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 ABSTRACT 

Recent endeavors such as the Smart Grid and attacks on control systems such as Stuxnet, 

have highlighted the need for improved security in control systems and control system 

communications.  Control system components such as Programmable Logic Controllers 

(PLCs) and Human-Machine Interfaces (HMIs) can no longer rely on simple heartbeat 

logic algorithms in order to verify communications. Advanced cryptographic algorithms 

for data authentication and verification are needed in messaging protocols between PLCs, 

HMIs, and sensors. 

Cryptographic algorithms such as RSA or the Digital Signature Algorithm (DSA) appear 

to provide a solution, however the key sizes required for implementing these solutions are 

not feasible for implementation in a control system.  Elliptic Curve DSA (ECDSA) looks 

to be a promising solution due to the smaller key sizes and faster computations. 

This work implements a prototype implementation of ECDSA that was developed 

utilizing ISaGRAF™ SoftPLCs. The implementation is primarily written in IEC 61131-3 

ladder logic using specialized function blocks developed in C, utilizing the OpenSSL 

library.  Four SoftPLCs were configured in a round robin architecture on two different 

test strings in order to determine the average time it takes to generate a message, sign it, 

transmit it, receive it, and verify the signature.  A self-signing key distribution 

architecture was developed which relies on the commissioning process of PLCs to 

establish the initial trust relationship.  Test string 1 gave an average scan time of 26-28ms 

ms and test string 2 gave an average time of 55-60ms with PLC scan times of 55-60 ms.  

These timing values confirm the potential for ECDSA to be used for control system data 

authentication and verification. C and ladder logic source code is included.
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Increasing demands in all sectors of an industrial society have led to an ever increasing 

need for more sophisticated controls and monitoring equipment and software.  Control 

systems, once consisting of simple transmitters and relays, have evolved into complex 

systems containing dozens of controllers communicating with each other, each containing  

tens of thousands of lines of code, for even the simplest processes. Complex Human-

Machine Interface (HMI) mechanisms designed to give system owners and operators 

enhanced capabilities to remotely operate, maintain, and troubleshot equipment are being 

developed and deployed.  At the core of most modern control systems is the 

Programmable Logic Controller (PLC), a device whose power lies in the ability of a 

Control System Engineer to quickly and easily implement complex control schemes at 

minimal cost.  As a result, PLCs (originally designed to replace relay panels) have 

become prevalent in virtually every industrial environment from pharmaceutical plants to 

electrical power distribution systems. 

The need for PLCs will significantly expand in the coming years, as countries with 

mature economies work tirelessly to develop new sophisticated power distribution 

networks required to support our growing economy.  Our existing power grids were 

designed decades ago, with the main aim of delivering electricity from large power 

stations to households and businesses.  The increasing efficiency and reliable 

requirements necessary to support our developing civilization in the face of increasing 

energy demands and the real threat of domestic terrorism and foreign aggression require 
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significant modernization of these power distribution networks.    The new “Smart Grid”, 

as it commonly called, will be characterized by a two-way flow of electricity and 

information creating a widely distributed energy network.  The control system required to 

support this energy network will be of an unheard of scale, the design of which will 

introduce significant challenges never before addressed. 

In related efforts, the US Navy has been rapidly migrating to ship designs with 

propulsion, auxiliary, and weapons systems with significantly higher energy requirements 

than in the past.  To address these requirements, modern ship designs such as the USS 

ZUMWALT DESTROYER (DDG1000) class are using Integrated Power Systems (IPS) 

that provide electrical power to propulsion and electrical loads from a common set of 

sources.  To provide direction for future IPS development, the Navy initiated the Next 

Generation Integrated Power Systems (NGIPS) effort to provide smaller, simpler, more 

affordable, and more capable systems for all Navy ships [8].   

The NGIPS effort is remarkably similar to the Smart Grid effort in multiple respects, and 

in both there is an increasing consensus that the control communication infrastructure 

needs fundamental changes.  In an automated electrical system, damage to a complex 

communication network, a hostile terrorist act, or even a failing component giving 

erroneous data can result in a control system taking improper actions that could result in 

large scale power failures on land and weapons, propulsion, or a complete electrical 

failure at sea or worse.  Earlier this year, we at NSWCCD-SSES documented a case 

where erroneous data from a failing control system communications component in an 

Improved Navy Lighterage System (INLS) Warping Tug (WT) resulted in a complete 

loss of propulsion and steering control whenever a ship was placed into full speed, which 
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would have resulted in the ship colliding into the shore if it were not for conveniently 

placed Emergency Stop pushbuttons.  It has become clear to controls engineers that more 

sophisticated methods are needed for verifying the integrity of the data and commands 

being issued to and from control systems. 

Implementing control systems on a large, highly integrated scale introduces significant 

challenges partly because control system networks were not designed with security being 

primarily in mind.  Historically, control system networks were designed to be completely 

physically isolated from other networks and therefore securing those control system 

networks seemed unnecessary.  Instead, control system networks were designed to have 

maximum throughput with minimal to nonexistent data loss.  In recent years though 

control systems have gradually been getting connected to the Internet, mostly via 

corporate network systems, in order to meet business and maintenance requirements.  In 

order to secure networks, IT administrators have been applying traditional security 

measures in order to prevent attackers from gaining access to the corporate networks thus 

protecting control system networks.  The last year particularly has highlighted the 

deficiencies with this model, as viruses such as Stuxnet have become rapidly prevalent.  

There is also significantly more risk in a compromised control system than a 

compromised corporate system.  For example, an attacker could compromise the control 

system of a nuclear power plant resulting in a failure of the reactor cooling system.  

Therefore control system designers are realizing that not only do we need improved 

algorithms to verify that control system data is accurate, we need algorithms to verify that 

the data and commands to the control systems are authenticated (i.e. coming from a valid, 

recognized source). 



  

4 

 

   

1.2 Current Practices 

Controls engineers have long recognized the need to verify that components within a 

control system are communicating and that the failure of communications between 

control system components should result in critical high priority alarms with possible 

equipment shutdowns.  Since control system communications operate in real time, 24 

hours a day, 7 days a week, algorithms are needed to detect a failure in communications 

as soon as it occurs.  Traditionally, “heartbeat” logic is implemented between each pair of 

communication devices.  Algorithm 1.1.A below illustrates an example of commonly 

used “heartbeat” logic. 

 

Algorithm 1.1.A – Traditional Control System “Heartbeat” 

1. Initialize a bit to a known condition (typically 1 as will be used in this algorithm). 

2. Transmit bit (call it B1) to communication partner.  Start a 3 second timer (call it 

T1) 

3. Communication partner receives the bit B1.  Communication partner sets another 

bit (call it B2) to 1 to match the state of B1 and starts its own 3 second timer (call 

it T2). 

4. Receive bit B2 from the partner.  Verify that the state of B2 matches the state of 

B1 and that timer T1 has not timed out.  If true, restart timer T1. Change state of 

B1 to be opposite that of B2.    Transmit B1 back to partner. 
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5. Partner receives bit B1.  Partner verifies that the state of B1 does not match the 

state of B2 and that timer T2 has not timed out.  If true, partner restarts timer T2. 

Partner changes B2 to match state of B1, retransmits bit back, and go to step 4.   

6. If T1 or T2 times out, generate alarm for communications failure.   

 

As long as a communications failure alarm does not occur, then the data being 

transmitted between the two PLCs is considered to be both valid and sourced between the 

communicating pair.  This kind of logic has proven to be very effective for general 

network health monitoring.  Issues in communication, primarily in the physical or 

transport layer, can be easily detected using this method.  For control system networks 

that are physically isolated from any other network, this is generally sufficient to 

implement an effective control scheme.  Unfortunately, this method does not protect 

against any kind of more sophisticated failure or attack such as that documented for the 

INLS WT described earlier or a “man-in-the-middle” attack.   

 

1.3 Literature Review on Smart Grid  

A number of papers have been written to introduce the Smart Grid concepts and provide 

a general overview of the requirements and challenges involved in developing a Smart 

Grid.   

Bouhafs, Mackay, and Merabti (2012) [1] identified a number of general requirements 

including communications and electrical generation needed in order to fully realize the 

Smart Grid vision.  They noted that underlying communications protocols will need to be 

more flexible and enable horizontal (vice a master/slave top-down) data exchange 
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between controllers and remote terminal units (RTUs).  The current “heartbeat” logic 

concept would not be useful in an implementation where data could flow from a source 

through multiple sources to a target since it only verifies the link between pairs and not 

the data itself.    They went on to note that in the event the Internet is used to connect 

equipment in the Smart Grid, strong encryption and authentication measures must be 

taken to ensure the security of the data in transit. 

Yan, Qian, Sharif, and Tipper (2012) [2] noted that it is necessary to have guaranteed 

Quality of Service (QoS) for the communications and networking technology.  In 

particular they highlighted the latency, bandwidth, interoperability, scalability, and 

security requirements.  Of particular interest is the authors’ analysis of bandwidth 

requirements which showed that there will be significant challenges in this area.  

Therefore, adding a significant number of bits in any communications protocol for 

control systems could have  a profoundly negative impact on the operation of the Smart 

Grid as a whole.  The authors also noted that the effort required to provision symmetric 

keys (i.e. keys between each pair of communicating devices) into thousands of devices 

would be too expensive or insecure.  They noted that the development of key and trust 

management schemes for large network deployments would be required.  While Navy 

systems are small enough that they would not suffer from the same kinds of limitations, it 

seems obvious that a solution must be developed for Navy systems that would be 

applicable to all future controls systems including the Smart Grid, particularly in support 

of modernized shore power connections for Navy systems. 

Yan, Qian, Sharif, and Tipper (2012) [3] in a related paper noted that new functions in 

the Smart Grid such as demand response introduce significant new cyber attack vectors 
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such as a malware that initiates a massive coordinated and instantaneous drop in demand.  

This attack could result in substantial damage to distribution, transmission, and 

generation facilities.  Research ongoing at NSWCCD-SSES has also noted this risk as 

applicable to Navy systems, particularly in combat scenarios with the use of advanced 

weapon systems such as the railgun.  The authors also noted that a major difference 

between Smart Grid controls communication and the Internet is that the controls data is 

significantly more concerned with message delay and timing constraints.   

Liu, Ning, and Reiter (2009) [4] in their work presented a notable example of a new type 

of attack, called false data injection attacks, that highlights the very real risk of attacks 

targeting data integrity.   

Baumeister (2011) [5] noted that most information systems use a Public Key 

Infrastruction (PKI) solution, but that the nature of power grid systems creates additional 

PKI requirements not present in traditional information systems.  This same statement 

can be generalized to apply to all control systems.  For example, Baumeister noted that 

control systems must make informed decisions regularly, and that it is unreasonable to 

expect a control system to go down or revert to a less efficient predecessor every time a 

certificate is unavailable.  For example, what happens when a certificate from a sensor 

expires?  In an information system, the impact of expired certificates is insignificant and 

they can be renewed when discovered.  However, in a control system this could cause the 

process (such as electric flows) to be incorrectly altered. 
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1.3.1 SGiP Cyber Security Working Group NISTIR 7628 

In response to the number of concerns related to the Smart Grid and Cyber Security, 

NIST established the Smart Grid Interoperability Panel (SGiP) Cyber Security Working 

Group which published NISTIR 7628 (2010) [6].  This document broke down the various 

kinds of communications that would be prevelant in a full international Smart Grid 

system into a number of categories such as “Category 10 – Interface between Control 

Systems and Non-Control / Corporate Systems”.  SGiP then identifies the unique security 

requirements for each of these categories, focusing on the three areas of confidentiality, 

integrity, and availability.     

Most, but not all of the categories identified by SGiP are directly or indirectly applicable 

to control systems (some that have little to no bearing such as categories 13 through 18 

are not shown here) operating in the Smart Grid and are shown in the list below: 

 Category 1:  Interface between control systems and equipment with high 

availability, and with compute and/or bandwidth constraints 

 Category 2:  Interface between control systems and equipment without high 

availability, but with compute and / or bandwidth constraints 

 Category 3:  Interface between control systems and equipment with high 

availability, without compute or bandwidth constraints 

 Category 4:  Interface between control systems and equipment without high 

availability, without compute or bandwidth constraints 

 Category 5:  Interface between control systems within the same organization 

 Category 6:  Interface between control systems in different organizations 
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 Category 10:  Interface between control systems and non-control / corporate 

systems 

 Category 12:  Interface between sensor networks and control systems 

 Category 19:  Interface between operations decision support systems 

 Category 20:  Interface between engineering / maintenance systems and control 

equipment 

 Category 21:  Interface between control systems and their vendors for standard 

maintenance and service 

 Category 22:  Interface between security / network / system management consoles 

and all networks and systems 

In reviewing the categories, it becomes obvious that all of them have significant overlap 

with NGIPS efforts as well as industrial control systems in general.  On looking through 

the requirements of these categories as identified by SGiP, it is seen that the primary 

concern in these categories is that of data integrity and authentication.  Data encryption 

can be useful in some circumstances, but it is not as critical as the other two 

requirements.   

 

1.4 Literature Review on NGIPS 

Most of the literature on the NGIPS effort has focused on areas such as electrical 

generation, propulsion, power conversion and distribution, energy storage, and zonal 

survivability. The NGIPS architecture is broken up into seven modules types: 

 Power Generation Modules (PGM) 

 Power Distribution Modules (PDM) 
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 Power Conversion Modules (PCM) 

 Energy Storage Modules (ESM) 

 Power Loads 

 Propulsion Motor Modules (PMM) 

 Power Control Modules (PCON) 

The PCON module is of particular interest to controls engineers, as it consists of the 

software and communications protocols necessary to operate the system.  Doerry (2009) 

[8] noted that PCON should implement the following functions listed below.  He also 

noted that the software should be developed for robustness in anticipation of future 

changes in the life of a ship, and for modifying for use across multiple ship classes. 

 Remote monitoring and control of NGIPS modules and controllable loads 

 Resource Planning 

 System Configuration 

 Mission Priority Load Shedding 

 Quality of Service Load Shedding 

 Fault Detection and Isolation 

 Maintenance Support 

 Training  

These functions are remarkably similar to the control system functions required for the 

development of a Smart Grid, with the notable exceptions of the electrical distribution 

Quality of Service (QoS) and Mission Priority Load Shedding.  As a result, the same 

need for data authentication and verification in the Smart Grid would be applicable to 

NGIPS, particularly in functions such as maintenance support where it becomes 
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increasingly common for ships to transmit data to and from shore based services for 

software upgrades and maintenance / troubleshooting support. 

Desired requirements for QoS also introduce the need to ensure that commands being 

transmitted across the ship for electrical service are genuine.  As noted by Doerry, a 

typical cause of a QoS failure is the shifting of electrical  power sources from ship to 

shore, and that communications will be required with the terrestrial power system 

command and control centers.  Failure of the ship and shore to properly establish valid 

communications could result in power instabilities for both.   

The increasing prevalence of computer viruses specifically targeting control systems will 

introduce new challenges to the mission readiness of a ship in times of war.  By attacking 

PCON, an enemy may be able to cause a control system to incorrectly transfer loads 

which could result in a failure of propulsion or weapon systems (or both) at a critical 

moment.  Modern weapon systems produce substantial electrical loads that may require 

realigning of the ship’s electrical distribution prior to being operational (such as 

performing bus-tie operations and shedding non-critical loads). 

The Navy has been putting significant effort into open architecture approaches in the 

development of control system software for fleet wide applications, encompassing a 

much larger scope then NGIPS.  Doerry, Scherer, Cohen, and Guertin (2011) [9] pointed 

out that information assurance and security needs to be thought of at the outset of any 

new machinery control system design, stating that confidentiality, integrity, and 

availability of data must be assured.  They also highlight that the software should perform 

error detection (and error correction if possible) along with filtering of the sensor data.   
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CHAPTER 2: CURRENT PRACTICES  

 

2.1 Fundamental Objectives 

Within the field of cryptography, there are multiple solutions providing various degrees 

of secure communication.  In order to be effectively used to establish secure 

communications these solutions have the following fundamental objectives: 

 Confidentiality – ensuring that the data can only be read by those authorized to 

see it 

 Data Integrity – ensuring that the data has not been modified by unauthorized 

means 

 Data Origin Authentication – ensuring that the data supposedly sent by a source 

actually originated with that source 

 Entity Authentication – ensuring that an entity participating in a data transfer is 

who it claims to be 

 Non-repudiation – ensuring that a source of data is unable to later deny sending 

the data 

Information / Corporate systems are concerned with meeting each of the above 

objectives.  Control systems are also equally concerned with the above objectives, with 

confidentiality to a significantly lesser degree, but also have unique requirements not 

present in information systems.  When an information system receives a piece of data 

through an insecure means, it can disregard the information with reasonably low risk.  

Control systems, on the other hand, need to make critical decisions with the information 

at hand.  If the data received is insecure, the control system is placed in a position of 
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having to make critical decisions about the operation of real world machinery without 

knowing which decision to take.  Unfortunately, the control system will be regularly  in 

the position where it must take some critical action or shut down the equipment, with 

each scenario resulting in possible equipment damage and injury/death to personnel 

operating that equipment.  

 

2.2 Limitations of Control Systems compared to Information / Corporate 

Systems 

Information / Corporate Systems typically consist of x86-based architecture computers 

running either Windows or Linux operating systems and a host of other software 

programs provided by multiple vendors to provide an integrated solution.  In contrast, at 

the heart of the Control System are Programmable Logic Controllers (PLCs), which use 

vendor specific developer environments to write software following IEC 61131-3 

guidelines (ladder logic, function blocks, etc) to implement a solution that is both easy 

and cheap to design and is very effective for controls.  The downside of these PLCs is 

that they tend to have significantly less processing power and storage capabilities as they 

are designed to run very specific software programs extremely efficiently, non-stop, for 

20 years or more.   

An alternative to PLCs are VERSAmodule Eurocards (VME) which tend to have greater 

processing power and contain the same input / output processing capabilities as PLCs but 

add significant complexity to the design of a control system.  The pros and cons of PLCs 

and VMEs are described below.  Another alternative to PLCs are SoftPLCs.  SoftPLCs 

are essentially programmed in the same manner as regular PLCs, but contain additional 
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underlying base code designed to interface with an operating system (typically Windows 

NT based operating systems) in order to run the IEC 61131-3 code on an x86-based 

architecture.  Figures 2.2A and 2.2.B show running PLC and VME racks on control 

systems for Navy Ships 

 

Figure 2.2.A PLC Rack 

 

 

Figure 2.2.B VME Rack 
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Since VME cards can be obtained that use the x86 architecture, in recent years the Navy 

has been implementing control systems on ship classes that use SoftPLCs running on 

VMEs to obtain the best of both worlds. This can be a complicated and expensive 

solution that is still more in the research and development stage and will likely not be 

implemented in either the Smart Grid or regular industrial control systems.  However it is 

possible from a research perspective to perform cryptographic testing on SoftPLCs using 

VMEs to do “proof of concept” testing in order to determine the validity of a solution 

before expending significant resources in developing an independent and complete PLC 

solution. 

 

2.2.1 PLC versus VME 

In order to give greater perspective on the usage of PLCs versus VMEs in control 

systems, the pros and cons of both technologies are listed below.  These SoftPLCs may 

become more prevalent in industrial control systems with the advent of new projects such 

as OpenPLC which aims to develop an open source software and hardware platform for 

industrial control systems. 

 

VME Pros 

 Analog and digital I/O boards are available from a large number of vendors 

 VME components are open architecture 

 Standardized circuit card form factor and data bus 
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 Significantly greater flexibility in software for VME than compared to PLC, 

allowing for advanced processing not available with PLCs (such as required for 

the Navy’s new advanced guided missile destroy program) 

 Ability to implement secure communication protocols 

 Operating Temperature range of -40oC to +85oC 

 

VME Cons 

 Development of software is complex and difficult, developer must design not only 

the control system application but also the low-level system interactions 

 Widespread use of proprietary operating systems often creates a virtual sole-

source situation 

 Instability in VME Operating System market means it is unlikely developers will 

have experience with the operating system chosen for a new project, leading to 

longer ramp-up time and increased risk for software defects 

 Obsolescence is a major problem 

 Integration of new components into an existing system is NOT “plug-and-play” 

 

PLC Pros 

 Cost is less than for VME systems 

 Programming time is reduced due to ease of programming language (ladder-logic) 

 Risk is significantly reduced when using all products from the same vendor 

 Integration of new components into an existing system is typically “plug-and-

play” 
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 PLC vendors have a strong record of supporting their products for 20 years or 

longer 

 Enhanced software troubleshooting features not available with VMEs 

 

PLC Cons 

 PLC vendor products generally not compatible with another vendor’s products, 

requiring a single vendor to provide all processor, I/O, and network 

communication boards 

 No standards for PLC form factor or electrical characteristics 

 Secure communication protocols are not a common feature with many PLC 

vendors 

 Increased risk in relying on a single vendor to support their products 

 Operating Temperature range of only 0oC to +60oC 

 

2.3 Traditional Solutions for Information / Corporate Systems 

While traditional solutions for Information / Corporate Systems will not be feasible for 

implementation in Control Systems due to the different requirements and architectures, it 

is important to establish an understanding of current solutions used in Information 

Systems.  There are essentially two main categories of cryptographic solutions, 

symmetric-key cryptography and public-key cryptography.     
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2.3.1 Symmetric-key Cryptography 

Symmetric-key Cryptography includes schemes such as the Data Encryption Standard 

(DES) (now obsolete), RC4, and the Advanced Encryption Standard (AES) to achieve 

confidentiality.  They may also be used with a message authentication code (MAC) 

algorithm such as HMAC to achieve data integrity and data origin authentication.  In a 

typical symmetric-key cryptography scheme two parties already share a secret key k that 

has been communicated to the parties by some other means (typically a physical secure 

channel such as a trusted courier, or by using a public-key cryptography scheme to 

negotiate a shared secret key).  Party A wishing to transmit to B uses one of the 

previously mentioned schemes to compute a ciphertext c = ENCk(m) to be sent to B.  B 

then receives the message and uses the same k (and knowing the same scheme used to 

encrypt m used by A) to recover the plaintext message m = DECk(c). 

If data integrity and data origin authentication are desired, then the same principles apply 

however instead of encrypting the message m into ciphertext c a tag t is first computed 

where t =MACk(m) of the plaintext message using a MAC algorithm (of which there are 

many) and the key.  The plaintext message and the tag are both transmitted, and the 

receiver can use the plaintext message to compute its own tag t’.  If t = t’ then the 

receiver can accept the message as having originated from the source. 

While symmetric-key cryptography can be very efficient, the key distribution and key 

management problems tend to render it ineffective for large scale systems 

communicating to multiple partners [10].  In a network of N entities, each entity may 

have to maintain keying material with each of the other N-1 entitites.  Some symmetric-

key systems attempt to alleviate this problem by using an online trusted third party that 
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distributes the keys as required, however for control systems this creates a single critical 

point of failure that will be unacceptable as control systems become more and more 

distributed and de-centralized.  Additionally, while key distribution in symmetric-key 

cryptography may be possible through a physical courier on a ship (for NGIPS) it will not 

be practical for large scale systems such as the Smart Grid.   

 

2.3.2 Public-key Cryptography 

Public-key cryptography began in 1975 to address the aforementioned limitations in 

symmetric-key cryptography.  Unlike symmetric-key schemes, public-key schemes 

require the keying material that is exchanged to only be authentic, but not secret.  

Additionally, instead of each pair of entities sharing a secret key, each entity selects a 

single pair of keys (e, d) consisting of a public key e and a related private key d.  The 

entity keeps the private key a secret from all other entities and shares the public key with 

all other entities.  The keys are mathematically related but it is computationally infeasible 

to determine the private key solely from knowledge of the public key.  Deriving the 

private key from the public key is equivalent to solving a computational problem that is 

believed to be intractable.   

 

2.3.2.1 RSA  

The most commonly used public-key cryptography scheme is RSA, named after its 

inventors Rivest, Shamir, and Adleman [11].  It was first proposed in 1977 shortly after 

the discovery of public-key cryptography.  In RSA, the public key consists of a pair of 

integers (n, e) where n is the modulus.  The modulus is a product of two randomly 
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generated (and secret) primes p and q which are of the same bitlength.  Algorithm 

2.3.2.1.A below shows how to generate an RSA key pair.  RSA encryption and signature 

schemes use the fact that med = m (mod n).  Algorithms 2.3.2.1.B and 2.3.2.1.C show how 

basic RSA encryption and decryption work respectively. The hardness in breaking RSA 

is based on the integer factorization problem, i.e. determining the secret primes p and q 

from the public key for large values of bitlength l.   

The RSA signature generation and signature verification algorithms are shown in 

algorithm 2.3.2.1.D and 2.3.2.1.E.  As in all signature schemes, the signer first generates 

a cryptographic hash function H which acts in a similar manner as the tag in symmetric-

key encryption.  The signer then generates the signature and transmits the message m 

along with the signature s to a verifying party.   

In order to increase the efficiency of RSA, smaller exponents can be selected.  In 

practice, the most commonly chosen values of e are e = 3 and e = 65537 for encryption 

and signature verification [11]. Note that there is no known attack against using small 

public exponents as long as proper padding is used. Decryption and signature generation 

always use the exponent d (the private key) which is the same bitlength as n.  Thus RSA 

encryption and signature verification with small values of e are significantly faster than 

RSA decryption and signature generation. 

  

Algorithm 2.3.2.1.A [10] – Generating RSA Key Pair 

 INPUT:  bitlength l 

OUTPUT: RSA public key (n, e) and private key d 

1. Randomly select two primes p and q of the same bitlength l / 2 
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2. Compute n = pq and Φ = (p-1)(q-1) 

3. Select an arbitrary integer e with 1 < e < Φ and gcd(e, Φ) = 1 

4. Compute the integer d satisfying 1 < d < Φ and ed ≡ 1 (mod Φ) 

5. Return (n, e, d)  

 

Algorithm 2.3.2.1.B [10] – RSA Encryption 

 INPUT:  RSA public key (n, e), plaintext m ϵ [0, n-1] 

OUTPUT: Ciphertext c 

1. Compute c = me mod n 

2. Return (c )  

 

Algorithm 2.3.2.1.C [10] – RSA Decryption 

 INPUT:  RSA public key (n, e), RSA private key d, ciphertext c 

OUTPUT: Plaintext m 

1. Compute m = cd mod n 

2. Return (m )  

 

Algorithm 2.3.2.1.D [10] – RSA Signature Generation 

 INPUT:  RSA public key (n, e), RSA private key d, message m 

OUTPUT: Signature s 

1. Compute h = H(m) where H is a cryptographic hash function 

2. Compute s = hd mod n 

3. Return (s )  
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Algorithm 2.3.2.1.E [10] – RSA Signature Verification 

 INPUT:  RSA public key (n, e), message m, signature s 

OUTPUT: Acceptance or rejection of the signature 

1. Compute h = H(m) where H is the same cryptographic hash function used by the 

signing party 

2. Compute h’ = se mod n 

3. If h = h’ then accept the signature, else reject 

 

2.3.2.2 Digital Signature Algorithm  

In 1976 Diffie and Hellman proposed developing a key agreement protocol based on the 

discrete logarithm problem (DLP) [10], which like the integer factorization problem used 

in RSA is computationally infeasible to solve.  Discrete logarithms are group-theoretic 

analogues of ordinary logarithms.  For example, an ordinary logarithm loga(b) is a 

solution of the equation ax = b for x. In a discrete logarithm, you have a group G which 

consists of a range of integer values from 0 to n-1.  If a and b are elements in the group 

then a solution of x of the equation ax = b is called a discrete logarithm to the base a of b 

in the group G. In a discrete logarithm public-key cryptography system a key pair is 

associated with a set of domain parameters (p, q, g).  Algorithm 2.3.2.2.A shows how 

these domain parameters are generated, and Algorithm 2.3.2.2.B shows how to generate 

corresponding key pairs.   

In 1984 ElGamal described discrete logarithm public-key encryption and signature 

schemes, and since then many different variants have been proposed leading up to the 
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establishment of the Digital Signature Algorithm (DSA) [10].  DSA was proposed in 

August 1991 by the U.S. National Institute of Standards and Technology (NIST) and was 

specified in a U.S. Government Federal Information Processing Standard (FIPS 186), 

adopted in 1993.  A minor revision was issued in 1996 as FIPS 186-1, which was 

expanded further in 2000 as FIPS 186-2 and again in 2009 as FIPS 186-3 [12].  

Algorithms 2.3.2.2.C and 2.3.2.2.D shown below give the procedures respectively for 

DSA signature generation and verification. 

 

Algorithm 2.3.2.2.A [10] – Discrete Logarithm Domain Parameter Generation 

 INPUT:  Parameters l and t 

OUTPUT: Discrete logarithm domain parameters (p, q, g) 

1. Select a t-bit prime q and an l-bit prime p such that q divides p-1 

2. Select an element g of order q 

a. Select arbitrary h ϵ [1, p-1] and compute g = h(p-1)/q mod p 

b. If g = 1 then repeat 2.a. 

3. Return (p, q, g) 

 

Algorithm 2.3.2.2.B [10] – Discrete Logarithm Key Pair Generation 

 INPUT:  Discrete logarithm domain parameters (p, q, g) 

OUTPUT: Public key y and private key x 

1. Select x ϵR [1, q-1] 

2. Compute y = gx mod p 

3. Return (y, x) 
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Algorithm 2.3.2.2.C [10] – DSA Signature Generation 

 INPUT:  Discrete logarithm domain parameters (p, q, g), private key x, message m 

OUTPUT: Signature (r, s) 

1. Select k ϵR [1, q-1] 

2. Compute T = gk mod p 

3. Compute r = T mod q, if r = 0 then go to step 1 

4. Compute  h = H(m), where H is a cryptographic hash function 

5. Compute s = k-1(h+xr) mod q, if s = 0 then go to step 1 

6. Return (r, s) 

 

Algorithm 2.3.2.2.D [10] – DSA Signature Verification 

 INPUT:  Discrete logarithm domain parameters (p, q, g), public key y, message m, 

signature (r, s) 

OUTPUT: Acceptance or rejection of the signature 

1. Verify that r and s are integers in the interval [1, q-1], if either verification fails 

then reject the signature 

2. Compute h = H(m), where H is the same cryptographic hash function used by the 

signing party 

3. Compute w = s-1 mod q  

4. Compute u1 = hw mod q and u2 = rw mod q 

5. Compute T = gu1 yu2 mod p 

6. Compute r’ = T mod q 



  

25 

7. If r’ = r then accept the signature, else reject 

 

2.3.2.3 Limitations Using Public-Key Cryptography 

In cryptography, the security of an algorithm cannot exceed its key length (measured in 

bits) since any algorithm can be cracked by brute force. A key therefore should be 

sufficiently large enough such that a brute force attack is infeasible – i.e. it would take 

too long to execute.  If there is some indicator that an attack may exist to feasibly break a 

key for a particular algorithm in an efficient manner for some bit length, then the size of 

the key is increased to provide additional security.  The key size to security level ratio is 

not the same for all categories of algorithms.   

As of 2003 [13] RSA Security claims that 1024-bit RSA keys are equivalent in strength 

to 80-bit symmetric keys, 2048-bit RSA keys to 112-bit symmetric keys and 3072-bit 

RSA keys to 128-bit symmetric keys. RSA claims that 1024-bit keys are likely to become 

insecure sometime between 2006 and 2010 and that 2048-bit keys are sufficient until 

2030. An RSA key length of 3072 bits should be used if security is required beyond 

2030. NIST key management guidelines further suggest that 15360-bit RSA keys are 

equivalent in strength to 256-bit symmetric keys.  These key lengths, while 

implementable in Information / Corporate systems, are infeasible in Control Systems 

where processing power and data storage is limited.  Therefore an alternative public-key 

algorithm is needed that provides the benefits of algorithms such as RSA and DSA 

without the excessive key lengths required by these algorithms.  
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CHAPTER 3: ELLIPTIC CURVE CRYPTOGRAPHY 

 

3.1 Background 

Elliptic curve public key cryptosystems were first independently proposed by V.S. Miller 

(1985) [14] and by N. Koblitz (1987) [15].  They have only recently begun to be used in 

commercial systems, and adoption has been slow.  This is primarily due to concerns 

about intellectual property, as a number of optimizations and special algorithms used to 

increase efficiency have been patented in recent years.  Despite these concerns, elliptic 

curve cryptography (ECC) has grown resulting in its inclusion in standards by accredited 

standards organizations such as ANSI (American National Standards Institute) [16, 17], 

IEEE (Institute of Electrical and Electronics Engineers) [18], ISO (International 

Standards Organization [19, 20], and NIST (National Institute of Standards and 

Technology [21].   

The most prominent group for the standardization and propagation of ECC technology is 

SECG (Standards for Efficient Cryptography Group) [22].  They have published 

numerous and detailed works on the subject, including documents on how to implement 

ECC and on recommended elliptic curve domain parameters [23, 24].  The SECG 

consists of a number of organizations including NIST and key industrial partners such as 

VISA, Fujitsu, and Certicom.  Certicom, which is a wholly owned subsidiary of Research 

in Motion (RIM), is the main industrial leader in ECC, with over 350 patents and patents 

pending worldwide covering key aspects of the technology [25].   

In order to promote the use of ECC technology, NIST has licensed 26 patents held by 

Certicom with the right to grant sublicenses for free to industrial vendors for developing 
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products used for protecting national security information [6].  NIST has also identified a 

subset of key ECC technologies for use in Smart Grid and related applications, such as 

the Elliptic Curve Digital Signature Algorithm as part of its NSA Suite B collection of 

approved encryption, key exchange, digital signature, and hashing protocols. It is also 

worth noting that ECC implementation strategies based on the fundamental algorithms of 

ECC, which were published prior to filing dates of many patents can be found in the 

IETF Memo “Fundamental Elliptic Curve Cryptography Algorithms.” [26] 

 

3.2 Mathematical Foundations 

This section presents an overview of the mathematical techniques and concepts required 

for an intermediary level of understanding of elliptic curve cryptography.  This material 

is sufficient for engineering purposes to develop ECC systems using standardized 

existing mathematic implementations and standardized elliptic curve domain parameters.  

The works of Koblitz [15], Miller [14], Hankerson et al [10], and the SECG [23] can be 

referred to for more advanced mathematical concepts that may be helpful should the need 

arise for development of new implementations or the use of random elliptic curve domain 

parameters. 

 

3.2.1 Finite Fields 

A finite field Fqm consists of a finite set of objects called field elements together with the 

description of two operations – addition and multiplication – that can be performed on 

pairs of field elements.  Subtraction and division within a finite field are defined in terms 

of an additive inverse and multiplicative inverse, respectively. In ECC there are two 
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kinds of fields that are primarily used:  prime finite fields Fp with q=p and m=1, with q 

being prime; and binary fields F2m where q=2 for some m ≥ 1. A third type of field less 

commonly used is known is Optimal Extension Fields (OEF).  The general idea in OEFs 

is to select values of q and m, along with a reduction polynomial to more closely match 

underlying hardware characteristics [10].  At this time there are no recommended 

implementations of ECC by SECG that utilize OEFs, and therefore they are only 

mentioned here for completeness.  

Equations involving finite fields do not explicitly denote the mod p operation, but it is 

understood to be implicit.  

 

3.2.1.1 Prime Finite Fields [23] 

Elements in a prime finite field Fp should be represented by the set of integers: 

{0, 1, …, p-1} 

Operations on prime finite fields are defined as follows: 

 Addition:  If a, b ϵ Fp, then a + b = r in Fp, where r ϵ [0, p-1] is the remainder 

when the integer a + b is divided by p. 

 Multiplication:  If a, b ϵ Fp, then ab = s in Fp where s ϵ [0, p-1] is the remainder 

when the integer ab is divided by p. 

 Additive inverse:  If a ϵ Fp, then the additive inverse (-a) of a in Fp is the unique 

solution to the equation a + x ≡ 0 mod p. 

 Multiplicative inverse:  If a ϵ Fp, a ≠ 0, then the multiplicative inverse a-1 of a in 

Fp is the unique solution to the equation ax ≡ 1 mod p. 
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In order to increase efficiency and to facilitate interoperability, prime finite fields using 

the NIST primes should be use.  These finite fields have: 

[log
2
p] ϵ {192, 224, 256, 384, 521] 

Except for 521, p is aligned with word size to increase efficiency in computation and 

communication.  521 is an anomaly that is often included to align with the U.S. 

government’s recommended elliptic curve domain parameters.   

 

3.2.1.2 Binary Finite Fields [23] 

Elements of a binary finite field F2m should be represented by the set of binary 

polynomials of degree m-1 or less: 

{a
m-1

x
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+ … + a
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0
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i 
 ϵ {0,1} } 

and an irreducible polynomial f(x). 

Operations on binary finite fields are defined as follows: 

 Addition:  If a = a
m-1
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 Multiplication:  If a = a
m-1

x
m-1

+a
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m-2

+…+ a
0
, b = b
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+…+ b

0
 ϵ 

F2m, then ab = s in F2m where s = s
m-1

x
m-1

+s
m-2

x
m-2

+…+ s
0
 is the remainder when 

the polynomial ab is divided by f(x) with all coefficient arithmetic performed 

modulo 2. 

 Additive inverse:  If a ϵ F2m, then the additive inverse (-a) of a in F2m is the unique 

solution to the equation a + x ≡ 0 in F2m. 
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 Multiplicative inverse:  If a ϵ F2m, a ≠ 0, then the multiplicative inverse a-1 of a in 

F2m is the unique solution to the equation ax ≡ 1 in F2m. 

In order to increase efficiency and interoperability, the characteristic binary finite fields 

used should have: 

m ϵ {163, 233, 239, 283, 409, 571] 

These fields were chosen in order to construct a suitable Koblitz curve whose order is 2 

or 4 times a prime over F2m. The field with m = 239 is an anomaly shown here because it 

has already been widely used in practice.  The field with m = 283 is an anomaly that is 

often included to align with the U.S. government’s recommended elliptic curve domain 

parameters.   

Multiplication should be performed using one of the irreducible binary polynomials of 

degree m in Figure 3.2.1.2.A below.  These polynomials enable efficient calculation of 

field operations, except for the polynomial with m = 239 which is an anomaly shown 

here because it has been widely deployed. 

Field Reduction Polynomial(s) 

F2163 f(x) = x163+x7+x6+x3+1 

F2233 f(x) = x233+x74+1 

F2239 f(x) = x239+x36+1  or  x239+x158+1 

F2283 f(x) = x283+x12+x7+x5+1 

F2409 f(x) = x409+x87+1 

F2571 f(x) = x571+x10+x5+x2+1 

Figure 3.2.1.2.A Binary Finite Field Reduction Polynomials 
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3.2.2 Elliptic Curves 

Elliptic curves are most commonly shown in the form of the simplified Weierstrass 

equation in the form of: 

y2 = x3 + ax +b  

where  

4a3 + 27b2 ≠ 0 

This condition is critical to ensure that the elliptic curve is “smooth”, i.e. that there are no 

points at which the curve has two or more distinct tangent lines.  The curves shown in 

Figure 3.2.2.A illustrate examples of elliptic curves satisfying this condition.   

 

 

Figure 3.2.2.A Sample Elliptic Curves [10] 

 

The security of ECC is based on the elliptic curve discrete logarithm problem (ECDLP), 

which arises when elliptic curves are used over finite fields. The ECDLP is [10]:  given 

an elliptic curve E defined over a finite field Fq, a point P ϵ E(Fq) of order n, and a point 
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Q ϵ <P>, find the integer l ϵ [0, n-1] such that Q = lP, where <P> is the subgroup 

generated by P. The integer l is called the discrete logarithm of Q to the base P, denoted l 

= log
P
Q. The elliptic curve domain parameters for cryptographic schemes should be 

carefully chosen in order to resist all known attacks on the ECDLP.  However, since the 

methods for computing solutions to the ECDLP are much less efficient then methods 

used for computing solutions to integer factorization (used in RSA) ECC can provide the 

same level of security as RSA with smaller key lengths, and ECC scales much better at 

higher levels of security than RSA. 

When an elliptic curve E is defined over a field (call it K) there exist rules for adding two 

points in E(K) to give a third point in E(K).  This operation is commonly known as point 

addition.  Furthermore, there also exist rules for doubling a point as to obtain another 

point, an operation commonly known as point doubling.  Figure 3.2.2.B below shows a 

geometric representation of both of these rules.   

 

 

Figure 3.2.2.B Geometric Representation of Point Addition and Point Doubling [10] 
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Algebraic formulas for these operations can be derived from the geometric 

representation.  The exact formulas themselves (the group law) will vary depending on 

whether you are using a simplified Weierstrass form or the complete form.  They will 

also vary depending on the characteristic q of the underlying field [10].  We consider 

these cases:   

 The characteristic of the underlying field K is not 2 or 3 (e.g. K = Fp  where p > 3 

is a prime) 

 The curve E is non-supersingular of the form over K = F2m 

 The curve E is supersingular of the form over K = F2m 

The easiest group law to understand is for that of the simplified Weierstrass form for 

char(K)≠2,3, shown in Figure 3.2.2.C.  Group laws for the simplified Weierstrass form 

for char(K)=2 are shown in Figures 3.2.2.D and 3.2.2.E for non-supersingular and 

supersingular curves respectively.   

 

Figure 3.2.2.C Group Law for E(Fp):  y
2=x3+ax+b, char(K) ≠2,3  [10] 
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Figure 3.2.2.D Group Law for non-supersingular E(F2m):  y2+xy=x3+ax2+b [10] 

 

Figure 3.2.2.E Group Law for supersingular E(F2m):  y2+cy=x3+ax+b [10] 
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3.2.3 Projective Coordinates 

The group laws shown in section 3.2.2 illustrate that the formulas for point addition and 

point doubling require field inversions and field multiplications. These are complex 

operations for the very large fields typically used in cryptographic applications.  If 

inversion in a field K is significantly more expensive than multiplication (and it typically 

has a cost of roughly 80 field multiplications [10]), then the use of a technique known as 

projective coordinates may be advantageous to use. 

Projective coordinates essentially works by defining an equivalence relationship between 

a field K and a set K3\{0,0,0}.  The relationship is obtained by replacing x with X/Zc and y 

with Y/Zd, and clearing the denominators.  We end up with a 1-1 relationship between the 

affine points that lie on E and the projective points on E.  There are a number of different 

versions of projective coordinates, with varying values of c and d.   

In the “standard projective coordinates” c and d are both set to one. Another form of 

projective coordinates known as “Jacobian coordinates” sets c=2 and d=3.  This changes 

the simplified Weierstrass equation from: 

y2 = x3 + ax +b  

to the projective form: 

Y2 = X3 + aXZ4 + bZ6 

The result of this change allows a new group law to be formed in which point doubling 

can be computed using six field squarings and four field multiplications [10].  The use of 

field inversions is now no longer required.  Algorithms also exist to perform point 

multiplication between points in different coordinate systems, such as affine and 
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Jacobian.  Jacobian coordinates yield the fastest point doubling, while mixed Jacobian-

affine coordinates yield the fastest point addition.   

A third type of coordinate system is “Chudnovsky coordinates”.  In Chudnovsky 

coordinates Jacobian coordinates (X:Y:Z) are represented as (X:Y:Z:Z2:Z3).  There are 

some point multiplication algorithms that make use of the redundancy in Chudnovsky 

coordinates and use mixed Jacobian-Chudnovsky and mixed Chudnovsky-affine 

coordinates for point addition. Figure 3.2.3.A below gives some example operation 

counts for using projective coordinates in point addition.  In the figure A represents affine 

coordinates, P represents standard projective coordinates, J represents Jacobian 

coordinates, and C represents Chudnovsky coordinates.  The mathematical operations of 

field inversion, field multiplication, and field squaring are representated as I, M, and S 

respectively. 

 

Figure 3.2.3.A  Operation Counts on  y2 = x3 - 3x+b [10] 

 

3.2.4 Point Multiplication 

In cryptographic applications point multiplication (the computation of kP where P is a 

point on the curve and k is an integer) dominates the execution time of ECC schemes. 

There are three cases where point multiplication occurs: 

 kP where precomputation must be online 

 kP for P known in advance and precomputation may be offline 
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 kP + lQ where only the precomputation for P may be done offline 

The last two cases are motivated by the Elliptic Curve Digital Signature Algorithm 

(ECDSA), where signature generation requires a calculation kP where P is fixed, and 

signature verification requires a calculation kP + lQ where P is fixed and Q is known a 

priori.   

There are a number of mathematical techniques that can be used in order to increase the 

efficiency of point multiplications.  Some methods, such the “sliding-window methods”, 

require that extra memory be available.  Additionally, if the point P is fixed and some 

storage is available, then the point multiplication kP can be accelerated by pre-computing 

some of the data dependent on P using a type of fixed-base windowing method such as 

that proposed by Brickell, Gordon, McCurley, and Wilson [10].  Shamir’s Trick is yet 

another method used specifically to speed up the calculation of kP + lQ by performing 

simultaneous multiple point multiplication [10]. 

 

3.3 Domain Parameters 

As stated previously, the elliptic curve domain parameters for cryptographic schemes 

should be carefully chosen in order to resist all known attacks on the ECDLP.  In general, 

for elliptic curves over a finite field Fqm , the following domain parameters are required to 

be specified: 

D = (q, FR, S, a, b, P, n, h) 

Where: 

q – field order 

FR – field representation 
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S – seed, used if the elliptic curve was generated randomly 

a & b – coefficients in the field Fqm that define the equation over the field 

P – the base point P=(xp, yp) ϵ Fqm that has prime order 

n – the order of P 

h – the cofactor h=#E(Fqm) / n 

This section describes the domain parameters needed to generate curves for the prime and 

binary finite fields used in ECC.  We then go on to discuss the use of standardized special 

curves and the generation of new random curves, discussing the pros and cons of each. 

 

3.3.1 Prime Field Elliptic Curves 

For elliptic curve domain parameters over Fp the domain parameters are the sextuple: 

D = (p, a, b, P, n, h) 

They consist of an integer p specifying the finite field along with certain general domain 

parameters defined above.  Elliptic curve domain parameters over Fp precisely specify an 

elliptic curve and a base point.  This is necessary to define public-key cryptography 

schemes based on ECC [24].  If the elliptic curve domain parameters are verifiably 

random than they should be accompanied by the seed value S from which they are 

derived [24].   

 

3.3.2 Binary Field Elliptic Curves 

For elliptic curve domain parameters over F2m the domain parameters are the septuple: 

D = (m, f(x), a, b, P, n, h) 
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They consist of an integer m specifying the finite field F2m, an irreducible binary 

polynomial f(x) of degree m specifying the representation of F2m, along with certain 

general domain parameters defined above. Elliptic curve domain parameters over F2m 

precisely specify an elliptic curve and a base point.  This is necessary to define public-

key cryptography schemes based on ECC [24].  If the elliptic curve domain parameters 

are verifiably random than they should be accompanied by the seed value S from which 

they are derived [24].   

 

3.3.3 Standardized Versus Random Curves 

In order to increase efficiency of cryptographic implementations and to prevent all known 

attacks, various standardized domain parameters have been developed for elliptic curves 

over both prime and finite fields.  These standardized, or “special”, curves have been 

published by the SECG [24] and are recommended by NIST for use in U.S. government 

applications.  However, in order to guard against future attacks against these curves one 

might decide to generate a new curve randomly but that has a validation process that 

proves the new curve resists all known attacks on the ECDLP.  Fortunately algorithms 

exist to accomplish this very task [10]. 

The conventional wisdom of ECC has been, as described by Koblitz [27]: 

 For greatest security choose parameters as randomly as possible 

 It is safest to choose the defining equation to have random coefficients 

 It is okay to use special curves for reasons of efficiency if you insist, however that 

choice may one day come back to bite you 
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Recent work on isogenies in elliptic curve cryptography has shown that there are various 

scenarios in which a special curve is better than a random curve.  Isogenies, simply put, 

allow one to transport the discrete logarithm problem from one curve to another.  It is 

“random self-reducible” within a set of endomorphism classes with small conductor gaps.  

Work in this area has shown that we need to assume that some version of a Weil Descent 

attack or another approach someday will lead to a faster-than-sqrt attack on a small but 

non-negligible portion of random curves [27]. 

It is unknown at this time whether random curves are truly more secure than special 

curves.  Therefore, for control systems for the Smart Grid and NGIPS following the NIST 

recommendation seems to be the most prudent.   

 

3.4 Known Attack Mechanisms against ECC 

This section presents a basic overview of the theory behind various attacks against ECC, 

focusing more on the implications of these attack methods and the countermeasures to 

these attacks.  Attacks against ECC focus on finding ways to solve the ECDLP in sub-

exponential time.  It should be noted that using ECC technologies such as the Elliptic 

Curve Digital Signature Algorithm (ECDSA) using any of the SECG recommended 

elliptic curve domain parameters [24] will provide protection against all known attacks 

(i.e. render these attacks computationally infeasible). 

 

3.4.1 Naïve Method 

The most naïve method for solving the ECDLP is to perform an exhaustive search where 

one computes the sequence of points 1P, 2P, 3P,…lP until Q is encountered.  On average 
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this will take n/2 steps.  Therefore the naïve method can be circumvented by selecting 

elliptic curve domain parameters with n being sufficiently large to represent an infeasible 

number of calculations (e.g. n = 280) [10].  Therefore other methods of solving the 

ECDLP must be sought.   

The best general-purpose attack known on the ECDLP is the combination of the Pohlig-

Hellman algorithm and Pollard’s rho algorithm [10].  Even these attacks can have an 

exponential running time depending on the selection of the domain parameters.  

However, it should be noted that there exists no mathematical proof that there does not 

exist an efficient algorithm for solving the ECDLP.  Some evidence for the intractability 

of the ECDLP does exist and researchers have been studying the problem extensively 

since 1985 when it was first proposed [10]. 

 

3.4.2 Pohlig-Hellman Attack 

The Pohlig-Hellman attack uses an algorithm that reduces the computation of l = log
p
Q 

to the computation of discrete logarithms in the prime order subgroups of <P>.  

Therefore in order to maximize resistance to the attack domain parameters should be 

selected such that the order n of P is divisible by a large prime so that the subgroup field 

is large. 

 

3.4.3 Pollard’s rho Attack 

The idea of Pollard’s rho attack is to find distinct pairs (c’, d’) and (c’’, d’’) of integers 

modulo n such that: 

c’P + d’Q = c”P + d”Q 
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Hence l = log
p
Q can be obtained by computing 

L = (c’-c”)(d’-d”)-1 mod n 

This attack on its own takes roughly the same expected time as the naïve method but has 

negligible storage requirements [10]. There are multiple ways of speeding up this attack, 

including methods of parallelizing the attack to allow multiple processors to work 

together to solve an ECDLP instance in which the speedup is linear to the number of 

processors used.  The processors also do not have to communicate to each other  and 

need only limited communications to a central server. 

 

3.4.4 Index-Calculus Attacks 

Index-calculus algorithms are the most powerful methods known for computing discrete 

logarithms in groups such as the multiplicative group of a finite field. The question that 

naturally arises is whether these algorithms can be used to solve the ECDLP in sub-

exponential time.  The problem for the ECDLP is that no one knows yet how to 

efficiently lift points in E(Fp) to E(Q). Additionally, it has been proven under some 

reasonable assumptions that the number of points of the small height required for these 

algorithms is extremely small so that only an insignificant proportion of the points can be 

lifted.  Therefore, so far no one has found an index-calculus approach that yields a 

general subexponential-time (or better) algorithm for the ECDLP [10].   

 

3.4.5 Isomorphism Attacks 

Isomorphism attacks essentially try to reduce the ECDLP to the DLP in groups for which 

subexponential-time (or faster) algorithms are known.  Consequently the ECDLP for 
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curves on which an isomorphism attack are found can be efficiently solved.  Weil and 

Tate pairing attacks and Weil descent attacks are examples of isomorphism attacks [10]. 

 

3.5 Cryptographic Protocols Useful for Control Systems 

As discussed in section 1.3.1 the primary need for control systems is to verify data 

integrity and authentication.  This need is fulfilled in corporate / non-control systems 

through the use of the Digital Signature Algorithm discussed in section 2.3.2.2.  

However, as discussed in section 2.3.2.3 the use of this algorithm is infeasible for control 

systems.  Elliptic curves offer us an alternative path through the use of the Elliptic Curve 

Digital Signature Algorithm (ECDSA).  There are also a number of other alternative 

elliptic curve signature schemes, such as Elliptic Curve ElGamal Signatures (ECES) and 

Abbreviated ECES Signatures (AECES).  Since ECDSA is approved by NIST and 

included in their NSA Suite B it is therefore the most suitable candidate for use in control 

systems. The subsections below detail the algorithm, beginning with generating private 

and public keys for use in ECDSA. 

  

3.5.1 Key Generation 

ECC key pairs are associated with the particular elliptic curve domain parameters used in 

the generation of the key pair.  The public key is a randomly selected point Q in the 

group <P> generated by P.  The private key that corresponds to the public key is the 

solution to the ECDLP d = log
p
Q.  The entity that is generating the key pair must have 

the assurance that the domain parameters are valid (i.e. resistant to all known attacks), 
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and the association between the domain parameters and the public key must be verifiable 

by all entities in the communication.  

In non-control / corporate systems this would normally be done by a certification 

authority that generates a certificate attesting to the association between a public key and 

its domain parameters.  Large scale control systems such as the Smart Grid will need to 

perform the same function on some level. For smaller control systems, such as those 

planned for use on US Navy ships for NGIPS, this association can be achieved by context 

(i.e. all entities in the system use the same domain parameters).   

Algorithm 3.5.1.A below illustrates how to generate an ECC key pair assuming valid 

domain parameters.  It is critical that the number d generated be random, as in the 

likelihood that any particular value of d would be chosen over any other value is so small 

that an adversary is unable to narrow down the search space for d.  This is akin to the idea 

that one should not select a password that includes their spouse’s name. 

 

Algorithm 3.5.1.A [10] – Generating ECC Key Pair 

 INPUT:  Domain Parameters D = (q, FR, S, a, b, G, n, h) 

OUTPUT: Public key Q, Private key d  

1. Randomly select d ϵ
R
 [1, n-1] 

2. Compute Q = dP 

3. Return (Q, d)  

 

Entities that receive a public key Q and a set of associated domain parameters will need 

to validate the public key to ensure that the private key actually exists and that the keys 
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lie on the curve.  Failure to perform public key validation could allow an attacker to try to 

get you to use the invalid public key in such a way that information about your private 

key could be revealed.  Algorithm 3.5.1.B illustrates how to perform the required 

validation. 

 

Algorithm 3.5.1.B [10] – ECC Public Key Validation 

 INPUT:  Domain Parameters D = (q, FR, S, a, b, G, n, h), public key Q  

OUTPUT: Acceptance or rejection of the validity of Q 

1. Verify that Q ≠ ∞ 

2. Verify that x
Q
 and y

Q
 are properly represented elements of Fq (i.e. integers in the 

interval [0, q-1] if the field is prime, and bit strings of length m bits if the field is 

a binary field of order 2
m 

) 

3. Verify that Q satisfies the elliptic curve equation defined by a and b 

4. Verify that nQ = ∞ 

5. If any verification fails then return invalid, else return valid 

 

Note that the check is step 4 of Algorithm 3.5.1.B involves an expensive point 

multiplication.  Faster methods do exist for certain curves.  For example, if the cofactor h 

of a prime field curve is equal to 1 (which is usually the case in practice and for all of the 

SECG recommend prime field curves [24] ) then successful completion of the checks in 

steps 1 through 3 imply that nQ = ∞ [10]. 
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3.5.2 Elliptic Curve Digital Signature Algorithm (ECDSA) 

Algorithms 3.5.2A and 3.5.2.B below define how to generate and verify ECDSA 

signatures, respectively.  In these algorithms, H denotes some cryptographic hash 

function whose outputs have bitlength no more than that of n.  If this condition is not 

satisfied though, the outputs of H can be truncated.  More information on hash functions 

can be found in section 3.5.3. 

ECDSA uses a per-message secret k that if discovered by an adversary can be used to 

recover the private key since: 

d = r
-1

(ks-e) mod n      where e = H(m) 

Furthermore it has been shown that if an adversary obtains even a few consecutive bits of 

the secret k then the adversary can easily compute the private key.  It is therefore of 

utmost importance that k be randomly and securely generated, securely stored, and 

securely destroyed after it has been used.  The reason why k should be generated 

randomly is to help ensure that k does not repeat.  If the same per-message secret k was 

used to generate ECDSA signatures (r, s1) and (r, s2) on two messages m1 and m2 then if 

s1 ≠ s2 (which with overwhelming probability they will not be equal) it can be shown 

that: 

k ≡ (s
1
-s

2
)
-1

(e
1
-e

2
) mod n  where e

1
 = H(m

1
) and e

2
 = H(m

2
) [10] 

Thus an adversary could determine k and then use it to determine the private key d.   
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Algorithm 3.5.2.A [10] – ECDSA Signature Generation 

INPUT:  Domain Parameters D = (q, FR, S, a, b, P, n, h), private key d, message m  

OUTPUT: Signature (r, s) 

1. Randomly select k ϵ
R
 [1, n-1] 

2. Compute kP = (x
1
, y

1
) and convert x

1
 to an integer x

1
  

3. Compute r = x
1

 mod n and if r =0 go to step 1 

4. Compute e = H(m) 

5. Compute s = k
-1

(e + dr) mod n and if s = 0 go to step 1 

6. Return (r, s) 

 

Algorithm 3.5.2.B [10] – ECDSA Signature Verification 

INPUT:  Domain Parameters D = (q, FR, S, a, b, P, n, h), public key Q, message m, 

signature (r, s)  

OUTPUT: Acceptance or rejection of the signature 

1. Verify that r and s are integers in the interval [1, n-1], if any verification fails then 

reject the signature 

2. Compute e = H(m) 

3. Compute w = s
-1

 mod n 

4. Compute u
1
 = ew mod n and u

2
 = rw mod n 

5. Compute X = u
1
P + u

2
Q 

6. If X = ∞ then reject the signature 

7. Convert the x-coordinate x
1
 of X to an integer x

1
 ; compute v = x

1
 mod n 
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8. If v = r then accept the signature, else reject 

 

3.5.3 Supported Secure Hash Algorithms 

Cryptographic hash functions are used in many applications within ECC, including 

verifiably random curve and base point generators, key derivation functions, and 

ECDSA.  According to the SECG [24] supported hash functions for ECC are: 

 SHA-1 

 SHA-224 

 SHA-256 

 SHA-384 

 SHA-512 

On October 2, 2012 NIST concluded a competition for a new SHA-3 algorithm, selecting 

Keccak as the winner.  Future versions of SECG standards are likely to allow use of the 

new SHA-3 [23].   

The security level associated with a hash function depends on its application.  Collision 

resistance is generally needed for computing message digests in ECDSA, and where 

collision resistance is needed the security level is at most half the output length (in bits) 

of the hash function.  Recent results have shown that SHA-1 provides less than 80 bits of 

collision resistance [23] and therefore should be used with ECDSA only when providing 

backwards compatibility. 
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3.6 Comparing RSA Signatures to ECDSA 

It has already been stated that ECDSA offers security equivalent to RSA using much 

smaller key sizes which can lead to increased efficiency.  Figure 3.6.A below shows a 

chart of comparable key sizes for equivalent levels of security.  Figures 3.6.B through 

3.6.D below show published literature execution times for ECDSA and RSA algorithms 

for key generation, signature generation, and signature verification.   

These times were taken from tests performed on an Intel Pentium 4 2.0 GHz machine 

with 512MB of RAM, on a 100KB text file used as a message [29].  The authors used the 

RSA Crypto++ Library 5.1™ and EC Borzoi 1.02 in their work.  As discussed previously 

though, the architecture for control system components such as PLCs is radically 

different than that of an x86 architecture, and therefore these timings only provide a very 

basic indication of what the performance of ECC might look like in control system 

applications.  Further research is required in this area to determine what the actual 

timings would be on control system hardware. 

 

 

Figure 3.6.A  ECC vs RSA Comparable Key Sizes (in bits) [29] 
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Figure 3.6.B  ECC vs RSA Key Generation [29] 

 

 

Figure 3.6.C  ECC vs RSA Signature Generation [29] 

 

 

Figure 3.6.D  ECC vs RSA Signature Verification [29] 

 

The results show that ECC outperforms RSA significantly in key generation time, and 

performs signature generation faster than RSA for higher key sizes.  RSA outperforms 

ECC in signature verification significantly for all key sizes. The times appear to show 

that RSA signature verification time is fairly independent of key size and for practical 
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purposes this is true, however this is really just due to the resolution at which testing was 

performed (for example RSA signature verification at 7680 bit key size should be 

approximately 0.008 seconds while signature verification at 15360 bit key size should be 

approximately 0.032 seconds). ECC signature verification grows linearly with an increase 

in key size, however the times show that RSA significantly outperforms ECC in this area.  

Signature verification is therefore of particular concern in looking at implementing ECC 

signature algorithms for control systems. At stronger levels of security with larger key 

sizes, ECDSA will outperform RSA for the total message transmission (including both 

signature generation and verification) since ECC signature verification timing scales 

linearly while RSA signature generation timing scales exponentially (due to the 

exponential increase in key sizes) for equivalent levels of security.   

A variant of ECDSA, known as the Elliptic Curve Korean Certificate-based Digital 

Signature Algorithm (EC-KCDSA) may hold promise if ECDSA does not prove to be 

efficient for use in control systems. In EC-KCDSA the signer’s private key is an integer d 

ϵ
R
 [1, n-1] as is in ECDSA, but the public key is instead Q= d-1P (instead of dP).  This 

allows for the design of signature generation and verification procedures that do not 

require performing modular inversion and therefore could potentially be more applicable 

in meeting control system needs should ECDSA prove impractical.  EC-KCDSA has 

been proven secure under the assumptions that the discrete logarithm problem is 

intractable and that the hash function is a random function.   

An alternative variant of ECDSA, proposed by Antipa et al (2005) [32], involves 

reconstructing the ephermeral elliptic curve point R from the signature component r.  In 

other words one converts the ECDSA signature (r, s) over some message m to a new 
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ECDSA* signature (R, s).  Antipa et al provide a general procedure for this change which 

accepts the ECDSA signature as an input, performs the reconstruction/conversion, and 

returns either acceptance or rejection of the signature.  This speeds up ECDSA signature 

verification by 35-40% at the cost of only a small number of bits appended to traditional 

ECDSA signatures.   

Unfortunately, the EC-KCDSA algorithm and the ECDSA*algorithms are non-compliant 

with any of the existing ECDSA standards.   

 

3.7 OpenSSL ECC Implementation 

As much as has been discussed up to this point on the underlying mathematics and 

implementation theory of ECC and ECDSA, in particular, most engineers never develop 

their own implementations.  They instead rely on existing implementations which they 

incorporate into their own products.  OpenSSL provides a suite of cryptographic toolkits 

including toolkits for ECC written in C that can be readily incorporated into new 

products.  

The ECC implementations present in OpenSSL were contributed by Sun (now Oracle) 

and offered freely with “patent peace provision” language (meaning they will not sue 

anyone for using their implementation and ask, but not require, that you do not sue them 

if they use a product you develop with their technology).  This implementation was 

theoretically written in a way that avoids any patented method by basing the 

implementation on the current IETF [26] draft [30].  However the issue of patents 

appears to be far from settled, and some versions of Linux such as Red Hat do not include 
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the ECC toolkits in their versions of OpenSSL. There also exist JAVA and .NET 

implementations.   

While it is true that in control systems the OpenSSL toolkit cannot be used by PLCs 

(since they cannot run C binaries), VME technologies including SoftPLC may be able to 

leverage the OpenSSL implementation.  Currently there are no known implementations 

of ECC written specifically for control systems that are compliant with IEC 61131-3 or 

IEC 61499.   

 

3.8 ECC Certificates 

As discussed in section 3.5.1, certificates play a key role in cryptographic systems.  In 

ECC, they are used in order to associate a public key with a set of domain parameters.  

The problem with ECC is that current there are no Certificate Authorities supported by 

major web browsers for ECC, causing some to not consider ECC a true public-key 

cryptography scheme.  SECG is working hard on changing this, establishing itself as an 

ECC certificate authority and publishing standards to indicate ECC keys and their usage 

within X.509 certificates [31].  However there is still significant work to do in this area in 

order to truly make ECC a viable solution for complex control systems such as that in the 

Smart Grid.  For smaller control systems such as those planned for usage in NGIPS 

(which are still vastly complex by industry standards with tens of thousands of I/O 

points) the lack of a strong ECC certificate authority is not as much of a roadblock. 
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CHAPTER 4: PROTOTYPE OVERVIEW 

4.1 Prototype Objectives 

ECDSA shows promise for use in control systems, however there are a number of 

questions that arise from the perspective of a controls engineer such as: 

 How difficult will this be to implement? 

 What impacts will this have on the performance of my controls algorithms? 

 What kind of software maintenance is needed to support ECDSA in control 

systems? 

 What are the costs of implementing these algorithms? 

In order to begin to answer these questions, we developed a prototype control system  

that matches architectures used in real applications to run actual control algorithms.  The 

primary objective of the prototype was be to determine the viability of using ECDSA in 

control system data authentication and verification.   

Given the sheer complexity of developing a brand new implementation of ECDSA in IEC 

61131-3 code a “proof of concept” study was needed to more accurately assess the 

validity of using ECC technology in control systems before significant time and money 

are invested.  SoftPLCs provide a unique opportunity to perform this analysis by 

developing a prototype system that is predominately written in IEC 61131-3 code but 

allows the use of specialized custom function blocks written in other high level 

languages.  This allows the development of a prototype implementation of a control 

system ECDSA algorithm that is able to reuse existing software libraries in order to avoid 

the expense of developing ladder logic cryptographic functions.  The prototype 

implementation, being predominately written in ladder logic, can then be reused for a full 
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IEC61131-3 implementation by simply replacing the custom function blocks with 

IEC61131-3 versions.    

Please note that currently there are a large number of SoftPLC based control systems in 

use in both Naval and industrial control system applications which would be better suited 

for the prototype implementation.  Therefore, an auxiliary goal of the project beyond 

testing the capability of ECDSA is to create a software template that can be easily reused 

by control system engineers in other applications at minimal cost.  The prototype project 

also included additional features beyond messaging such as enhanced alarming functions 

that not only indicates communications status but failures in signature verifications, 

indicating a potential hardware failure or adversary attack. 

The remainder of this dissertation presents the system architecture, source code, timing 

results, and stability results for a prototype ISaGRAF™ SoftPLC implementation of 

ECDSA for control systems.  ISaGRAF™ SoftPLCs are currently in use on a wide range 

of industrial control applications around the world, and are currently employed by the 

Navy in two major programs:  the Littoral Combat Ship (LCS) Class and the Mobile 

Landing Platform (MLP) Class for ship wide machinery control.  The challenges and 

solutions uncovered when developing the implementation are discussed, and guidelines 

for converting the prototype into a full IEC 61131-3 compliant implementation is 

presented. 

 

4.2 System Architecture Overview 

The primary goal of the prototype is to determine the overhead the ECDSA 

implementation would have on control system operation.  In order to have effective 
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control, the scan times for the logic must be sufficiently low enough to approximate real 

time operation (less than 100 ms and ideally less than 50 ms).  Additionally, for PLC to 

PLC communications effective control requires transmitting and processing at least one 

set of actions every 300 ms or less (ideally every 100 ms or less).    There are a number of 

different things that can impact both scan times and transmission times, particularly for 

SoftPLCs running on a Windows OS, such as network latency and individual hardware 

I/O access rates.   

In order to obtain averages for scan times and transmission times a simple “round robin” 

architecture was chosen as shown in Figure 5.A below.  Four SoftPLCs, labelled 1 

through 4, were configured so that each SoftPLC processes a piece of data and then 

subsequently transmits it down the line, repeating the process in an indefinite loop.  The 

data transmitted included a number of simulated signals, including BOOL, INT, REAL, 

DATE, and STRING values that were part of a small logic simulation routine.   

 

Figure 4.2.A.  SoftPLC Round Robin Architecture Concept 

The primary data point of interest for this system is a DINT value called COUNT.  

COUNT is a number that is initialized to 0 at the very start of the system.  Each SoftPLC 

receives COUNT as an input from its predecessor, verifies the digital signature that came 

with the COUNT value, and if verification is successful it increments the COUNT value 
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by 1, generates a new message, and transmits the new message to the next PLC in the 

loop.  Figure 5.B below illustrates the count increment lifecycle within the PLC’s 

execution processes.  As can be seen, each value of count represents a complete set of 

signature generation, data transmission, and signature verification actions.  Transmission 

time is then synonymous with the timing of the COUNT lifecycle.  In order to determine 

an average time, the system was run until it had reached a certain value of COUNT.  The 

runtime was then captured and the runtime divided by the COUNT gives us the average 

transmission time.   

 

 

 Figure 4.2.B.  Count Increment Lifecycle Per SoftPLC Scan 

 

Please note that some SoftPLC products offer an additional “WAIT” option as a step after 

the DATA TRANSMISSION step in their PLC.  This feature normally works by 

predefining a PLC execution cycle time, like 100 ms, and essentially takes the 100 ms 

minus the time it took to complete all of the above steps and then waits for that time until 

it begins executing the next cycle.  This is normally used to add a bit more determinism 

to the SoftPLC and provides a window of opportunity for the operating system to execute 

tasks.  Since the goal of this prototype to determine loads by monitoring scan and 

transmission times the WAIT feature was disabled. 
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The PLC scan times are monitored by using built-in tools that come with all major 

SoftPLC and regular PLC packages.  Scan time is not synonymous with transmission 

time since the PLCs are not synchronized (as is typical with industrial operations).  

Additionally, it is possible that a PLC might receive an invalid signature in a data 

transmission due to events like network transmission errors that have damaged the data.  

Any COUNT with an invalid signature is disregarded, making COUNT representative for 

only successful transmissions with correct signature generation and verification. 

 

4.3 Hardware Overview 

Hardware Two test strings were used in the development and testing of the prototype, 

Test String 1 and Test String 2. 

 

4.3.1 Test String 1 

Test String 1 used four Windows 7 virtual machines running on VMWare Player on top 

of a Windows 7 Pro 64-bit machine.  This system was primarily used for initial 

development and testing. The ISaGRAF software was run on the main machine in order 

to view the PLC code.  The four virtual machines were bridged to the host NIC card 

which was then connected to a router.  DHCP was used to assign IP addresses to both the 

host and virtual machines. 

The main machine had the following relevant hardware specifications: 

• I5-2500K processor, 4C, overclocked to 4.3 GHz, with 4x256KB of L2 

Cache and 6MB of L3 Cache 

• 16 GB RAM 
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• 1 GB Hardwired NIC  

• 1.5 TB SATA 3 HDD 

 

4.3.2 Test String 2 

Test String 2 used four General Micro System VS275 Single Board Computer VME 

boards in the same VME chassis.  No communications across the VME backplane were 

used.  Each board was running Windows XP Professional, 32-bit, SP2.  Figure X below 

shows the front panel of the VS275. 

 

  

Figure 4.3.2.A.  VS275 Board 

 

Each VS275 board had the following specifications: 

• 2.16 GHz Core 2 Duo Processor, 4-MB L2 cache 

• 3 GB of 667-MHz DDR-2 SDRAM 

• 1 GB Hardwired NIC  

• 64 GB SATA2 SSD 

Hardwired Ethernet communications were used via the ENET port on the front of the 

board. All four boards were connected to an 8 port flat 10/100 MB hub that was in turn 

connected to a 10/100/1000MB router.  A development station running ISaGRAF was 

connected to the router directly in order to download the software to the boards and to go 

online to the SoftPLCs.  DHCP was used to assign IP addresses to each of the boards and 

development station. 
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CHAPTER 5: SOFTWARE ARCHITECTURE  

5.1 SoftPLC Package 

There are two popular SoftPLC packages currently in use by the Navy:  Rockwell 

Canada’s ISaGRAF package and Siemens WinAC.  Both packages can be used to 

develop IEC 61131-3 ladder logic and include custom C function blocks.  The primary 

difference between the packages is that Siemens WinAC includes additional functionality 

installed on the target hardware that adds real-time determinism and disables certain 

functions in Windows that could result in a “blue screen of death” error.  ISaGRAF, on 

the other hand, is more comparable to Java in that it includes a simple executable known 

as the ISaVM that in turn executes the logic.  Like Java, ISaGRAF has multiple ISaVM 

implementations that allow the software to be used with multiple platforms including 

both Linux and Windows.  Ultimately, ISaGRAF was chosen for this implementation 

because it used on more US Navy Ships than Siemens WinAC and because Rockwell 

Canada was willing to provide free licenses to support development of this prototype 

(special thanks to Stephen Mizera at Rockwell Canada for his support).  

The ISaVM executable lives with a collection of related executables in a folder that is 

collectively referred to as the “target”.  The target is installed onto the hardware via a 

simple copy operation which can be performed anywhere within the file structure of the 

SoftPLC’s operating system.  The target includes a main program, “ISaGRAF.exe” that is 

manually started by the user.  This program then starts up the subprograms including both 

ISaVM.exe and the default Ethernet communications program “ETCP.exe”.  The target 

also includes a text file known as the “target definition” file that describes details about 

the target such as what custom C function blocks are available. 
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In order to develop custom C function blocks for inclusion in the ladder logic a tool 

called TDBuild (Target Definition Builder) is used to define the input and output 

variables of the function blocks.  The tool is then used to auto-generate C code which 

essentially provides the API between the ladder logic and the custom C code that was 

developed as part of this prototype.  TDBuild is also used to update the target definition 

files, which are then read into the main ISaGRAF program in order to allow the software 

to include the specialized function blocks in the ladder logic. 

For Windows-based targets the custom C code is eventually compiled as a dynamic link 

library (DLL) which is then copied into the target folder.  This DLL, combined with the 

target definition files discussed previously, provide full runtime access to the custom C 

code for program execution.  Note that you do not have to register the DLL with 

Windows which greatly simplifies the install.  

 

5.2 OpenSSL Usage 

As stated previously, developing a custom IEC 61131-3 implementation of ECDSA is a 

complicated endeavour and a prototype system that utilizes existing implementations is a 

necessary first step.  For this prototype the OpenSSL ECC implementation discussed in 

Section 3.7 was been chosen for both its efficiency and its free and open source 

availability to all controls engineers. There are three methods by which OpenSSL can be 

included in a project:   

1. By installing OpenSSL onto the target system and using its command line 

interface. 
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2. By performing a fresh compile of OpenSSL as a dynamic library which 

can then be copied onto the target system and used after first properly registering 

the DLL. 

3. By performing a fresh compile of OpenSSL as a static library which can 

then be included in your application without having to first install OpenSSL onto 

the target system or register any DLLs including the DLL used by the ISaGRAF 

software itself. 

For this prototype OpenSSL was compiled as a static library in order to simplify the 

installation process onto the target machines (i.e. to keep the ISaGRAF target install 

down to a simple copy operation).  The downside to this option is that it does complicate 

the structure of the actual C source code and increases the development time of the 

prototype.  It was decided that the increase in development time is justified by the 

increased ability to use the prototype on existing Navy ship classes that are using 

SoftPLCs and do not require a 100% IEC 61131-3 implementation, such as Littoral 

Combat Ships (LCS) and Mobile Landing Platform (MLP) ships.   

The following steps were performed to compile OpenSSL as a static library on a 

Windows 7 machine: 

1. Install Visual Studio 2010 

2. Install Active Pearl 32-bit 

3. Download the latest version of OpenSSL 

4. Open the Visual Studio Command Prompt 

5. Unzip OpenSSL to a directory such as C:\openssl-src-32 

6. CD to the directory 
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7. Run the command:  perl Configure VC-WIN32 –prefix=C:\Build-

OpenSSL-VC-32 

8. Run the command:  ms\do_ms 

9. Run the command:  nmake –f ms\nt.mak 

10. Run the command:  nmake –f ms\nt.mak install 

The compiled library will end up in the C:\Build-OpenSSL-VC-32 directory. 

 

5.3 Visual Studio 2010 Express 

Visual Studio 2010 Express (a free product) was used to develop and compile the custom 

C function blocks into a DLL.  Importing the C code and header files generated by 

TDBuild and to the Visual Studio project is a simple matter, but there are additional steps 

that must be taken in order to configure the compiler to properly utilize the dependent 

libraries in order to generate the DLL.  The two critical steps required are: 

1. Under Linker – General – Additional Library Dependencies add the 

OpenSSL static library. 

2. Under Linker – Input – Additional Dependencies add the libeay32.lib and 

the ssleay32.lib. 

Note that Visual Studio 2012 was also used successfully in the later stages of the project 

to recompile the DLL and other C source code developed for the prototype as needed. 

 

5.4 Cryptographic Algorithms Used 

As discussed previously, creating a digital signature requires the use of two different 

cryptographic algorithms:  a hash function and a public-key cryptography function.  The 
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hash function is performed first in order to process the arbitrarily long amount of data 

into a fixed length tag.  The cryptographic function then encrypts the data using the 

private key, which can then be decrypted using the public key by an agent desiring to 

verify the public signature.  

For this work the SHA-512 algorithm was used in combination with the P-521 ECDSA 

algorithm.  The goal was to use the strongest measure of security possible at the time of 

development, and it is worth noting that the weaker P-384 ECDSA algorithm is 

considered valid for even TOP SECRET data.  OpenSSL includes implementations of 

both algorithms in the static library that was compiled. 

Using the SHA-512 algorithm was relatively trivial, but the P-521 algorithm proved to be 

a bit trickier than originally anticipated.  The P-521 algorithm consists of 65 bytes of data 

plus 1 bit.  The extra bit, when true, results in an output of 66 bytes.  When the extra bit is 

false, the result is an output of 65 bytes.  As will be illustrated in the walkthrough of the 

C code (and as is shown in the source code comments) special considerations were 

needed to monitor the output of the algorithm to ensure that the correct amount of data 

was read.   

 

5.5 Base64 Encoding / Decoding 

Transmitting cryptographic keys and digital signatures between PLCs is not a trivial task.  

PLCs only include a predefined number of data types such as BOOL, INT, DINT, and 

STRING which can be transmitted between devices.  All of the data types except for 

STRING are therefore unsuitable for transmitting the keys and signatures due to the 

insufficient bit length. 
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In most PLC products, the STRING variable can consist of any ASCII character array up 

to a length of 255 characters according to the literature of the various vendors.  This 

would appear to give a data value of 2040 bits using ASCII encoding, sufficiently long 

enough to transmit ECDSA keys and signatures.  Note that this length is still too short for 

the use of RSA keys and digital signatures which is one of the reasons why ECC 

technologies were chosen. 

The problem is that the 255 character set is misleading, since in ISaGRAF and in other 

PLC products 3 of the 255 characters are reserved to process the STRING.  One of the 

three character slots must be used for the NULL character (which should indicate to the 

experienced C programmer that the STRING data type is really a C-String and not the 

more advanced string data type found in C++ or other high level languages).  

Additionally, the STRING must begin with an apostrophe and end with an apostrophe. 

The “apostrophe” problem becomes our greatest concern.  When representing an ECDSA 

signature or key in ASCII it is possible that the resulting ASCII string will output an 

apostrophe in the middle of the key or signature.  The PLC will interpret the second 

apostrophe (and note that you must always start with an apostrophe) as the end of the 

string and subsequently cut off the remaining data.   

In order to work around this problem, a different  character encoding must be used that 

maximizes the data compression of the string representation.  Hexadecimal representation 

of the data was considered, but at only 4 bits per character it was considered insufficient.  

A custom variant of ASCII was considered that didn’t use the apostrophe, but in the 

interests of conforming to widely accepted standards this idea was dropped.  Base64 

encoding, using 6 bits per character, became the most logical choice.   
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Base64 encoding allows the cryptographic keys to be transmitted as a single string 

variable for each key.  The private key is represented by a 88 character string (plus 3 for 

the null and the leading/lagging apostrophes).  The public key, which represents a point 

on an elliptic curve, is represented by a 178 character string (plus 3).  The digital 

signature is represented by two values, SIG_R and SIG_S, each with a length equivalent 

to the private key.  These values were transmitted as two separate strings to help facilitate 

the need for possible future expansion.   

Note that the STRING variables themselves which are storing the data in the PLC ladder 

logic are required to be set to a fixed length.  This is a fairly standard requirement by 

most PLC manufacturers.  In order to facilitate the need for future strong cryptography it 

was decided to set the length for these variables in the ladder logic to the largest possible 

value.  As a consequence, the PLC STRING variables include padded data in addition to 

the cryptographic keys or digital signatures. 

 

5.6 Self-Signing Keys 

One of the largest areas of discussion with using a public-key cryptography system for 

control system security has been a concern about how to setup a public-key infrastructure 

(PKI).  In order for two systems to be able to communicate securely, there needs to be 

some initial trust relationship established so that a receiving system which obtains a 

public key from a sending system knows that the public key really belongs to that system.  

Put another way, how does the receiver really know that the sender is who it claims to 

be? 
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 In traditional information systems a Certificate Authority (CA) is used to issue 

certificates to users. This certificate contains the identity of the key pair owner, the 

owners public key, and a digital signature of the Certificate Authority.  When users 

communicate securely, they receive a copy of each other’s signed certificate (minus the 

private key) and they establish trust in each other’s identity based on the successful 

validation of the CA’s signature.  Put another way, they trust each other because someone 

else told them it was okay.  Ultimately, even trusting the digital signature of a CA is 

based on the idea that some human ultimately made the decision that the CA who issued 

the certificates is of good repute. 

This kind of complicated infrastructure is necessary in IT systems, since two 

communicating systems may send a wide range of different kinds of data with a wide 

disparity in both timing and content.  Furthermore, an IT system may communicate only 

once with another system it never heard of before and then never communicate to that 

system again.  This constant flux requires a PKI in order to establish trust relationships 

with CAs and individual users.  Unfortunately, running a PKI system requires a 

significant amount of processing power and adds significant complexity to a control 

system.  Research is ongoing to develop a modified version of a PKI that can be executed 

on operational technology platforms, however most of these are simply slightly modified 

versions of the same technologies used in IT systems.   

We believe that implementing a PKI for control systems is unnecessary.  The two central 

problems that a PKI system solves are 1) establishing a trust relationship between two 

systems and 2) handling the large amount of flux in data transmitted between systems.  In 

Operational Technology systems, neither of these problems really exists.  OT systems are 



  

68 

designed to communicate in a very consistent and precise manner, transmitting the same 

basic message structure at a consistent interval to the exact same targets.  The 

relationship between these targets is established when the system is first commissioned 

for operation (i.e. on the day of birth) and no new communication partnerships are ever 

established without significant software changes and a recommissioning of the system. 

Therefore, in designing this prototype, a different system for establishing 

communications and updating keys was created.  During commissioning, each system is 

preconfigured with a public / private key pair, and the public keys of each part of the 

system are given to each of the other parts.  When an agent in the system decides to 

change its public / private key pair (this decision is made at regular intervals with the 

interval length configured at commissioning) it first generates a new key pair and then 

signs the new public key with the old private key.  This information is then transmitted to 

each of the other agents in the system who then verify the key change message with the 

old public key they currently have on file.  If the digital signature is valid, the new public 

key is accepted and the old public key is disregarded. 

In order to ensure that an adversary will not be able to attack the system using the 

original preconfigured public/private key pair each agent immediately changes its key to 

a new random key pair at startup, before any other logic is processed.  Additionally, since 

there is no certificate authority and communications are highly deterministic there is little 

risk in changing the key pairs at a much more frequent interval than what is typically 

found in Information Technology systems (where certificates and keys can be valid for 

years).  In the prototype, each of the four SoftPLC agents were configured to change their 

key pairs at 53 minutes, 59 minutes, 61 minutes, and 67 minutes respectively.   
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As a result, this system effectively generates keys 175,000 to 265,000 times more often 

the PKI CA systems used in IT applications and greatly weakens an adversaries 

capabilities to brute force crack the system.  Ultimately, this allows for smaller key sizes 

to be used by OT systems and thus reduces the required processing power and memory 

required to effectively implement an ECDSA algorithm. 

The major downside with this implementation is that an agent in the control system 

which is powered down must retain their current public/private key pair in memory and 

resume use of that key pair upon startup (though it can immediately change it).  A agent 

which does not have this capability may default back to the original pre-commissioned 

key pair and will therefore be considered to be a bad actor by the other agents in the 

system, requiring a complete re-initialization of the entire system. Fortunately, this 

problem is easily solved by adding the required memory capabilities and is mitigated by 

the fact that these kinds of systems are highly redundant and designed to run 

uninterrupted for years without failures.   

One alternative variation of this system under consideration is to commission each PLC 

with a master public-private key pair, and then subsequently generate session public-

private key pairs which are used for the actual data verification signatures.  An advantage 

of this method is that the system is much more robust and capable of dealing with 

circumstances such as power outages that may result in significant downtime.  The 

disadvantage is that more stringent controls will have to be put in place on the PLC 

source code and design artifacts which may contain a particular PLC’s master public-

private key pair. 
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CHAPTER 6: SOURCE CODE WALKTHROUGH 

Copies of the source code developed for this prototype with comments are available as 

appendices to this dissertation, and key details and decisions made in designing the 

software have been presented in the previous sections.  This subsection presents a high 

level description of each of the modules that together make up the prototype, in an effort 

to provide context for the source code modules.   

Note that for the C code, the portions of the ISaGRAF code generated by the TDBuild 

tool are not shown as that code is considered proprietary.  Fortunately, the code not 

shown simply serves as the API to the PLC ladder logic and is specific to the ISaGRAF 

platform.  Current users of ISaGRAF will be able to use the same tools with the 

information provide in this document to quickly regenerate this code.  Users of other 

SoftPLC products should be able to develop their own variations using the information 

provided here. 

 

6.1 C Code Walkthrough 

The subsections below describe the model and C code for each of the custom function 

blocks that are used in the IEC61131-3 ladder logic.  A fully compliant IEC61131-3 

implementation will replace the C code inside each of these function blocks with a ladder 

logic version. 

In developing the prototype, debug logic was added into each of the function blocks.  

Two different mechanisms for debug logic were included. The first is that each block 

outputs an integer status variable, with a 1 indicating successful operation and a negative 

number indicating a failure.  The code of the blocks is organized internally in steps as 
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shown in the source code and comments.  A failed step will output a negative number 

equal to the step number (i.e. a fail on step 3 will output a -3 value for the status). 

The second debug logic is normally turned off for full operation and was only added for 

development.  This logic generates text files during operation that contain key status 

variables useful for debugging the code.  This adds overhead to the program execution 

and creates a security risk, but is extremely valuable for debugging.  In order to turn the 

logic on or off, the variable “ISaDEBUG” must be set true for on or false for off.  This 

variable is located in the “debug.h” file, and a change in the status of the variable requires 

a recompile of the DLL.  All the timing results presented are with the ISaDEBUG 

variable set to false.  

The custom C source code developed for the ISaGRAF implementation can be found in 

Appendix A.  Please note that only the parts of the C code written by the author are 

included in this Appendix.  Auto-generated code from the ISaGRAF TD Build tool is not 

included.  Presence of auto-generated code in the source files below is indicated by the 

tag “---autocode---“. 

 

6.1.1 MsgGen 

Figures 8.1.1.A and 8.1.1.B below define the details of the MsgGen block.  In digital 

signature applications, the first step of an algorithm is to hash the data to be signed into 

one single value of fixed length, that will later be encrypted by the private key.  The 

MsgGen block generates that hash value using the SHA-512 algorithm.  The data to be 

signed is inputted into the B#, I#, R#, and STRING fields.  The DATE and TIME fields 

should always be used for the current date and time stamps of the message or the entire 
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algorithm is potentially subject to a replay attack.  The block outputs the hash as a 

hexadecimal string. 

Creating one generic message generation block that can be used in a wide range of 

applications is tricky, since one application could only need a few Booleans and another 

application could require 40 different real values.  Therefore the block was structured 

generically in order to allow the widest range of possible inputs, and then a HASH_I 

value was added that allows the user to chain multiple blocks together.  Readers familiar 

with the SHA-512 algorithm will recognize that there is no loss in processing the data in 

this manner, since the algorithm generates the hash in a “chain” fashion naturally.  This 

implementation simply extends the chain, and there is no limit to the number of MsgGen 

blocks that can be chained together. 

The key for implementing this function is that the data to be signed must have a hash 

generated on both the source PLC and the destination PLC.  Therefore, during system 

design, it is critical that the layout of the MsgGen blocks is the same on each endpoint or 

the signature will never verify successfully. 



  

73 

 

Figure 6.1.1.A  Three MsgGen Blocks Connected Together 
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Variable 
Name 

I/O Type Description 

DATE IN DATE Used to date the message in order 
to prevent replay attacks.  Has 

resolution up to the second. 

TIME IN TIME Used to timestamp the message 
in order to prevent replay attacks 
occurring within the last second.  

Has resolution up to the 
millisecond. 

HASH_I IN STRING(252) Hash from previous MsgGen.  
Used to string multiple blocks 
together in order to generate 
messages containing large 

amounts of data. 

B1 Thru B8 IN BOOL Boolean data inputs. 

I1 Thru I4 IN DINT Integer data inputs. 

R1 Thru R4 IN REAL Real data inputs. 

STRING IN STRING(252) String data inputs. 

STATUS OUT INT Status of the computation.   

HASH_Q OUT STRING(252) Hash of the message. 

Figure 6.1.1.B  MsgGen Input / Output Structure 

 

6.1.2 KeyGen 

The KeyGen block generates an ECC-521 prime public/private key pair.  Ladder logic 

should be placed in the application to only enable the block at specific intervals when 

generation of a new key is desired.  The new keys are outputted as base64 encoded 

strings. Figures 6.1.2.A and 6.1.2.B below define the details of the KeyGen block.   
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Figure 6.1.2.A  KeyGen Block 

 

Variable Name I/O Type Description 

PUBLIC_KEY OUT STRING(252) ECC 521 public key 

PRIVATE_KEY OUT STRING(252) ECC 521 private key 

STATUS OUT INT Status of the computation  

Figure 6.1.2.B  KeyGen Input / Output Structure 

 

6.1.3 KeyVerify 

The KeyVerify block is used as an added check to verify the integrity of the 

public/private key pair by using the private key to first sign an internal dummy hash and 

then using the public key to verify the signature. This block is solely used in the 

prototype to verify that the system is functioning correctly.  As the maturity of the design 

improves this block may be removed, thus reducing system overhead and improving 

communications results. Figures 6.1.3.A and 6.1.3.B below define the details of the 

KeyVerify block.   
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Figure 6.1.3.A  KeyVerify Block 

 

Variable Name I/O Type Description 

PUBLIC_KEY IN STRING(252) ECC 521 public key 

PRIVATE_KEY IN STRING(252) ECC 521 private key 

STATUS OUT INT Status of the computation  

Figure 6.1.3.B  KeyVerify Input / Output Structure 

 

6.1.4 SigGen 

The SigGen block is the heart of the ECDSA implementation, and takes the hash from the 

MsgGen block and the PrivateKey from the KeyGen block to output an ECDSA P-521 

signature.  The signature itself is composed of two components, SIG_R and SIG_S, 

which are each a base64 encoded string. Figures 8.1.4.A and 8.1.4.B below define the 

details of the SigGen block. 
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Figure 6.1.4.A  SigGen Block 

 

Variable Name I/O Type Description 

PRIVATE_KEY IN STRING(252) ECC 521 private key 

HASH IN STRING(252) Data hash to be signed from the 
MsgGen block. 

SIG_R OUT STRING(252) ECDSA P-521 signature, R 
component. 

SIG_S OUT STRING(252) ECDSA P-521 signature, S 
component. 

STATUS OUT INT Status of the computation  

Figure 6.1.4.B  SigGen Input / Output Structure 

 

6.1.5 SigVerify 

The SigVerify block is used to verify the validity of a digital signature by the receiving 

agent.  The receiving agent first uses the MsgGen block to generate the same hash that 

the original sender generated, and then uses the public key of the sender along with the 

signature to determine if the signature and the hash match.  Figures 6.1.5.A and 6.1.5.B 

below define the details of the SigVerify block.   
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The SigVerify block is also used in the prototype system on the sender side to ensure that 

a signature is properly generated before transmission.  As the design matures, the usage 

of the block on the sender side can be eliminated, reducing system overhead and 

improving communications results. 

 

Figure 6.1.5.A  SigVerify Block 

 

Variable Name I/O Type Description 

PUBLIC_KEY IN STRING(252) ECC 521 public key 

HASH IN STRING(252) Data hash to be verified from the 
MsgGen block. 

SIG_R IN STRING(252) ECDSA P-521 signature, R 
component. 

SIG_S IN STRING(252) ECDSA P-521 signature, S 
component. 

STATUS OUT INT Status of the computation  

Figure 6.1.5.B  SigVerify Input / Output Structure 
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6.2 Ladder Logic Walkthrough 

For the prototype system, the ladder logic for each of the four SoftPLC agents is 

structured identically, and execution of the logic proceeds in the following order: 

1. ECDSA_D#_I – process digital signatures for incoming data transmissions, 

including the validation of new public keys sent to the SoftPLC 

2. MAIN – general logic such as determining current date, setting ALWAYS_ON 

and ALWAYS_OFF bits, and incrementing the counter value received during 

ECDSA_D#_I 

3. SIM_BOOL and SIM_REAL – generic simulation routines that fill the place for 

where actual PLC logic would normally occur 

4. ECDSA_KeyCntrl – controls the generation and validation of the SoftPLC’s own 

private / public key pair 

5. ECDSA_Q – generates digital signatures for the outgoing data transmissions 

Full details for each of the ladder logic routines can be found in Appendix B below.  This 

appendix includes a screenshot of the solution explorer detailing the layout of all four 

SoftPLC agents (indicated as Device 1 through Device 4). There is also a screenshot of 

the Device 1 to Device 2 data communication bindings which is representative of how 

each SoftPLC is binded to the next in the round-robin configuration.  Additional 

information can be found in the comments section for each rung, indicated in the green 

highlighted fields above each ladder logic rung. 
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CHAPTER 7: RESULTS, FUTURE WORK, AND CONCLUSION 

There were two main goals of this project:   

1.  Determine the validity of ECDSA for control system authentication and data 

verification by determining if an implementation can be developed that could be 

executed within the confines of a typical PLC scan time, and to decide if the 

development of a fully compliant IEC 61131-3 implementation is justified. 

2. Determine an appropriate alternative method for key generation and distribution 

to solve the complexities of the public-key infrastructure problem discussed in the 

literature.  

In order to satisfy goal 1, the prototype implementation was run on both test strings for 

periods ranging from several days to several weeks.  COUNT values, reflecting the 

number of completed message transmissions (including both the signature generation and 

signature verification components) ranged from 10,000 to 4 million.  In all scenarios the 

timing results were independent of the count length for values over 10,000.  Test String 1 

gave an average time of 26-28ms with PLC scan times of 22-24 ms.  Test string 2 gave 

an average time of 55-60ms with PLC scan times of 55-60 ms.  As expected, timing of 

the completed transmission is linearly related to PLC scan time. 

Values under 10,000 counts gave slightly higher results (1-5 ms increase).  During the 

first scan of the PLCs when the system is initializing there is an additional load on the 

system to establish TCP communications resulting in an increased scan time and 

transmission time for that cycle.  For low COUNT values this initial time has a stronger 

effect on the average.  As a result, for approximately the first 10 minutes of system 
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runtime the average transmission time gradually decreased until the system settled at the 

values stated above. 

It is believed that the timing results are the worst case scenario given that no real-time 

modifications were added to the operating system (which would be untypical for a 

SoftPLC control system).  The entire timing cycle is in the order of tens of milliseconds 

(as opposed to seconds), falling within the confines of a typical PLC scan time and 

satisfying the first goal of the project.  Based on these timings it has been concluded that 

future work on the development of a fully IEC 61131-3 compliant implementation is 

justified.   

In order to satisfy goal 2, the self-signing key mechanism has been proposed which relies 

on the deterministic properties of a control system and the commissioning process to 

establish the initial trust relationship.  Additional focus needs to be placed on the self-

signing keys mechanism and is reserved for future work.  While the prototype used an 

implementation that completely changed the public-private key pair the author does feel 

that the use of permanent master keys followed by individual session key pairs may 

increase system stability.   

The difficulty of protecting the master keys from access by unauthorized individuals who 

obtain an offline copy of the code specifically needs further investigation.  Most PLC 

vendors include a feature with their software that allows for developers to protect the 

source code with a password to prevent unauthorized viewing of the code both online and 

offline.  The problem with this mechanism is that typically third party code reviews are 

necessary which means that the developer would need to supply this password to multiple 

parties, which would increase the exposure of the master key pair.  A potential solution 
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would be the inclusion of two different passwords by PLC vendors, one that is used to 

protect the ladder logic and another that is specifically to protect both the master and the 

session key pairs.  This would allow third party audits and maintenance users to have 

access to the ladder logic code without exposing the key pairs.  
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APPENDIX A.  C SOURCE CODE 

A.1 MsgGen 

/************************************************************************** 
File:               msggen.c 
Author:             kfischer 
Creation date:      05/11/2013 ‐ 19:52 
POU name:           MsgGen 
***************************************************************************/ 
 
‐‐‐autocode‐‐‐ 
 
//START OF CUSTOM CODE HEADERS 
#include <debug.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <openssl/sha.h>    //for SHA512  
//END OF CUSTOM CODE HEADERS 
 
‐‐‐autocode‐‐‐ 
 
 
   //START OF CUSTOM CODE 
    
   //‐‐Declarations 
    /*debug variables*/ 
  #if ISaDEBUG 
    FILE *fp; 
  #endif 
 
  /*string and hash variables*/ 
    #define  P_PTR_HASH_I_DATA  (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐
>hash_i))+2) 
  #define  P_PTR_STRING_I_DATA  (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐
>string))+2) 
  unsigned char digest[SHA512_DIGEST_LENGTH]; 
  char mdString[SHA512_DIGEST_LENGTH*2+1]; 
  char *hash_Q; 
  const char *string; 
  char *tstring; 
  char str[STRLEN]; 
  char tstr[STRLEN/4]; 
  int i; 
 
  /*base64 variables*/ 
 
   //‐‐Logic 
 
  /*STEP 0 ‐ Initialization*/ 
  P_STATUS = 0; 
 
  memset(digest,0,SHA512_DIGEST_LENGTH); 
  memset(mdString,0,SHA512_DIGEST_LENGTH*2+1); 
  memset(str,0,STRLEN); 
  memset(tstr,0,STRLEN/4); 
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  hash_Q = mdString; 
  string = str; 
  tstring = tstr; 
 
  /*STEP 1 ‐ build string for hashing*/ 
  strcpy(str, "DATE="); 
  sprintf(tstring,"%u,",P_DATE); 
  strcat(str,tstring); 
 
  strcat(str, "TIME="); 
  sprintf(tstring,"%u,",P_TIME); 
  strcat(str,tstring); 
 
  strcat(str, "HASH_I="); 
  sprintf(tstring,"%s,",P_PTR_HASH_I_DATA); 
  strcat(str,tstring); 
 
  strcat(str,"P_B1="); 
  sprintf(tstring,"%s,", (P_B1)?"TRUE":"FALSE"); 
  strcat(str,tstring); 
 
  strcat(str,"P_B2="); 
  sprintf(tstring,"%s,", (P_B2)?"TRUE":"FALSE"); 
  strcat(str,tstring); 
 
  strcat(str,"P_B3="); 
  sprintf(tstring,"%s,", (P_B3)?"TRUE":"FALSE"); 
  strcat(str,tstring); 
 
  strcat(str,"P_B4="); 
  sprintf(tstring,"%s,", (P_B4)?"TRUE":"FALSE"); 
  strcat(str,tstring); 
 
  strcat(str,"P_B5="); 
  sprintf(tstring,"%s,", (P_B5)?"TRUE":"FALSE"); 
  strcat(str,tstring); 
 
  strcat(str,"P_B6="); 
  sprintf(tstring,"%s,", (P_B6)?"TRUE":"FALSE"); 
  strcat(str,tstring); 
 
  strcat(str,"P_B7="); 
  sprintf(tstring,"%s,", (P_B7)?"TRUE":"FALSE"); 
  strcat(str,tstring); 
 
  strcat(str,"P_B8="); 
  sprintf(tstring,"%s,", (P_B8)?"TRUE":"FALSE"); 
  strcat(str,tstring); 
 
  strcat(str,"P_I1="); 
  sprintf(tstring,"%d,",P_I1); 
  strcat(str,tstring); 
 
  strcat(str,"P_I2="); 
  sprintf(tstring,"%d,",P_I2); 
  strcat(str,tstring); 
 
  strcat(str,"P_I3="); 
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  sprintf(tstring,"%d,",P_I3); 
  strcat(str,tstring); 
 
  strcat(str,"P_I4="); 
  sprintf(tstring,"%d,",P_I4); 
  strcat(str,tstring); 
 
  strcat(str,"P_R1="); 
  sprintf(tstring,"%f,",P_R1); 
  strcat(str,tstring); 
 
  strcat(str,"P_R2="); 
  sprintf(tstring,"%f,",P_R2); 
  strcat(str,tstring); 
 
  strcat(str,"P_R3="); 
  sprintf(tstring,"%f,",P_R3); 
  strcat(str,tstring); 
 
  strcat(str,"P_R4="); 
  sprintf(tstring,"%f,",P_R4); 
  strcat(str,tstring); 
 
  strcat(str, "P_STRING = "); 
  sprintf(tstring,"%s,",P_PTR_STRING_I_DATA); 
  strcat(str,tstring); 
 
  if (NULL == str) 
  { 
    P_STATUS = ‐1; /*failed to create string*/ 
  } 
  else 
  { 
    /*STEP 2 ‐ hash string*/ 
    SHA512_CTX ctx; 
    SHA512_Init(&ctx); 
    SHA512_Update(&ctx, string, strlen(string)); 
    SHA512_Final(digest, &ctx); 
 
    for(i = 0; i < SHA512_DIGEST_LENGTH; i++)  
    { 
      sprintf(&mdString[i*2], "%02x", (unsigned int)digest[i]); 
    } 
 
    if (NULL == mdString) 
    { 
      P_STATUS = ‐2; /*failed to create hash*/ 
    } 
    else 
    { 
      /*STEP 3 ‐ output result*/ 
      strcpy(P_HASH_Q,hash_Q); 
      HASH_Q_MAXLEN = 128; 
      HASH_Q_CURLEN = 128; 
      P_STATUS = 1; 
    } 
  } 
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  /*debug logic*/ 
  #if ISaDEBUG 
     fp = fopen("debug‐message.txt", "w"); 
     if (fp == NULL) { 
       P_STATUS = 666; 
       exit(0); 
     } 
 
     fprintf(fp, "string = %s\n", string); 
     fprintf(fp, "digest = %s\n", digest); 
     fprintf(fp, "mdString = %s\n", mdString); 
 
 
     fprintf(fp, "\n\nDATE = %u\n", P_DATE); 
     fprintf(fp, "HASH_I = %s\n", P_PTR_HASH_I_DATA); 
     fprintf(fp, "BOOL1 = %s\n", (P_B1)?"TRUE":"FALSE"); 
     fprintf(fp, "BOOL2 = %s\n", (P_B2)?"TRUE":"FALSE"); 
     fprintf(fp, "BOOL3 = %s\n", (P_B3)?"TRUE":"FALSE"); 
     fprintf(fp, "BOOL4 = %s\n", (P_B4)?"TRUE":"FALSE"); 
     fprintf(fp, "BOOL5 = %s\n", (P_B5)?"TRUE":"FALSE"); 
     fprintf(fp, "BOOL6 = %s\n", (P_B6)?"TRUE":"FALSE"); 
     fprintf(fp, "BOOL7 = %s\n", (P_B7)?"TRUE":"FALSE"); 
     fprintf(fp, "BOOL8 = %s\n", (P_B8)?"TRUE":"FALSE"); 
     fprintf(fp, "INT1  = %i\n", P_I1); 
     fprintf(fp, "INT2  = %i\n", P_I2); 
     fprintf(fp, "INT3  = %i\n", P_I3); 
     fprintf(fp, "INT4  = %i\n", P_I4); 
     fprintf(fp, "REAL1 = %f\n", P_R1); 
     fprintf(fp, "REAL2 = %f\n", P_R2); 
     fprintf(fp, "REAL3 = %f\n", P_R3); 
     fprintf(fp, "REAL4 = %f\n", P_R4); 
    
     fclose(fp); 
  #endif 
 
 
   //END OF CUSTOM CODE 
 
 
} 
 
/* eof ********************************************************************/ 
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A.2 KeyGen 

 
/************************************************************************** 
File:               keygen.c 
Author:             kfischer 
Creation date:      15/06/2013 ‐ 20:02 
POU name:           KeyGen 
***************************************************************************/ 
 
‐‐‐autocode‐‐‐ 
 
//START OF CUSTOM CODE HEADERS 
#include <debug.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include  <openssl/ec.h>            //  for  EC_GROUP_new_by_curve_name,  EC_GROUP_free, 
EC_KEY_new, EC_KEY_set_group, EC_KEY_generate_key, EC_KEY_free 
#include <openssl/obj_mac.h> // for NID_secp384r1 
#include <openssl/bn.h>     // for BIGNUM conversions 
#include <openssl/bio.h> 
#include <openssl/evp.h>   // for base64 conversions 
#include <openssl/buffer.h> 
#include <math.h> 
#include <base64.h>       // for base64 conversions 
 
//END OF CUSTOM CODE HEADERS 
‐‐‐autocode‐‐‐ 
 
   //START OF CUSTOM CODE  
    
   //‐‐Declarations 
 
 
    /*debug variables*/ 
  #if ISaDEBUG 
    FILE *fp; 
    FILE *fpa; 
    FILE *fpb; 
    int i,j; 
  #endif 
 
   /*status variables*/ 
   const int set_group_success = 1; 
   const int gen_success = 1; 
   int set_group_status; 
   int gen_status; 
 
   /*key and base 64 variables*/ 
 
   const BIGNUM *PrivateKeyBN; 
   BIGNUM *PublicKeyBN; 
   const EC_POINT *PublicKeyPoint; 
   EC_KEY *eckey; 
   EC_GROUP *ecgroup; 
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   unsigned char *PublicKeyBinaryUnsigned, PublicKeyBinaryUnsignedArray[250]; 
   unsigned char *PrivateKeyBinaryUnsigned, PrivateKeyBinaryUnsignedArray[250]; 
 
   int encodedSize; 
   char *buffer, BufferArray[250]; 
   unsigned char *PrivateKeyBase64, PrivateKeyBase64Array[250]; 
 
   int encodedSize_b; 
   char *buffer_b, BufferArray_b[250]; 
   unsigned char *PublicKeyBase64, PublicKeyBase64Array[250]; 
 
 
   //‐‐Logic 
 
   /*STEP 0 ‐ Initialization*/ 
  P_STATUS = 0; 
 
  memset(PrivateKeyBinaryUnsignedArray,0,250); 
  PrivateKeyBinaryUnsigned = PrivateKeyBinaryUnsignedArray; 
 
  memset(PublicKeyBinaryUnsignedArray,0,250); 
  PublicKeyBinaryUnsigned = PublicKeyBinaryUnsignedArray; 
 
  memset(PrivateKeyBase64Array,0,250); 
  PrivateKeyBase64 = PrivateKeyBase64Array; 
 
  memset(PublicKeyBase64Array,0,250); 
  PublicKeyBase64 = PublicKeyBase64Array; 
   
  memset(BufferArray,0,250); 
  buffer = BufferArray; 
  memset(BufferArray_b,0,250); 
  buffer_b = BufferArray_b; 
 
  /*STEP 1 ‐ create key object*/ 
    eckey=EC_KEY_new(); 
    if (NULL == eckey) 
    { 
        P_STATUS = ‐1;  /*failed to create key object*/ 
    } 
    else 
    { 
    /*STEP 2 ‐ create EC_GROUP object*/ 
        //ecgroup = EC_GROUP_new_by_curve_name(NID_secp384r1);    ‐‐worked for 384 
ECDSA, will want to come back and add an option to turn this on and off 
    ecgroup = EC_GROUP_new_by_curve_name(NID_secp521r1); 
        if (NULL == ecgroup) 
        { 
            P_STATUS = ‐2; /*failed to create new EC Group*/ 
        } 
        else 
        { 
      /*STEP 3 ‐ associate key with group*/ 
            set_group_status = EC_KEY_set_group(eckey,ecgroup); 
            if (set_group_success != set_group_status) 
            { 
        P_STATUS = ‐3; /*failed to associate key with group*/ 
            } 
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            else 
      { 
        /*STEP 4 ‐ create PRIVATE and PUBLIC keys*/ 
                gen_status = EC_KEY_generate_key(eckey); 
                if (gen_success != gen_status) 
                { 
                    P_STATUS = ‐4; /*failed to generate EC Key*/ 
                } 
                else 
        {       
          /*STEP 5 ‐ extract PRIVATE keys*/ 
          PrivateKeyBN = EC_KEY_get0_private_key(eckey); 
          if (PrivateKeyBN == NULL)  
          { 
            P_STATUS  =  ‐5;  /*failed  to  extract 
PRIVATE key*/ 
          } 
          else 
          {         
            /*STEP 6 ‐ extract PUBLIC KEY*/ 
            PublicKeyPoint  = 
EC_KEY_get0_public_key(eckey); 
            if (PublicKeyPoint == NULL) 
            { 
              P_STATUS = ‐6; /*failed to extract 
PUBLIC key*/ 
            } 
            else 
            { 
              /*STEP  7a  ‐  Private  Key  convert 
from BN to binary and then encode as base64*/ 
 
           
  BN_bn2bin(PrivateKeyBN,PrivateKeyBinaryUnsigned);  
              encodedSize  = 
EVP_EncodeBlock(PrivateKeyBase64,PrivateKeyBinaryUnsigned,89); 
 
              /*STEP  7b  ‐  Public  Key  convert 
from Point to BN to binary and then encode as base64*/ 
 
              PublicKeyBN = BN_new(); 
           
  EC_POINT_point2bn(ecgroup,PublicKeyPoint,POINT_CONVERSION_UNCOMPRESSED,Publ
icKeyBN,NULL); 
           
  BN_bn2bin(PublicKeyBN,PublicKeyBinaryUnsigned); 
              encodedSize_b  = 
EVP_EncodeBlock(PublicKeyBase64,PublicKeyBinaryUnsigned,179); 
 
 
               
              /*STEP 7c ‐ set outputs*/ 
 
              buffer = (char*) PrivateKeyBase64; 
              buffer_b  =  (char*) 
PublicKeyBase64; 
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              strcpy(P_PRIVATE_KEY_BUFADD, 
buffer); 
              PRIVATE_KEY_MAXLEN = 250; 
              PRIVATE_KEY_CURLEN = encodedSize; 
 
              strcpy(P_PUBLIC_KEY_BUFADD, 
buffer_b); 
              PUBLIC_KEY_MAXLEN = 250; 
              PUBLIC_KEY_CURLEN = encodedSize_b; 
 
              P_STATUS = 1; /*success*/ 
/*debug logic*/ 
#if ISaDEBUG 
  fpb = fopen("debug‐keygen‐BIGNUM.txt", "w"); 
  fprintf(fpb, "PublicKeyBigNumber = "); 
  BN_print_fp(fpb, PublicKeyBN); 
  fprintf(fpb, " \n"); 
  fprintf(fpb, " \n"); 
  fprintf(fpb, "PrivateKeyBigNumber = "); 
  BN_print_fp(fpb, PrivateKeyBN); 
  fclose(fpb); 
 
  fp = fopen("debug‐keygen‐Private.txt", "w"); 
  fprintf(fp, "hello world\n"); 
  fprintf(fp,"encodedSize = %i\n", encodedSize); 
  fprintf(fp,"encodedSize_b = %i\n", encodedSize_b); 
  fprintf(fp,"array dump = "); 
  for (i = 0; i<250; i++) 
  { 
    fprintf(fp, "%c", PrivateKeyBinaryUnsignedArray[i]); 
  } 
  fprintf(fp, " \n"); 
  fprintf(fp,"PrivateKeyBinaryUnsigned = %s\n", PrivateKeyBinaryUnsigned); 
  fprintf(fp,"PrivateKeyBase64 = %s\n", PrivateKeyBase64); 
  fprintf(fp,"buffer = %s\n", buffer); 
  fclose(fp); 
#endif 
            } 
          } 
        } 
      } 
    } 
  } 
   //END OF CUSTOM CODE 
 
} 
 
/* eof ********************************************************************/ 
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A.3 KeyVerify 

 
/************************************************************************** 
File:               keyverify.c 
Author:             kfischer 
Creation date:      15/06/2013 ‐ 13:53 
POU name:           KeyVerify 
***************************************************************************/ 
 
‐‐‐autocode‐‐‐ 
 
//START OF CUSTOM CODE HEADERS 
#include <debug.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include  <openssl/ec.h>            //  for  EC_GROUP_new_by_curve_name,  EC_GROUP_free, 
EC_KEY_new, EC_KEY_set_group, EC_KEY_generate_key, EC_KEY_free 
#include <openssl/ecdsa.h>   // for ECDSA_do_sign, ECDSA_do_verify 
#include <openssl/obj_mac.h> // for NID_secp384r1 
#include <openssl/bn.h>     // for BIGNUM conversions 
#include <openssl/bio.h> 
#include <openssl/evp.h> 
#include <openssl/buffer.h> 
#include <math.h> 
#include <base64.h>       // for base64 conversions 
//END OF CUSTOM CODE HEADERS 
 
‐‐‐autocode‐‐‐ 
       
   //START OF CUSTOM CODE 
         
 
   //‐‐Declarations 
 
   /*debug variables*/ 
  #if ISaDEBUG 
  FILE *fp; 
  FILE *fpa; 
  FILE *fpb; 
  int i, j; 
  #endif 
 
   /*status variables*/ 
  #define  P_PTR_PUBLIC_KEY_DATA  (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐
>public_key))+2) 
  #define  P_PTR_PRIVATE_KEY_DATA  (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐
>private_key))+2) 
 
  const int set_group_success = 1; 
  const int gen_success = 1; 
  const int set_public_success = 1; 
  const int set_private_success = 1; 
  const int verify_success = 1; 
 
  int set_group_status; 
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  int set_public_status; 
  int set_private_status; 
  int verify_status; 
 
  unsigned char hash[] = "c7fbca202a95a570285e3d700eb04ca2"; 
 
   /*base64 variables*/ 
  EC_KEY *eckey; 
  EC_GROUP *ecgroup; 
  EC_POINT *PublicKeyPoint; 
  BIGNUM *PrivateKeyBN; 
  BIGNUM *PublicKeyBN; 
  ECDSA_SIG *signature; 
 
  unsigned char *buffer; 
  unsigned char *buffer_b; 
 
  unsigned char *PublicKeyBinaryUnsigned, PublicKeyBinaryUnsignedArray[250]; 
  unsigned  char  *PrivateKeyBinaryUnsigned, 
PrivateKeyBinaryUnsignedArray[250]; 
 
  const unsigned char *PublicKeyBinaryConst; 
  const unsigned char *PrivateKeyBinaryConst; 
 
 
 
   //‐‐Logic 
  P_STATUS = 0; 
 
  memset(PrivateKeyBinaryUnsignedArray,0,250); 
  PrivateKeyBinaryUnsigned = PrivateKeyBinaryUnsignedArray; 
 
  memset(PublicKeyBinaryUnsignedArray,0,250); 
  PublicKeyBinaryUnsigned = PublicKeyBinaryUnsignedArray; 
 
 
  /*STEP 1 ‐ create key object*/ 
  eckey=EC_KEY_new(); 
    if (NULL == eckey) 
    { 
        P_STATUS = ‐1;  /*failed to create key object*/ 
    } 
    else 
    { 
    /*STEP 2 ‐ create EC_GROUP object*/ 
    ecgroup = EC_GROUP_new_by_curve_name(NID_secp521r1); 
        if (NULL == ecgroup) 
        { 
            P_STATUS = ‐2; /*failed to create new EC Group*/ 
        } 
        else 
        { 
      /*STEP 3 ‐ associate key with group*/ 
            set_group_status = EC_KEY_set_group(eckey,ecgroup); 
            if (set_group_success != set_group_status) 
            { 
        P_STATUS = ‐3; /*failed to associate key with group*/ 
            } 
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            else 
      { 
        /*STEP 4 ‐ set public key*/ 
        PublicKeyPoint = EC_POINT_new(ecgroup); 
        PublicKeyBN = BN_new(); 
 
        buffer_b = (unsigned char*) P_PTR_PUBLIC_KEY_DATA; 
 
        EVP_DecodeBlock(PublicKeyBinaryUnsigned,buffer_b,240); 
 
        PublicKeyBinaryConst  =  (const  unsigned  char*) 
PublicKeyBinaryUnsigned; 
 
        BN_bin2bn(PublicKeyBinaryConst,133,PublicKeyBN);  
         
     
  EC_POINT_bn2point(ecgroup,PublicKeyBN,PublicKeyPoint,NULL); 
 
 
        set_public_status  = 
EC_KEY_set_public_key(eckey,PublicKeyPoint); 
        if (set_public_success != set_public_status) 
        { 
          P_STATUS = ‐4; /*failed to set public key*/ 
        } 
        else 
        { 
          /*STEP 5 ‐ set private key*/ 
          PrivateKeyBN = BN_new(); 
          buffer  =  (unsigned  char*) 
P_PTR_PRIVATE_KEY_DATA; 
       
  EVP_DecodeBlock(PrivateKeyBinaryUnsigned,buffer,120); 
          PrivateKeyBinaryConst  =  (const  unsigned  char*) 
PrivateKeyBinaryUnsigned; 
 
/*521 ECDSA is unique due to the extra bit resulting in a length of 65.125 bytes, 
which  means  that  when  converting  from  bin  to  bn  we  will  alternatively  be 
converting 66 or 65 bytes depending on if the extra bit is a 1 or not.  The 
presence of the extra bit is encoded in the in the first base64 characters. The 
byte  0000 0001 will be broken in base64 to a pair of 0000000 and 1XXXXXX, which 
will  result  in  the  key  having  a  leading  A  character  representing  the  0000000.  
However, the byte 0000 0000 will not be encoded at all, which will result in the 
key not having a leading A.  Detection of the leading A is therefore critical to 
properly convert the bin to BN.*/ 
           
          if (P_PTR_PRIVATE_KEY_DATA[0] == 'A')  
          { 
         
  BN_bin2bn(PrivateKeyBinaryConst,66,PrivateKeyBN); 
          } 
          else 
          { 
         
  BN_bin2bn(PrivateKeyBinaryConst,65,PrivateKeyBN); 
          } 
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          set_private_status  = 
EC_KEY_set_private_key(eckey,PrivateKeyBN); 
          if (set_private_success != set_private_status) 
          { 
            P_STATUS  =  ‐5;  /*failed  to  set  private 
key*/ 
          } 
          else 
          { 
            /*STEP  6  ‐  create  signature  on  dummy 
hash*/ 
            signature = ECDSA_do_sign(hash,32,eckey); 
            if (NULL == signature) 
            { 
              P_STATUS  =  ‐6;  /*failed  to 
generate signature*/ 
            } 
            else 
            { 
              /*STEP 7 ‐ verify signature*/ 
              verify_status  = 
ECDSA_do_verify(hash,32,signature,eckey); 
              if  (verify_success  != 
verify_status) 
              { 
                P_STATUS  =  ‐7; 
/*verification failed*/ 
              } 
              else 
              { 
                P_STATUS  =  1;  /*keys 
verified*/ 
              } 
            } 
          } 
        } 
      } 
    } 
  } 
 
  /*CLEANUP ‐ Release memory structures to prevent memory leaks*/ 
  EC_KEY_free(eckey);        /*frees EC_KEY memory allocation*/ 
  EC_GROUP_clear_free(ecgroup);   /*destroys any sensitive data in the group 
and then frees the memory*/ 
  EC_POINT_free(PublicKeyPoint);  /*frees EC_POINT memory allocation*/ 
  BN_clear_free(PrivateKeyBN);    /*overwrites the BN before returning memory 
to the system*/ 
  BN_clear_free(PublicKeyBN); 
  ECDSA_SIG_free(signature);    /*frees ECDSA_SIG memory allocation*/ 
 
 
/*debug logic*/ 
#if ISaDEBUG 
  fpa = fopen("debug‐keyverify‐public.txt", "w"); 
  fprintf(fpa, "hello world \n"); 
  fprintf(fpa, "P_PTR_PUBLIC_KEY_DATA = %s\n", P_PTR_PUBLIC_KEY_DATA); 
  fprintf(fpa, " \n"); 
  fprintf(fpa, " \n"); 
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  fprintf(fpa, "Public Key Array dump = "); 
  for (j = 0; j<250; j++) 
  { 
    fprintf(fpa, "%c", PublicKeyBinaryUnsignedArray[j]); 
  } 
  fprintf(fpa, " \n"); 
  fprintf(fpa, " \n"); 
  fclose(fpa); 
 
  fp = fopen("debug‐keyverify‐private.txt", "w"); 
  fprintf(fp, "hello world\n"); 
  fprintf(fp, "P_PTR_PRIVATE_KEY_DATA = %s\n", P_PTR_PRIVATE_KEY_DATA); 
  fprintf(fp, "P_PTR_PRIVATE_KEY_DATA[0] = %c\n", P_PTR_PRIVATE_KEY_DATA[0]); 
  fprintf(fp, "Private Key Array dump = "); 
  for (i = 0; i<250; i++) 
  { 
    fprintf(fp, "%c", PrivateKeyBinaryUnsignedArray[i]); 
  } 
  fprintf(fp, " \n"); 
  fclose(fp); 
 
 
  fpb = fopen("debug‐keyverify‐BIGNUM.txt", "w"); 
  fprintf(fpb, "PublicKeyBigNumber = "); 
  BN_print_fp(fpb, PublicKeyBN); 
  fprintf(fpb, " \n"); 
  fprintf(fpb, " \n"); 
  fprintf(fpb, "PrivateKeyBigNumber = "); 
  BN_print_fp(fpb, PrivateKeyBN); 
  fprintf(fpb, " \n"); 
  fprintf(fpb, " \n"); 
  fprintf(fpb, "bnlen = %i\n", bnlen); 
  fclose(fpb); 
#endif 
 
 
 
 
   //END OF CUSTOM CODE 
 
 
} 
 
/* eof ********************************************************************/ 
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A.4 SigGen 

 
/************************************************************************** 
File:               siggen.c 
Author:             kfischer 
Creation date:      10/07/2013 ‐ 22:27 
POU name:           SigGen 
***************************************************************************/ 
 
‐‐‐autocode‐‐‐ 
 
//START OF CUSTOM CODE HEADERS 
#include <debug.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include  <openssl/ec.h>            //  for  EC_GROUP_new_by_curve_name,  EC_GROUP_free, 
EC_KEY_new, EC_KEY_set_group, EC_KEY_generate_key, EC_KEY_free 
#include <openssl/ecdsa.h>   // for ECDSA_do_sign, ECDSA_do_verify 
#include <openssl/obj_mac.h> // for NID_secp384r1 
#include <openssl/bn.h>     // for BIGNUM conversions 
#include <openssl/bio.h> 
#include <openssl/evp.h> 
#include <openssl/buffer.h> 
#include <math.h> 
#include <base64.h>       // for base64 conversions 
//END OF CUSTOM CODE HEADERS 
 
‐‐‐autocode‐‐‐ 
 
   //START OF CUSTOM CODE 
         
 
   //‐‐Declarations 
 
   /*debug variables*/ 
  #if ISaDEBUG 
  FILE *fp; 
  int i; 
  #endif 
 
   /*status variables*/ 
   
  #define  P_PTR_PRIVATE_KEY_DATA  (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐
>private_key))+2) 
  #define P_PTR_HASH_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐>hash))+2) 
 
  const int set_group_success = 1; 
  const int gen_success = 1; 
  const int set_public_success = 1; 
  const int set_private_success = 1; 
  const int verify_success = 1; 
 
  int set_group_status; 
  int set_private_status; 
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  unsigned char hash[128]; 
 
 
   /*EC Variables*/ 
  EC_KEY *eckey; 
  EC_GROUP *ecgroup; 
  ECDSA_SIG *signature; 
 
   /*base64 variables for decomposing private key*/ 
  BIGNUM *PrivateKeyBN; 
  unsigned char *buffer; 
    unsigned char *PrivateKeyBinaryUnsigned, PrivateKeyBinaryUnsignedArray[250]; 
  const unsigned char *PrivateKeyBinaryConst; 
 
   /*base64 variables for encoding SIG_R and SIG_S*/ 
 
  int SIG_R_EncodedSize; 
  unsigned char *SIG_R_BinaryUnsigned, SIG_R_BinaryUnsignedArray[250]; 
    unsigned char *SIG_R_Base64, SIG_R_Base64Array[250]; 
  int SIG_S_EncodedSize; 
  unsigned char *SIG_S_BinaryUnsigned, SIG_S_BinaryUnsignedArray[250]; 
    unsigned char *SIG_S_Base64, SIG_S_Base64Array[250];    
 
  char *SIG_R_Buffer, SIG_R_BufferArray[250]; 
  char *SIG_S_Buffer, SIG_S_BufferArray[250]; 
 
   //‐‐Logic 
 
  /*STEP 0 ‐ Initialization*/ 
  P_STATUS = 0; 
 
  memcpy(hash,P_PTR_HASH_DATA,128); 
   
  memset(PrivateKeyBinaryUnsignedArray,0,250); 
  PrivateKeyBinaryUnsigned = PrivateKeyBinaryUnsignedArray; 
 
  memset(SIG_R_BinaryUnsignedArray,0,250); 
  SIG_R_BinaryUnsigned = SIG_R_BinaryUnsignedArray; 
  memset(SIG_R_Base64Array,0,250); 
  SIG_R_Base64 = SIG_R_Base64Array; 
  memset(SIG_R_BufferArray,0,250); 
  SIG_R_Buffer = SIG_R_BufferArray; 
 
  memset(SIG_S_BinaryUnsignedArray,0,250); 
  SIG_S_BinaryUnsigned = SIG_S_BinaryUnsignedArray; 
  memset(SIG_S_Base64Array,0,250); 
  SIG_S_Base64 = SIG_S_Base64Array; 
  memset(SIG_S_BufferArray,0,250); 
  SIG_S_Buffer = SIG_S_BufferArray; 
 
  /*STEP 1 ‐ create key object*/ 
  eckey=EC_KEY_new(); 
    if (NULL == eckey) 
    { 
        P_STATUS = ‐1;  /*failed to create key object*/ 
    } 
    else 
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    { 
    /*STEP 2 ‐ create EC_GROUP object*/ 
    ecgroup = EC_GROUP_new_by_curve_name(NID_secp521r1); 
        if (NULL == ecgroup) 
        { 
            P_STATUS = ‐2; /*failed to create new EC Group*/ 
        } 
        else 
        { 
      /*STEP 3 ‐ associate key with group*/ 
            set_group_status = EC_KEY_set_group(eckey,ecgroup); 
            if (set_group_success != set_group_status) 
            { 
        P_STATUS = ‐3; /*failed to associate key with group*/ 
            } 
            else 
      { 
        /*STEP 4 ‐ set private key*/ 
        PrivateKeyBN = BN_new(); 
 
        buffer = (unsigned char*) P_PTR_PRIVATE_KEY_DATA; 
        EVP_DecodeBlock(PrivateKeyBinaryUnsigned,buffer,120); 
       
        PrivateKeyBinaryConst  =  (const  unsigned  char*) 
PrivateKeyBinaryUnsigned; 
 
/*521 ECDSA is unique due to the extra bit resulting in a length of 65.125 bytes, 
which  means  that  when  converting  from  bin  to  bn  we  will  alternatively  be 
converting 66 or 65 bytes depending on if the extra bit is a 1 or not.  The 
presence of the extra bit is encoded in the in the first   base64  characters. 
The byte  0000 0001 will be broken in base64 to a pair of 0000000 and 1XXXXXX, 
which  will  result  in  the  key  having  a  leading  A  character  representing  the 
0000000.    However,  the  byte  0000  0000  will  not  be  encoded  at  all,  which  will 
result in the key not having a leading A.  Detection of the leading A is therefore 
critical to properly convert the bin to BN.*/ 
           
        if (P_PTR_PRIVATE_KEY_DATA[0] == 'A')  
        { 
       
  BN_bin2bn(PrivateKeyBinaryConst,66,PrivateKeyBN); 
        } 
        else 
        { 
       
  BN_bin2bn(PrivateKeyBinaryConst,65,PrivateKeyBN); 
        } 
 
        set_private_status  = 
EC_KEY_set_private_key(eckey,PrivateKeyBN); 
        if (set_private_success != set_private_status) 
        { 
          P_STATUS = ‐4; /*failed to set private key*/ 
        } 
        else 
        { 
          /*STEP 5 ‐ create signature on dummy hash*/ 
          signature = ECDSA_do_sign(hash,128,eckey); 
          if (NULL == signature) 
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          { 
            P_STATUS  =  ‐5;  /*failed  to  generate 
signature*/ 
          } 
          else 
          { 
            /*STEP 6 ‐ base64 encode SIG_R and SIG_S 
and output result*/ 
 
            BN_bn2bin(signature‐
>r,SIG_R_BinaryUnsigned); 
            SIG_R_EncodedSize  = 
EVP_EncodeBlock(SIG_R_Base64,SIG_R_BinaryUnsigned,89); 
 
            BN_bn2bin(signature‐
>s,SIG_S_BinaryUnsigned); 
            SIG_S_EncodedSize  = 
EVP_EncodeBlock(SIG_S_Base64,SIG_S_BinaryUnsigned,89); 
 
            SIG_R_Buffer = (char *) SIG_R_Base64; 
            SIG_S_Buffer = (char *) SIG_S_Base64; 
 
            strcpy(P_SIG_R_BUFADD,SIG_R_Buffer); 
            SIG_R_MAXLEN = 250; 
            SIG_R_CURLEN = SIG_R_EncodedSize; 
 
            strcpy(P_SIG_S_BUFADD,SIG_S_Buffer); 
            SIG_S_MAXLEN = 250; 
            SIG_S_CURLEN = SIG_S_EncodedSize; 
 
            P_STATUS = 1; /*success*/ 
          } 
        } 
      } 
    } 
  } 
 
  ///*CLEANUP ‐ Release memory structures to prevent memory leaks*/ 
  EC_KEY_free(eckey);        /*frees EC_KEY memory allocation*/ 
  EC_GROUP_clear_free(ecgroup);   /*destroys any sensitive data in the group 
and then frees the memory*/ 
  BN_clear_free(PrivateKeyBN);    /*overwrites the BN before returning memory 
to the system*/ 
  ECDSA_SIG_free(signature);    /*frees ECDSA_SIG memory allocation*/ 
 
 
/*debug logic*/ 
#if ISaDEBUG 
  fp = fopen("debug‐siggen.txt", "w"); 
  fprintf(fp, "hello world\n"); 
  fprintf(fp, " \n"); 
  fprintf(fp, "PrivateKeyBigNumber = "); 
  BN_print_fp(fp, PrivateKeyBN); 
  fprintf(fp, " \n"); 
  fprintf(fp, "signature‐>r = "); 
  BN_print_fp(fp, signature‐>r); 
  fprintf(fp, " \n"); 
  fprintf(fp, "signature‐>s = "); 
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  BN_print_fp(fp, signature‐>s); 
  fprintf(fp, " \n"); 
  fclose(fp); 
 
#endif 
 
   //END OF CUSTOM CODE 
 
} 
 
/* eof ********************************************************************/ 
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A.5 SigVerify 

 
/************************************************************************** 
File:               sigverify.c 
Author:             kfischer 
Creation date:      12/07/2013 ‐ 18:52 
POU name:           SigVerify 
***************************************************************************/ 
 
‐‐‐autocode‐‐‐ 
 
//START OF CUSTOM CODE HEADERS 
#include <debug.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include  <openssl/ec.h>            //  for  EC_GROUP_new_by_curve_name,  EC_GROUP_free, 
EC_KEY_new, EC_KEY_set_group, EC_KEY_generate_key, EC_KEY_free 
#include <openssl/ecdsa.h>   // for ECDSA_do_sign, ECDSA_do_verify 
#include <openssl/obj_mac.h> // for NID_secp384r1 
#include <openssl/bn.h>     // for BIGNUM conversions 
#include <openssl/bio.h> 
#include <openssl/evp.h> 
#include <openssl/buffer.h> 
#include <math.h> 
#include <base64.h>       // for base64 conversions 
//END OF CUSTOM CODE HEADERS 
 
‐‐‐autocode‐‐‐ 
 
   //START OF CUSTOM CODE 
         
 
   //‐‐Declarations 
 
   /*debug variables*/ 
  #if ISaDEBUG 
  FILE *fp; 
  int i; 
  #endif 
 
  /*status variables*/ 
  #define  P_PTR_PUBLIC_KEY_DATA  (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐
>public_key))+2) 
  #define P_PTR_HASH_DATA (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐>hash))+2) 
  #define  P_PTR_SIG_R_DATA  (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐
>sig_r))+2) 
  #define  P_PTR_SIG_S_DATA  (((char*)VA_ADDRESS(pvBfData,_P_IEC_DATA‐
>sig_s))+2) 
 
  const int set_group_success = 1; 
  const int gen_success = 1; 
  const int set_public_success = 1; 
  const int set_private_success = 1; 
  const int verify_success = 1; 
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  int set_group_status; 
  int set_public_status; 
  int verify_status; 
 
  unsigned char hash[128]; 
 
    /*EC Variables*/ 
  EC_KEY *eckey; 
  EC_GROUP *ecgroup; 
  EC_POINT *PublicKeyPoint; 
  ECDSA_SIG *signature; 
 
 
    /*base64 variables for decoding public key*/ 
  BIGNUM *PublicKeyBN; 
  unsigned char *buffer; 
    unsigned char *PublicKeyBinaryUnsigned, PublicKeyBinaryUnsignedArray[250]; 
  const unsigned char *PublicKeyBinaryConst; 
 
  /*base64 variables for decoding SIG_R key*/ 
  BIGNUM *SIG_R_BN; 
  unsigned char *SIG_R_buffer; 
    unsigned char *SIG_R_BinaryUnsigned, SIG_R_BinaryUnsignedArray[250]; 
  const unsigned char *SIG_R_BinaryConst; 
 
  /*base64 variables for decoding SIG_S key*/ 
  BIGNUM *SIG_S_BN; 
  unsigned char *SIG_S_buffer; 
    unsigned char *SIG_S_BinaryUnsigned, SIG_S_BinaryUnsignedArray[250]; 
  const unsigned char *SIG_S_BinaryConst; 
 
   //‐‐Logic 
  P_STATUS = 0; 
 
  memcpy(hash,P_PTR_HASH_DATA,128); 
 
  memset(PublicKeyBinaryUnsignedArray,0,250); 
  PublicKeyBinaryUnsigned = PublicKeyBinaryUnsignedArray; 
 
  memset(SIG_R_BinaryUnsignedArray,0,250); 
  SIG_R_BinaryUnsigned = SIG_R_BinaryUnsignedArray; 
 
  memset(SIG_S_BinaryUnsignedArray,0,250); 
  SIG_S_BinaryUnsigned = SIG_S_BinaryUnsignedArray; 
 
  /*STEP 1 ‐ create key object*/ 
  eckey=EC_KEY_new(); 
    if (NULL == eckey) 
    { 
        P_STATUS = ‐1;  /*failed to create key object*/ 
    } 
    else 
    { 
    /*STEP 2 ‐ create EC_GROUP object*/ 
    ecgroup = EC_GROUP_new_by_curve_name(NID_secp521r1); 
        if (NULL == ecgroup) 
        { 
            P_STATUS = ‐2; /*failed to create new EC Group*/ 
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        } 
        else 
        { 
      /*STEP 3 ‐ associate key with group*/ 
            set_group_status = EC_KEY_set_group(eckey,ecgroup); 
            if (set_group_success != set_group_status) 
            { 
        P_STATUS = ‐3; /*failed to associate key with group*/ 
            } 
            else 
      { 
        /*STEP 4 ‐ set public key*/ 
        PublicKeyPoint = EC_POINT_new(ecgroup); 
        PublicKeyBN = BN_new(); 
        buffer = (unsigned char*) P_PTR_PUBLIC_KEY_DATA; 
        EVP_DecodeBlock(PublicKeyBinaryUnsigned,buffer,240); 
        PublicKeyBinaryConst  =  (const  unsigned  char*) 
PublicKeyBinaryUnsigned; 
        BN_bin2bn(PublicKeyBinaryConst,133,PublicKeyBN);  
   
     
  EC_POINT_bn2point(ecgroup,PublicKeyBN,PublicKeyPoint,NULL); 
        set_public_status  = 
EC_KEY_set_public_key(eckey,PublicKeyPoint); 
        if (set_public_success != set_public_status) 
        { 
          P_STATUS = ‐4; /*failed to set public key*/ 
        } 
        else 
        { 
          /*STEP 5 ‐ convert Base64 SIG_R and SIG_S into 
BN and set signature values*/ 
 
          signature = ECDSA_SIG_new(); 
          SIG_R_BN = signature‐>r; 
          SIG_S_BN = signature‐>s; 
 
          SIG_R_buffer  =  (unsigned  char*) 
P_PTR_SIG_R_DATA; 
       
  EVP_DecodeBlock(SIG_R_BinaryUnsigned,SIG_R_buffer,120); 
          SIG_R_BinaryConst  =  (const  unsigned  char*) 
SIG_R_BinaryUnsigned; 
          if (P_PTR_SIG_R_DATA[0] == 'A')  
          { 
            BN_bin2bn(SIG_R_BinaryConst,66,SIG_R_BN); 
          } 
          else 
          { 
            BN_bin2bn(SIG_R_BinaryConst,65,SIG_R_BN); 
          } 
 
          SIG_S_buffer  =  (unsigned  char*) 
P_PTR_SIG_S_DATA; 
       
  EVP_DecodeBlock(SIG_S_BinaryUnsigned,SIG_S_buffer,120); 
          SIG_S_BinaryConst  =  (const  unsigned  char*) 
SIG_S_BinaryUnsigned; 
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          if (P_PTR_SIG_S_DATA[0] == 'A')  
          { 
            BN_bin2bn(SIG_S_BinaryConst,66,SIG_S_BN); 
          } 
          else 
          { 
            BN_bin2bn(SIG_S_BinaryConst,65,SIG_S_BN); 
          } 
           
          if (NULL==signature) 
          { 
            P_STATUS = ‐5; 
          } 
          else 
          { 
            /*STEP 6 ‐ Verify Signature*/ 
            verify_status  = 
ECDSA_do_verify(hash,128,signature,eckey); 
            if (verify_success != verify_status) 
            { 
              P_STATUS  =  ‐6;  /*verification 
failed*/ 
            } 
            else 
            { 
              P_STATUS  =  1;  /*signature 
verified*/ 
            } 
          } 
        } 
      } 
    } 
  } 
 
  /*CLEANUP ‐ Release memory structures to prevent memory leaks*/ 
 
    EC_KEY_free(eckey);        /*frees  EC_KEY  memory 
allocation*/ 
    EC_GROUP_clear_free(ecgroup);   /*destroys any sensitive data in the 
group and then frees the memory*/ 
    EC_POINT_free(PublicKeyPoint);  /*frees EC_POINT memory allocation*/ 
    BN_clear_free(PublicKeyBN);    /*overwrites the BN before returning 
memory to the system*/ 
    ECDSA_SIG_free(signature);    /*frees  ECDSA_SIG  memory 
allocation*/ 
 
 
 
/*debug logic*/ 
#if ISaDEBUG 
  fp = fopen("debug‐sigverify.txt", "w"); 
  fprintf(fp, "hello world\n"); 
  fprintf(fp, " \n"); 
  fprintf(fp, "PublicKeyBigNumber = "); 
  BN_print_fp(fp, PublicKeyBN); 
  fprintf(fp, " \n"); 
  fprintf(fp, "signature‐>r = "); 
  BN_print_fp(fp, signature‐>r); 
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  fprintf(fp, " \n"); 
  fprintf(fp, "signature‐>s = "); 
  BN_print_fp(fp, signature‐>s); 
  fprintf(fp, " \n"); 
  fclose(fp); 
 
#endif 
 
 
 
} 
 
/* eof ********************************************************************/ 
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APPENDIX B.  LADDER LOGIC CODE 

B.1 Solution Explorer 
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B.2 Bindings Sample 
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B.3 ECDSA_D4_I 
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B.4 MAIN 
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Note:  Rungs 8 and 9 are only used for the main routine of Device 1 to initialize the device and to trap the number elapsed time and 

cycle counts.  The other devices have a rung similar to rung 8 but without the FS XIC latch. 
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B.5 SIM_BOOL 
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B.6 SIM_REAL 
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B.7 ECDSA_KeyCntrl 
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B.8 ECDSA_Q 
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