
 const unsigned char *SIG_S_BinaryConst;

 //‐‐Logic
 P_STATUS = 0;

 memcpy(hash,P_PTR_HASH_DATA,128);

 memset(PublicKeyBinaryUnsignedArray,0,250);
 PublicKeyBinaryUnsigned = PublicKeyBinaryUnsignedArray;

 memset(SIG_R_BinaryUnsignedArray,0,250);
 SIG_R_BinaryUnsigned = SIG_R_BinaryUnsignedArray;

 memset(SIG_S_BinaryUnsignedArray,0,250);
 SIG_S_BinaryUnsigned = SIG_S_BinaryUnsignedArray;

 /*STEP 1 ‐ create key object*/
 eckey=EC_KEY_new();
 if (NULL == eckey)
 {
 P_STATUS = ‐1; /*failed to create key object*/
 }
 else
 {
 /*STEP 2 ‐ create EC_GROUP object*/
 ecgroup = EC_GROUP_new_by_curve_name(NID_secp521r1);
 if (NULL == ecgroup)
 {
 P_STATUS = ‐2; /*failed to create new EC Group*/

107

 }
 else
 {
 /*STEP 3 ‐ associate key with group*/
 set_group_status = EC_KEY_set_group(eckey,ecgroup);
 if (set_group_success != set_group_status)
 {
 P_STATUS = ‐3; /*failed to associate key with group*/
 }
 else
 {
 /*STEP 4 ‐ set public key*/
 PublicKeyPoint = EC_POINT_new(ecgroup);
 PublicKeyBN = BN_new();
 buffer = (unsigned char*) P_PTR_PUBLIC_KEY_DATA;
 EVP_DecodeBlock(PublicKeyBinaryUnsigned,buffer,240);
 PublicKeyBinaryConst = (const unsigned char*)
PublicKeyBinaryUnsigned;
 BN_bin2bn(PublicKeyBinaryConst,133,PublicKeyBN);

 EC_POINT_bn2point(ecgroup,PublicKeyBN,PublicKeyPoint,NULL);
 set_public_status =
EC_KEY_set_public_key(eckey,PublicKeyPoint);
 if (set_public_success != set_public_status)
 {
 P_STATUS = ‐4; /*failed to set public key*/
 }
 else
 {
 /*STEP 5 ‐ convert Base64 SIG_R and SIG_S into
BN and set signature values*/

 signature = ECDSA_SIG_new();
 SIG_R_BN = signature‐>r;
 SIG_S_BN = signature‐>s;

 SIG_R_buffer = (unsigned char*)
P_PTR_SIG_R_DATA;

 EVP_DecodeBlock(SIG_R_BinaryUnsigned,SIG_R_buffer,120);
 SIG_R_BinaryConst = (const unsigned char*)
SIG_R_BinaryUnsigned;
 if (P_PTR_SIG_R_DATA[0] == 'A')
 {
 BN_bin2bn(SIG_R_BinaryConst,66,SIG_R_BN);
 }
 else
 {
 BN_bin2bn(SIG_R_BinaryConst,65,SIG_R_BN);
 }

 SIG_S_buffer = (unsigned char*)
P_PTR_SIG_S_DATA;

 EVP_DecodeBlock(SIG_S_BinaryUnsigned,SIG_S_buffer,120);
 SIG_S_BinaryConst = (const unsigned char*)
SIG_S_BinaryUnsigned;

108

 if (P_PTR_SIG_S_DATA[0] == 'A')
 {
 BN_bin2bn(SIG_S_BinaryConst,66,SIG_S_BN);
 }
 else
 {
 BN_bin2bn(SIG_S_BinaryConst,65,SIG_S_BN);
 }

 if (NULL==signature)
 {
 P_STATUS = ‐5;
 }
 else
 {
 /*STEP 6 ‐ Verify Signature*/
 verify_status =
ECDSA_do_verify(hash,128,signature,eckey);
 if (verify_success != verify_status)
 {
 P_STATUS = ‐6; /*verification
failed*/
 }
 else
 {
 P_STATUS = 1; /*signature
verified*/
 }
 }
 }
 }
 }
 }

 /*CLEANUP ‐ Release memory structures to prevent memory leaks*/

 EC_KEY_free(eckey); /*frees EC_KEY memory
allocation*/
 EC_GROUP_clear_free(ecgroup); /*destroys any sensitive data in the
group and then frees the memory*/
 EC_POINT_free(PublicKeyPoint); /*frees EC_POINT memory allocation*/
 BN_clear_free(PublicKeyBN); /*overwrites the BN before returning
memory to the system*/
 ECDSA_SIG_free(signature); /*frees ECDSA_SIG memory
allocation*/

/*debug logic*/
#if ISaDEBUG
 fp = fopen("debug‐sigverify.txt", "w");
 fprintf(fp, "hello world\n");
 fprintf(fp, " \n");
 fprintf(fp, "PublicKeyBigNumber = ");
 BN_print_fp(fp, PublicKeyBN);
 fprintf(fp, " \n");
 fprintf(fp, "signature‐>r = ");
 BN_print_fp(fp, signature‐>r);

109

 fprintf(fp, " \n");
 fprintf(fp, "signature‐>s = ");
 BN_print_fp(fp, signature‐>s);
 fprintf(fp, " \n");
 fclose(fp);

#endif

}

/* eof **/

110

APPENDIX B. LADDER LOGIC CODE

B.1 Solution Explorer

111

B.2 Bindings Sample

112

B.3 ECDSA_D4_I

113

114

115

116

117

118

119

B.4 MAIN

120

121

Note: Rungs 8 and 9 are only used for the main routine of Device 1 to initialize the device and to trap the number elapsed time and

cycle counts. The other devices have a rung similar to rung 8 but without the FS XIC latch.

122

B.5 SIM_BOOL

123

B.6 SIM_REAL

124

125

B.7 ECDSA_KeyCntrl

126

127

128

B.8 ECDSA_Q

129

