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 ABSTRACT 

Recent endeavors such as the Smart Grid and the Navy’s Next Generation Integrated 

Power System, along with attacks on control systems such as Stuxnet, have highlighted 

the need for improved security in control systems and control system communications.  

Control system components such as Programmable Logic Controllers (PLCs) and 

Human-Machine Interfaces (HMIs) can no longer rely on simple heartbeat logic 

algorithms in order to verify communications. We can no longer rely on parity and 

checksum algorithms to determine that messages are coming through intact and 

unmodified.  Advanced cryptographic algorithms for data authentication and verification 

are needed in messaging protocols between PLCs, HMIs, and sensors. 

Cryptographic algorithms such as RSA or the Digital Signature Algorithm (DSA) appear 

to provide a solution to this need on the surface.  A deeper look though reveals that the 

key sizes required for implementing these solutions are simply not feasible for 

implementation in control system equipment.  Elliptic Curve DSA (ECDSA) looks to be 

a promising solution due to the smaller key sizes which allow for smaller storage 

requirements and faster computations (except in signature verification). The 

implementation of ECDSA can be complicated, but techniques such as the NIST prime 

fields can greatly increase the efficiency of the algorithm for use in control systems. 

Before a full control system implementation of ECDSA should be developed, the use of 

existing implementations such as those found in OpenSSL can be used with SoftPLCs to 

develop a proof of concept.  This will allow us to study the effects of using ECDSA on 

control system performance, as well as to develop a more complete set of user 

requirements for a complete control system solution that will be easy to implement.
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Increasing demands in all sectors of an industrial society have led to an ever increasing 

need for more sophisticated controls and monitoring equipment and software.  Control 

systems, once consisting of simple transmitters and relays have evolved into complex 

systems containing dozens of controllers communicating with each other, each containing  

tens of thousands of lines of code, for even the simplest processes. Complex Human-

Machine Interface (HMI) mechanisms designed to give system owners and operators 

enhanced capabilities to remotely operate, maintain, and troubleshot equipment are being 

developed and deployed.  At the core of most modern control systems is the 

Programmable Logic Controller (PLC), a device whose power lies in the ability of a 

Control System Engineer to quickly and easily implement complex control schemes at 

minimal cost.  As a result, PLCs (originally designed to replace relay panels) have 

become prevalent in virtually every industrial environment from pharmaceutical plants to 

electrical power distribution systems. 

The need for PLCs will significantly expand in the coming years, as countries with 

mature economies work tirelessly to develop new sophisticated power distribution 

networks required to support our growing economy.  Our existing power grids were 

designed decades ago, with the main aim of delivering electricity from large power 

stations to households and businesses.  The increasing efficiency and reliable 

requirements necessary to support our developing civilization in the face of increasing 

energy demands and the real threat of domestic terrorism and foreign aggression require 
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significant modernization of these power distribution networks.    The new “Smart Grid”, 

as it commonly called, will be characterized by a two-way flow of electricity and 

information creating a widely distributed energy network.  The control system required to 

support this energy network will be of an unheard of scale, the design of which will 

introduce significant challenges never before addressed. 

In related efforts, the US Navy has been rapidly migrating to ship designs with 

propulsion, auxiliary, and weapons systems with significantly higher energy requirements 

than in the past.  To address these requirements, modern ship designs such as the USS 

ZUMWALT DESTROYER (DDG1000) class are using Integrated Power Systems (IPS) 

that provide electrical power to propulsion and electrical loads from a common set of 

sources.  To provide direction for future IPS development, the Navy initiated the Next 

Generation Integrated Power Systems (NGIPS) effort to provide smaller, simpler, more 

affordable, and more capable systems for all Navy ships.   

The NGIPS effort is remarkably similar to the Smart Grid effort in multiple respects, and 

in both there is an increasing consensus that the controls communication infrastructure 

needs fundamental changes.  In an automated electrical system, damage to a complex 

communication network, a hostile terrorist act, or even a failing component giving 

erroneous data can result in a control system taking improper actions that could result in 

large scale power failures on land and weapons, propulsion, or a complete electrical 

failure at sea or worse.  Earlier this year, we at NSWCCD-SSES documented a case 

where erroneous data from a failing control system communications component in an 

Improved Navy Lighterage System (INLS) Warping Tug (WT) resulted in a complete 

loss of propulsion and steering control whenever a ship was placed into full speed, which 
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would have resulted in the ship colliding into the shore if it were not for conveniently 

placed Emergency Stop pushbuttons.  It has become clear to controls engineers that more 

sophisticated methods are needed for verifying the integrity of the data and commands 

being issued to and from control systems. 

Implementing control systems on a large, highly integrated scale introduces significant 

challenges partly because control system networks were not designed with security being 

primarily in mind.  Historically, control system networks were designed to be completely 

physically isolated from other networks and therefore securing those control system 

networks seemed unnecessary.  Instead, control system networks were designed to have 

maximum throughput with minimal to nonexistent data loss.  In recent years though 

control systems have gradually been getting connected to the Internet, mostly via 

corporate network systems, in order to meet business and maintenance requirements.  In 

order to secure networks, IT administrators have been applying traditional security 

measures in order to prevent attackers from gaining access to the corporate networks thus 

protecting control system networks.  The last year particularly has highlighted the 

deficiencies with this model, as viruses such as Stuxnet have become rapidly prevalent.  

There is also significantly more risk in a compromised control system than a 

compromised corporate system.  For example, an attacker could compromise the control 

system of a nuclear power plant resulting in a failure of the reactor cooling system.  

Therefore control system designers are realizing that not only do we need improved 

algorithms to verify that control system data is accurate, we need algorithms to verify that 

the data and commands to the control systems are authenticated (i.e. coming from a valid, 

recognized source). 
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1.2 Current Practices 

Controls engineers have long recognized the need to verify that components within a 

control system are communicating, and that the failure of communications between 

control system components should result in critical high priority alarms with possible 

equipment shutdowns.  Since control system communications operate in real time, 24 

hours a day, 7 days a week, algorithms are needed to detect a failure in communications 

as soon as it occurs.  Traditionally, “heartbeat” logic is implemented between each pair of 

communication devices.  Algorithm 1.1.A below illustrates an example of commonly 

used “heartbeat” logic. 

 

Algorithm 1.1.A – Traditional Control System “Heartbeat” 

1. Initialize a bit to a known condition (typically 1 as will be used in this algorithm). 

2. Transmit bit (call it B1) to communication partner.  Start a 3 second timer (call it 

T1) 

3. Communication partner receives the bit B1.  Communication partner sets another 

bit (call it B2) to 1 to match the state of B1 and starts its own 3 second timer (call 

it T2). 

4. Receive bit B2 from the partner.  Verify that the state of B2 matches the state of 

B1 and that timer T1 has not timed out.  If true, restart timer T1. Change state of 

B1 to be opposite that of B2.    Transmit B1 back to partner. 
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5. Partner receives bit B1.  Partner verifies that the state of B1 does not match the 

state of B2 and that timer T2 has not timed out.  If true, partner restarts timer T2. 

Partner changes B2 to match state of B1, retransmits bit back, and go to step 4.   

6. If T1 or T2 times out, alarm for communications failure.   

 

As long as a communications failure alarm does not occur, then the data being 

transmitted between the two PLCs is considered to be both valid and sourced between the 

communicating pair.  This kind of logic has proven to be very effective for general 

network health monitoring.  Issues in communication, primarily in the physical or 

transport layer, can be easily detected using this method.  For control system networks 

that are physically isolated from any other network, this is generally sufficient to 

implement an effective control scheme.  Unfortunately, this method does not protect 

against any kind of more sophisticated failure or attack such as that documented for the 

INLS WT described earlier or a “man-in-the-middle” attack.   

 

1.3 Literature Review on Smart Grid  

A number of papers have been written to introduce the Smart Grid concepts and provide 

a general overview of the requirements and challenges involved in developing a Smart 

Grid.   

Bouhafs, Mackay, and Merabti (2012) [1] identified a number of general requirements 

including communications and electrical generation needed in order to fully realize the 

Smart Grid vision.  They noted that underlying communications protocols will need to be 

more flexible and enable horizontal data exchange between controllers and remote 
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terminal units (RTUs).  The current “heartbeat” logic concept would not be useful in an 

implementation where data could flow from a source through multiple sources to a target 

since it only verifies the link between pairs and not the data itself.    They went on to note 

that in the event the Internet is used to connect equipment in the Smart Grid strong 

encryption and authentication measures must be taken to ensure the security of the data in 

transit. 

Yan, Qian, Sharif, and Tipper (2012) [2] noted that it is necessary to have guaranteed 

Quality of Service (QoS) for the communications and networking technology.  In 

particular they highlighted latency, bandwidth, interoperability, scalability, and security 

requirements.  Of particular interest is the authors analysis of bandwidth requirements 

which showed that there will be significant challenges in this area.  Therefore, adding a 

significant number of bits in any communications protocol for control systems could have  

a profoundly negative impact on the operation of the Smart Grid as a whole.  The authors 

also noted that the effort required to provision symmetric keys (i.e. keys between each 

pair of communicating devices) into thousands of devices would be too expensive or 

insecure.  They noted that the development of key and trust management schemes for 

large network deployments would be required.  While Navy systems are small enough 

that they would not suffer from the same kinds of limitations, it seems obvious that a 

solution must be developed for Navy systems that would be applicable to all future 

controls systems including the Smart Grid, particularly in support of modernized shore 

power connections for Navy systems. 

Yan, Qian, Sharif, and Tipper (2012) [3] in a related paper noted that new functions in 

the Smart Grid such as demand response introduce significant new cyber attack vectors 
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such as a malware that initiates a massive coordinated and instantaneous drop in demand.  

This attack could result in substantial damage to distribution, transmission, and 

generation facilities.  Research ongoing at NSWCCD-SSES has also noted this risk as 

applicable to Navy systems, particularly in combat scenarios with the use of advanced 

weapon systems such as the railgun.  The authors also noted that a major difference 

between Smart Grid controls communication and the Internet is that the controls data is 

significantly more concerned with message delay and timing constraints.   

Liu, Ning, and Reiter (2009) [4] in their work presented a notable example of a new type 

of attack, called false data injection attacks, that highlights the very real risk of attacks 

targeting data integrity.   

Baumeister (2011) [5] noted that most information systems uses a Public Key 

Infrastruction (PKI) solution, but that the nature of power grid systems creates additional 

PKI requirements not present in traditional information systems.  This same statement 

can be generalized to apply to all control systems.  For example, Baumeister noted that 

control systems must make informed decisions regularly, and that it is unreasonable to 

expect a control system to go down or revert to a less efficient predecessor every time a 

certificate is unavailable.  For example, what happens when a certificate from a sensor 

expires?  In an information system, the impact of expired certificates is insignificant and 

they can be renewed when discovered.  However, in a control system this could cause the 

process (such as electric flows) to be incorrectly altered. 
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1.3.1 SGiP Cyber Security Working Group NISTIR 7628 

In response to the number of concerns related to the Smart Grid and Cyber Security, 

NIST established the Smart Grid Interoperability Panel (SGiP) Cyber Security Working 

Group which published NISTIR 7628 (2010) [6].  This document broke down the various 

kinds of communications that would be prevelant in a full international Smart Grid 

system into a number of categories such as “Category 10 – Interface between Control 

Systems and Non-Control / Corporate Systems”.  SGiP then identifies the unique security 

requirements for each of these categories, focusing on the three areas of confidentiality, 

integrity, and availability.    Most, but not all of the categories identified by SGiP are 

directly or indirectly applicable to control systems (some have little to no bearing such as 

categories 13 through 18) operating in the Smart Grid and are shown in the list below: 

• Category 1:  Interface between control systems and equipment with high 

availability, and with compute and/or bandwidth constraints 

• Category 2:  Interface between control systems and equipment without high 

availability, but with compute and / or bandwidth constraints 

• Category 3:  Interface between control systems and equipment with high 

availability, without compute or bandwidth constraints 

• Category 4:  Interface between control systems and equipment without high 

availability, without compute or bandwidth constraints 

• Category 5:  Interface between control systems within the same organization 

• Category 6:  Interface between control systems in different organizations 

• Category 10:  Interface between control systems and non-control / corporate 

systems 



9 

• Category 12:  Interface between sensor networks and control systems 

• Category 19:  Interface between operations decision support systems 

• Category 20:  Interface between engineering / maintenance systems and control 

equipment 

• Category 21:  Interface between control systems and their vendors for standard 

maintenance and service 

• Category 22:  Interface between security / network / system management consoles 

and all networks and systems 

In reviewing the categories, it becomes obvious that all of them have significant overlap 

with NGIPS efforts as well as industrial control systems in general.  Going through the 

requirements of these categories as identified by SGiP it is seen that the primary concern 

in this categories that of data integrity and authentication.  Data encryption can be useful 

in some circumstances, but is not as critical as the other two requirements.   

 

1.4 Literature Review on NGIPS 

Most of the literature focusing on the NGIPS effort has focused on areas such as 

electrical generation, propulsion, power conversion and distribution, energy storage, and 

zonal survivability. NAVSEA (2007) [7] The NGIPS architecture is broken up into seven 

modules types: 

• Power Generation Modules (PGM) 

• Power Distribution Modules (PDM) 

• Power Conversion Modules (PCM) 

• Energy Storage Modules (ESM) 
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• Power Loads 

• Propulsion Motor Modules (PMM) 

• Power Control Modules (PCON) 

The PCON module is of particular interest to controls engineers, as it consists of the 

software and communications protocols necessary to operate the system.  Doerry (2009) 

[8] noted that PCON should implement the following functions, and that the software 

should be developed for robustness in anticipation of future changes in the life of both a 

ship and for modifying for use across multiple ship classes: 

• Remote monitoring and control of NGIPS modules and controllable loads 

• Resource Planning 

• System Configuration 

• Mission Priority Load Shedding 

• Quality of Service Load Shedding 

• Fault Detection and Isolation 

• Maintenance Support 

• Training  

These functions are remarkably similar to the control system functions required for the 

development of a Smart Grid, with the notable exception of Quality of Service (QoS) and 

Mission Priority Load Shedding.  As a result, the same need for data authentication and 

verification in the Smart Grid would be applicable to NGIPS, particularly in functions 

such as maintenance support where it becomes increasingly common for ships to transmit 

data to and from shore based services for software upgrades and maintenance / 

troubleshooting support. 
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Desired requirements for QoS also introduce the need to ensure that commands being 

transmitted across the ship for electrical service are genuine.  As noted by Doerry, a 

typical cause of a QoS failure is the shifting of electrical  power sources from ship to 

shore, and that communications will be required with the terrestrial power system 

command and control centers.  Failure of the ship and shore to properly establish valid 

communications could result in power instabilities for both.   

The increasing prevalence of computer viruses specifically targeting control systems will 

introduce new challenges to the mission readiness of a ship in times of war.  By attacking 

PCON, an enemy may be able to cause a control system to incorrectly transfer loads 

which could result in a failure of propulsion or weapon systems (or both) at a critical 

moment.  Modern weapon systems produce substantial electrical loads that may require 

realigning of the ship’s electrical distribution prior to being operational. 

The Navy has been putting in significant effort to develop open architecture approaches 

in the development of control system software to support not only NGIPS development 

but also to support development of control systems fleet wide.  Doerry, Scherer, Cohen, 

and Guertin (2011) [9] pointed out that information assurance and security needs to be 

thought of at the outset of any new MCS design, stating that confidentiality, integrity, and 

availability of data must be assured.  They also highlight that the software should perform 

error detection (and error correction if possible) along with filtering of the sensor data.   

  

 

 



12 

CHAPTER 2: CURRENT PRACTICES  

 

2.1 Fundamental Objectives 

Within the field of cryptography there are multiple solutions providing various degrees of 

secure communication.  In order to be effectively used to establish secure 

communications these solutions have the following fundamental objectives: 

• Confidentiality – ensuring the data can only be read by those authorized to see it 

• Data Integrity – ensuring the data has not been modified by unauthorized means 

• Data Origin Authentication – ensuring data supposedly sent by a source actually 

originated with that source 

• Entity Authentication – ensuring that an entity participating in a data transfer is 

who it claims to be 

• Non-repudiation – ensuring that a source of data is unable to later deny sending 

the data 

Information / Corporate systems are concerned with meeting each of the above 

objectives.  Control systems are also equally concerned with these, with confidentiality to 

a significantly lesser degree, but also have unique requirements not present in 

information systems.  When an information system receives a piece of data through an 

unsecure means you can disregard the information with reasonably low risk.  Control 

systems, on the other hand, need to make critical decisions with the information at hand.  

If the data received is insecure, the control system is placed in a position of having to 

make critical decisions about the operation of real world machinery without knowing 

which decision to take.  Unfortunately, the control system will regularly be  in the 
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position where it must take some critical action or shut down the equipment, with each 

scenario resulting in possible equipment damage and injury/death to personnel operating 

that equipment.  

 

2.2 Limitations of Control Systems compared to Information / Corporate 

Systems 

Information / Corporate Systems will typically consist of x86-based architecture 

computers running either Windows or Linux operating systems and a host of other 

software programs provided by multiple vendors to provide an integrated solution.  At the 

heart of the Control System are Programmable Logic Controllers (PLCs), which use 

vendor specific developer environments to write software following IEC 61131-3 

guidelines (ladder logic, function blocks, etc) to implement a solution that is both easy 

and cheap to design and is very effective for controls.  The downside of these PLCs is 

that they tend to have significantly less processing power and storage capabilities as they 

are designed to run very specific software programs extremely efficiently, non-stop, for 

20 years or more.   

An alternative to PLCs are VERSAmodule Eurocards (VME) which tend to have greater 

processing power and contain the same input / output processing capabilities as PLCs but 

add significant complexity to the design of a control system.  The pros and cons of PLCs 

and VMEs are described below.  Another alternative to PLCs are SoftPLCs.  SoftPLCs 

are essentially programmed in the same manner as regular PLCs, but contain additional 

underlying base code designed to interface with an operating system (typically Windows 

NT based operating systems) in order to run the IEC 61131-3 code on an x86-based 
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architecture.  Figures 2.2A and 2.2.B are of running PLC and VME racks on control 

systems for Navy Ships 

 

Figure 2.2.A PLC Rack 

 

 

Figure 2.2.B VME Rack 
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Since VME cards can be obtained that use the x86 architecture, in recent years the Navy 

has been implementing control systems on ship classes that use SoftPLCs running on 

VMEs to obtain the best of both worlds. This can be a complicated and expensive 

solution that is still more in the research and development stage and will likely not be 

implemented in either the Smart Grid or regular industrial control systems.  However it is 

possible from a research perspective to perform cryptography testing on SoftPLCs using 

VMEs to do “proof of concept” testing in order to determine the validity of a solution 

before expending significant resources in developing an independent and complete PLC 

solution. 

 

2.2.1 PLC versus VME 

In order to give greater perspective on the usage of PLCs versus VMEs in control 

systems, the pros and cons of both technologies are listed below.  These SoftPLCs may 

become more prevalent in industrial control systems with the advent of new projects such 

as OpenPLC which aims to develop an open source software and hardware platform for 

industrial control systems. 

 

VME Pros 

• Analog and digital I/O boards are available from a large number of vendors 

• VME components are open architecture 

• Standardized circuit card form factor and data bus 
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• Significantly greater flexibility in software for VME than compared to PLC, 

allowing for advanced processing not available with PLCs (such as required for 

the DDG1000) 

• Ability to implement secure communication protocols 

• Operating Temperature of -40
o
C to +85

o
C 

 

VME Cons 

• Development of software is complex and difficult, developer must design not only 

the control system application but also the low-level system interactions 

• Widespread use of proprietary operating systems often creates a virtual sole-

source situation 

• Instability in VME Operating System market means it is unlikely developers will 

have experience with the operating system chosen for a new project, leading to 

longer ramp-up time and increased risk for software defects 

• Obsolescence is a major problem 

• Integration of new components into an existing system is NOT “plug-and-play” 

 

PLC Pros 

• Cost is less than for VME systems 

• Programming time is reduced due to ease of programming language (ladder-logic) 

• Risk is significantly reduced when using all products from the same vendor 

• Integration of new components into an existing system is typically “plug-and-

play” 
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• PLC vendors have a strong record of supporting their products for 20 years or 

longer 

• Enhanced software troubleshooting features not available with VMEs 

 

PLC Cons 

• PLC vendor products generally not compatible with another vendor’s products, 

requiring a single vendor to provide all processor, I/O, and network 

communication boards 

• No standards for PLC form factor or electrical characteristics 

• Secure communication protocols are not a common feature with many PLC 

vendors 

• Increased risk in relying on a single vendor to support their products 

• Operating Temperature of 0
o
C to +60

o
C 

 

2.3 Traditional Solutions for Information / Corporate Systems 

While traditional solutions for Information / Corporate Systems will not be feasible for 

implementation in Control Systems due to the different requirements and architectures, it 

is important to establish an understanding of current solutions used in Information 

Systems.  There are essentially two main categories of cryptographic solutions, 

symmetric-key cryptography and public-key cryptography.     
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2.3.1 Symmetric-key Cryptography 

Symmetric-key Cryptography includes schemes such as the Data Encryption Standard 

(DES) (now obsolete), RC4, and the Advanced Encryption Standard (AES) to achieve 

confidentiality.  They may also be used with a message authentication code (MAC) 

algorithm such as HMAC to achieve data integrity and data origin authentication.  In a 

typical symmetric-key cryptography scheme two parties already share a secret key k that 

has been communicated to the parties by some other means (typically a physical secure 

channel such as a trusted courier, or by using a public-key cryptography scheme to 

negotiate a shared secret key).  Party A wishing to transmit to B uses one of the 

previously mentioned schemes to compute a ciphertext c = ENCk(m) to be sent to B.  B 

then receives the message and using the same k (and knowing the same scheme used to 

encrypt m used by A) to recover the plaintext message m = DECk(c). 

If data integrity and data origin authentication are desired, then the same principles apply 

however instead of encrypting the message m into ciphertext c a tag t is first computed 

where t =MACk(m) of the plaintext message using a MAC algorithm (of which there are 

many) and the key.  The plaintext message and the tag are both transmitted, and the 

receiver can use the plaintext message to compute its own tag t’.  If t = t’ then the 

receiver can accept the message as having originated from the source. 

While symmetric-key cryptography can be very efficient, the key distribution and key 

management problems tend to render it ineffective for large scale systems 

communicating to multiple partners [10].  In a network of N entities, each entity may 

have to maintain keying material with each of the other N-1 entitites.  Some symmetric-

key systems attempt to alleviate this problem by using an online trusted third party that 
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distributes the keys as required, however for control systems this creates a single critical 

point of failure that will be unacceptable as control systems become more and more 

distributed and de-centralized.  Additionally, while key distribution in symmetric-key 

cryptography may be possible through a physical courier on a ship (for NGIPS) it will not 

be practical for large scale systems such as the Smart Grid.   

 

2.3.2 Public-key Cryptography 

Public-key cryptography began in 1975 to address the aforementioned limitations in 

symmetric-key cryptography.  Unlike symmetric-key schemes, public-key schemes 

require the keying material that is exchanged to only be authentic, but not secret.  

Additionally, instead of each pair of entities sharing a secret key, each entity selects a 

single pair of keys (e, d) consisting of a public key e and a related private key d.  The 

entity keeps the private key a secret from all other entities and shares the public key with 

all other entities.  The keys are mathematically related but share the property that it is 

computationally infeasible to determine the private key solely from knowledge of the 

public key.  Deriving the private key from the public key is equivalent to solving a 

computational problem that is believed to be intractable.   

 

2.3.2.1 RSA  

The most commonly used public-key cryptography scheme is RSA, named after its 

inventors Rivest, Shamir, and Adleman [11].  It was first proposed in 1977 shortly after 

the discovery of public-key cryptography.  In RSA, the public key consists of a pair of 

integers (n, e) where n is the modulus.  The modulus is a product of two randomly 
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generated (and secret) primes p and q which are of the same bitlength.  Algorithm 

2.3.2.1.A below shows how to generate an RSA key pair.  RSA encryption and signature 

schemes use the fact that m
ed

 = m (mod n).  Algorithms 2.3.2.1.B and 2.3.2.1.C show how 

basic RSA encryption and decryption work respectively. The hardness in breaking RSA 

is based on the integer factorization problem, i.e. determining the secret primes p and q 

from the public key for large values of bitlength l.   

The RSA signature generation and signature verification algorithms are shown in 

algorithm 2.3.2.1.D and 2.3.2.1.E.  As in all signature schemes, the signer first generates 

a cryptographic hash function H which acts in a similar manner as the tag in symmetric-

key encryption.  The signer then generates the signature and transmits the message m 

along with the signature s to a verifying party.   

In order to increase the efficiency of RSA, smaller exponents can be selected.  In 

practice, the most commonly chosen values of e are e = 3 and e = 65537 for encryption 

and signature generation [11]. Note that there is no known attack against using small 

public exponents as long as proper padding is used. Decryption and signature generation 

always use the exponent d (the private key) which is the same bitlength as n.  Thus RSA 

encryption and signature verification with small values of e are significantly faster than 

RSA decryption and signature generation. 

  

Algorithm 2.3.2.1.A [10] – Generating RSA Key Pair 

 INPUT:  bitlength l 

OUTPUT: RSA public key (n, e) and private key d 

1. Randomly select two primes p and q of the same bitlength l / 2 
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2. Compute n = pq and Φ = (p-1)(q-1) 

3. Select an arbitrary integer e with 1 < e < Φ and gcd(e, Φ) = 1 

4. Compute the integer d satisfying 1 < d < Φ and ed ≡ 1 (mod Φ) 

5. Return (n, e, d)  

 

Algorithm 2.3.2.1.B [10] – RSA Encryption 

 INPUT:  RSA public key (n, e), plaintext m ϵ [0, n-1] 

OUTPUT: Ciphertext c 

1. Compute c = m
e
 mod n 

2. Return (c )  

 

Algorithm 2.3.2.1.C [10] – RSA Decryption 

 INPUT:  RSA public key (n, e), RSA private key d, ciphertext c 

OUTPUT: Plaintext m 

1. Compute m = c
d
 mod n 

2. Return (m )  

 

Algorithm 2.3.2.1.D [10] – RSA Signature Generation 

 INPUT:  RSA public key (n, e), RSA private key d, message m 

OUTPUT: Signature s 

1. Compute h = H(m) where H is a cryptographic hash function 

2. Compute s = h
d
 mod n 

3. Return (s )  
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Algorithm 2.3.2.1.E [10] – RSA Signature Verification 

 INPUT:  RSA public key (n, e), message m, signature s 

OUTPUT: Acceptance or rejection of the signature 

1. Compute h = H(m) where H is the same cryptographic hash function used by the 

signing party 

2. Compute h’ = s
e
 mod n 

3. If h = h’ then accept the signature, else reject 

 

2.3.2.2 Digital Signature Algorithm  

In 1976 Diffie and Hellman proposed developing a key agreement protocol based on the 

discrete logarithm problem (DLP) [10], which like the integer factorization problem used 

in RSA is computationally infeasible to solve.  Discrete logarithms are group-theoretic 

analogues of ordinary logarithms.  For example, an ordinary logarithm loga(b) is a 

solution of the equation a
x
 = b for x. In a discrete logarithm, you have a group G which 

consists of a range of integer values from 0 to n-1.  If a and b are elements in the group 

then a solution of x of the equation a
x
 = b is called a discrete logarithm to the base a of b 

in the group G. In a discrete logarithm public-key cryptography system a key pair is 

associated with a set of domain parameters (p, q, g).  Algorithm 2.3.2.2.A shows how 

these domain parameters are generated, and Algorithm 2.3.2.2.B shows how to generate 

corresponding key pairs.   

In 1984 ElGamal described discrete logarithm public-key encryption and signature 

schemes, and since then many different variants have been proposed leading up to the 
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establishment of the Digital Signature Algorithm (DSA) [10].  DSA was proposed in 

August 1991 by the U.S. National Institute of Standards and Technology (NIST) and was 

specified in a U.S. Government Federal Information Processing Standard (FIPS 186), 

adopted in 1993.  A minor revision was issued in 1996 as FIPS 186-1, which was 

expanded further in 2000 as FIPS 186-2 and again in 2009 as FIPS 186-3 [12].  

Algorithms 2.3.2.2.C and 2.3.2.2.D shown below give the procedures respectively for 

DSA signature generation and verification. 

 

Algorithm 2.3.2.2.A [10] – Discrete Logarithm Domain Parameter Generation 

 INPUT:  Parameters l and t 

OUTPUT: Discrete logarithm domain parameters (p, q, g) 

1. Select a t-bit prime q and an l-bit prime p such that q divides p-1 

2. Select an element g of order q 

a. Select arbitrary h ϵ [1, p-1] and compute g = h
(p-1)/q

 mod p 

b. If g = 1 then repeat 2.a. 

3. Return (p, q, g) 

 

Algorithm 2.3.2.2.B [10] – Discrete Logarithm Key Pair Generation 

 INPUT:  Discrete logarithm domain parameters (p, q, g) 

OUTPUT: Public key y and private key x 

1. Select x ϵR [1, q-1] 

2. Compute y = g
x
 mod p 

3. Return (y, x) 
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Algorithm 2.3.2.2.C [10] – DSA Signature Generation 

 INPUT:  Discrete logarithm domain parameters (p, q, g), private key x, message m 

OUTPUT: Signature (r, s) 

1. Select k ϵR [1, q-1] 

2. Compute T = g
k
 mod p 

3. Compute r = T mod q, if r = 0 then go to step 1 

4. Compute  h = H(m), where H is a cryptographic hash function 

5. Compute s = k
-1

(h+xr) mod q, if s = 0 then go to step 1 

6. Return (r, s) 

 

Algorithm 2.3.2.2.D [10] – DSA Signature Verification 

 INPUT:  Discrete logarithm domain parameters (p, q, g), public key y, message m, 

signature (r, s) 

OUTPUT: Acceptance or rejection of the signature 

1. Verify that r and s are integers in the interval [1, q-1], if either verification fails 

then reject the signature 

2. Compute h = H(m), where H is the same cryptographic hash function used by the 

signing party 

3. Compute w = s
-1

 mod q  

4. Compute u1 = hw mod q and u2 = rw mod q 

5. Compute T = g
u1

 y
u2

 mod p 

6. Compute r’ = T mod q 
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7. If r’ = r then accept the signature, else reject 

 

2.3.2.3 Limitations Using Public-Key Cryptography 

In cryptography, the security of an algorithm cannot exceed its key length (measured in 

bits) since any algorithm can be cracked by brute force. A key therefore should be 

sufficiently large enough such that a brute force attack is infeasible – i.e. it would take 

too long to execute.  If there is some indicator that an attack may exist to feasibly break a 

key for a particular algorithm in an efficient manner for some bit length, then the size of 

the key is increased to provide additional security.  The key size to security level ratio is 

not the same for all categories of algorithms.   

As of 2003 [13] RSA Security claims that 1024-bit RSA keys are equivalent in strength 

to 80-bit symmetric keys, 2048-bit RSA keys to 112-bit symmetric keys and 3072-bit 

RSA keys to 128-bit symmetric keys. RSA claims that 1024-bit keys are likely to become 

crackable some time between 2006 and 2010 and that 2048-bit keys are sufficient until 

2030. An RSA key length of 3072 bits should be used if security is required beyond 

2030. NIST key management guidelines further suggest that 15360-bit RSA keys are 

equivalent in strength to 256-bit symmetric keys.  These key lengths, while 

implementable in Information / Corporate systems, are infeasible in Control Systems 

where processing power and data storage is limited.  Therefore an alternative public-key 

algorithm is needed that provides the benefits of algorithms such as RSA and DSA 

without the excessive key lengths required by these algorithms.  
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CHAPTER 3: ELLIPTIC CURVE CRYPTOGRAPHY 

 

3.1 Background 

Elliptic curve public key cryptosystems were first independently proposed by V.S. Miller 

(1985) [14] and by N. Koblitz (1987) [15].  They have only begun to recently be used in 

commercial systems, and adoption has been slow.  This is primarily due to concerns 

about intellectual property, as a number of optimizations and special algorithms used to 

increase efficiency have been patented in recent years.  Despite these concerns, elliptic 

curve cryptography (ECC) has grown resulting in its inclusion in standards by accredited 

standards organizations such as ANSI (American National Standards Institute) [16, 17], 

IEEE (Institute of Electrical and Electronics Engineers) [18], ISO (International 

Standards Organization [19, 20], and NIST (National Institute of Standards and 

Technology [21].   

The most prominent group for the standardization and propagation of ECC technology is 

SECG (Standards for Efficient Cryptography Group) [22].  They have published 

numerous and detailed works on the subject, including documents on how to implement 

ECC and on recommended elliptic curve domain parameters [23, 24].  The SECG 

consists of a number of organizations including NIST and key industrial partners such as 

VISA, Fujitsu, and Certicom.  Certicom, which is a wholly owned subsidiary of Research 

in Motion (RIM) is the main industrial leader in ECC, with over 350 patents and patents 

pending worldwide covering key aspects of the technology [25].   

In order to promote the use of ECC technology, NIST has licensed 26 patents held by 

Certicom with the right to grant sublicenses for free to industrial vendors for developing 
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products used for protecting national security information [6].  NIST has also identified a 

subset of key ECC technologies for use in Smart Grid and related applications, such as 

the Elliptic Curve Digital Signature Algorithm as part of its NSA Suite B collection of 

approved encryption, key exchange, digital signature, and hashing protocols. It is also 

worth noting that ECC implementation strategies based on the fundamental algorithms of 

ECC, which were published prior to filing dates of many patents can be found in the 

IETF Memo “Fundamental Elliptic Curve Cryptography Algorithms.” [26] 

 

3.2 Mathematical Foundations 

This section presents an overview of the mathematical techniques and concepts required 

for an intermediary level of understanding of elliptic curve cryptography.  This material 

is sufficient for engineering purposes to develop ECC systems using standardized 

existing mathematic implementations and standardized elliptic curve domain parameters.  

The works of Koblitz [15], Miller [14], Hankerson et al [10], and the SECG [23] can be 

referred to for more advanced mathematical concepts that may be helpful should the need 

arise for development of new implementations or the use of random elliptic curve domain 

parameters. 

 

3.2.1 Finite Fields 

A finite field Fqm consists of a finite set of objects called field elements together with the 

description of two operations – addition and multiplication – that can be performed on 

pairs of field elements.  Subtraction and division within a finite field are defined in terms 

of an additive inverse and multiplicative inverse, respectively. In ECC there are two 
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kinds of fields that are primarily used:  prime finite fields Fp with q=p and m=1, with q 

being prime; and binary fields F2m where q=2 for some m ≥ 1. A third type of field less 

commonly used is known is Optimal Extension Fields (OEF).  The general idea in OEFs 

is to select values of q and m, along with a reduction polynomial to more closely match 

underlying hardware characteristics [10].  At this time there are no recommended 

implementations of ECC by SECG that utilize OEFs, and therefore they are only 

mentioned here for completeness.  

Equations involving finite fields do not explicitly denote the mod p operation, but it is 

understood to be implicit.  

 

3.2.1.1 Prime Finite Fields [23] 

Elements in a prime finite field Fp should be represented by the set of integers: 

{0, 1, …, p-1} 

Operations on prime finite fields are defined as follows: 

• Addition:  If a, b ϵ Fp, then a + b = r in Fp, where r ϵ [0, p-1] is the remainder 

when the integer a + b is divided by p. 

• Multiplication:  If a, b ϵ Fp, then ab = s in Fp where s ϵ [0, p-1] is the remainder 

when the integer ab is divided by p. 

• Additive inverse:  If a ϵ Fp, then the additive inverse (-a) of a in Fp is the unique 

solution to the equation a + x ≡ 0 mod p. 

• Multiplicative inverse:  If a ϵ Fp, a ≠ 0, then the multiplicative inverse a
-1

 of a in 

Fp is the unique solution to the equation ax ≡ 1 mod p. 
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In order to increase efficiency and to facilitate interoperability, prime finite fields using 

the NIST primes should be use.  These finite fields have: 

[log
2
p] ϵ {192, 224, 256, 384, 521] 

Except for 521, p is aligned with word size to increase efficiency in computation and 

communication.  521 is an anomaly that is often included to align with the U.S. 

government’s recommended elliptic curve domain parameters.  For control systems with 

limited processing power and storage it is recommend to use only the NIST recommend 

primes that are aligned with word size such as 384. 

 

3.2.1.2 Binary Finite Fields [23] 

Elements of a binary finite field F2m should be represented by the set of binary 

polynomials of degree m-1 or less: 

{a
m-1

x
m-1

 + a
m-2

x
m-2

+ … + a
1
x + a

0
 : a

i 
 ϵ {0,1} } 

Operations on binary finite fields are defined as follows: 

• Addition:  If a = a
m-1

x
m-1

+a
m-2

x
m-2

+…+ a
0
, b = b

m-1
x

m-1
+b

m-2
x

m-2
+…+ b

0
 ϵ F2m, 

then  a + b = r in F2m where r = r
m-1

x
m-1

+r
m-2

x
m-2

+…+ r
0
 with r

i 
 ≡ a

i 
+b

i 
 mod 2 

• Multiplication:  If a = a
m-1

x
m-1

+a
m-2

x
m-2

+…+ a
0
, b = b

m-1
x

m-1
+b

m-2
x

m-2
+…+ b

0
 ϵ 

F2m, then ab = s in F2m where s = s
m-1

x
m-1

+s
m-2

x
m-2

+…+ s
0
 is the remainder when 

the polynomial ab is divided by f(x) with all coefficient arithmetic performed 

modulo 2. 

• Additive inverse:  If a ϵ F2m, then the additive inverse (-a) of a in F2m is the unique 

solution to the equation a + x ≡ 0 in F2m. 



30 

• Multiplicative inverse:  If a ϵ F2m, a ≠ 0, then the multiplicative inverse a
-1

 of a in 

F2m is the unique solution to the equation ax ≡ 1 in F2m. 

In order to increase efficiency and interoperability, the characteristic binary finite fields 

used should have: 

m ϵ {163, 233, 239, 283, 409, 571] 

These fields were chosen in order to construct a suitable Koblitz curve whose order is 2 

or 4 times a prime over F2m. The field with m = 239 is an anomaly shown here because it 

has already been widely used in practice.  The field with m = 283 is an anomaly that is 

often included to align with the U.S. government’s recommended elliptic curve domain 

parameters.   

Addition and multiplication should be performed using one of the irreducible binary 

polynomials of degree m in Figure 3.2.1.2.A below.  These polynomials enable efficient 

calculation of field operations, except for the polynomial with m = 239 which is an 

anomaly shown here because it has been widely deployed. 

 

Field Reduction Polynomial(s) 

F2163 f(x) = x
163

+x
7
+x

6
+x

3
+1 

F2233 f(x) = x
233

+x
74

+1 

F2239 f(x) = x
239

+x
36

+1  or  x
239

+x
158

+1 

F2283 f(x) = x
283

+x
12

+x
7
+x

5
+1 

F2409 f(x) = x
409

+x
87

+1 

F2571 f(x) = x
571

+x
10

+x
5
+x

2
+1 

 

Figure 3.2.1.2.A Binary Finite Field Reduction Polynomials 
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3.2.2 Elliptic Curves 

Elliptic curves are most commonly shown in the form of the simplified Weierstrass 

equation in the form of: 

y
2
 = x

3
 + ax +b  

where  

4a
3
 + 27b

2
 ≠ 0 

This condition is critical to ensure that the elliptic curve is “smooth”, i.e. that there are no 

points at which the curve has two or more distinct tangent lines.  The curves shown in 

Figure 3.2.2.A illustrate examples of elliptic curves satisfying this condition.   

 

 

Figure 3.2.2.A Sample Elliptic Curves [10] 

 

The security of ECC is based on the elliptic curve discrete logarithm problem (ECDLP), 

which arises when elliptic curves are used over finite fields. The ECDLP is [10]:  given 

an elliptic curve E defined over a finite field Fq, a point P ϵ E(Fq) or order n, and a point 
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Q ϵ <P>, find the integer l ϵ [0, n-1] such that Q = lP. The integer l is called the discrete 

logarithm of Q to the base P, denoted l = log
P
Q. The elliptic curve domain parameters for 

cryptographic schemes should be carefully chosen in order to resist all known attacks on 

the ECDLP.  However, since the methods for computing solutions to the ECDLP are 

much less efficient then methods used for computing solutions to integer factorization 

(used in RSA) ECC can provide the same level of security as RSA with smaller key 

lengths, and scales much better at higher levels of security than RSA. 

When an elliptic curve E is defined over a field (call it K) there exist rules for adding two 

points in E(K) to give a third point in E(K).  This operation is commonly known as point 

addition.  Furthermore, there also exist rules for doubling a point as to obtain a third 

point, an operation commonly known as point doubling.  Figure 3.2.2.B below shows a 

geometric representation of both of these rules.   

 

 

Figure 3.2.2.B Geometric Representation of Point Addition and Point Doubling [10] 



33 

Algebraic formulas for these operations can be derived from the geometric 

representation.  The exact formulas themselves (the group law) will vary depending on 

whether you are using a simplified Weierstrass form or the complete form.  They will 

also vary depending on the characteristic q of the underlying field [10]:   

• The characteristic of the underlying field K is not 2 or 3 (e.g. K = Fp  where p > 3 

is a prime) 

• The curve E is non-supersingular of the form over K = F2m 

• The curve E is supersingular of the form over K = F2m 

The easiest group law to understand is for that of the simplified Weierstrass form for 

char(K)≠2,3, shown in Figure 3.2.2.C.  Group laws for the simplified Weierstrass form 

for char(K)=2 are shown in Figures 3.2.2.D and 3.2.2.E for non-supersingular and 

supersingular curves respectively.   

 

Figure 3.2.2.C Group Law for E(Fp):  y
2
=x

3
+ax+b, char(K) ≠2,3  [10] 
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Figure 3.2.2.D Group Law for non-supersingular E(F2m):  y
2
+xy=x

3
+ax

2
+b [10] 

 

Figure 3.2.2.E Group Law for supersingular E(F2m):  y
2
+cy=x

3
+ax+b [10] 
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3.2.3 Projective Coordinates 

The group laws shown in section 3.2.2 illustrate that the formulas for point addition and 

point doubling require field inversions and field multiplications. These are complex 

operations for the very large fields typically used in cryptographic applications.  If 

inversion in a field K is significantly more expensive than multiplication (and it typically 

has a cost of roughly 80 field multiplications [10]), then the use of a technique known as 

projective coordinates may be advantageous to use. 

Projective coordinates essentially works by defining an equivalence relationship between 

a field K and a set K
3
\{0,0,0}.  The relationship is obtained by replacing x with X/Z

c
 and y 

with Y/Z
d
, and clearing the denominators.  We end up with a 1-1 relationship between the 

affine points that lie on E and the projective points on E.  There are a number of different 

versions of projective coordinates, with varying values of c and d.   

In the “standard projective coordinates” c and d are both set to one. Another form of 

projective coordinates known as “Jacobian coordinates” sets c=2 and d=3.  This changes 

the simplified Weierstrass equation from: 

y
2
 = x

3
 + ax +b  

to the projective form: 

Y
2
 = X

3
 + aXZ

4
 + bZ

6
 

The result of this change allows a new group law to be formed in which point doubling 

can be computed using six field squarings and four field multiplications [10].  The use of 

field inversions is now no longer required.  Algorithms also exist to perform point 

multiplication between points in different coordinate systems, such as affine and 
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Jacobian.  Jacobian coordinates yield the fastest point doubling, while mixed Jacobian-

affine coordinates yield the fastest point addition.   

A third type of coordinate system is “Chudnovsky coordinates”.  In Chudnovsky 

coordinates Jacobian coordinates (X:Y:Z) are represented as (X:Y:Z:Z
2
:Z

3
).  There are 

some point multiplication algorithms that make use of the redundancy in Chudnovsky 

coordinates and use mixed Jacobian-Chudnovsky and mixed Chudnovsky-affine 

coordinates for point addition. Figure 3.2.3.A below gives some example operation 

counts for using projective coordinates in point addition.  In the figure A represents affine 

coordinates, P represents standard projective coordinates, J represents Jacobian 

coordinates, and C represents Chudnovsky coordinates.  The mathematical operations of 

field inversion, field multiplication, and field squaring are representated as I, M, and S 

respectively. 

 

Figure 3.2.3.A  Operation Counts on  y
2
 = x

3
 - 3x+b [10] 

 

3.2.4 Point Multiplication 

In cryptographic applications point multiplication (the computation of kP where P is a 

point on the curve and k is an integer) dominates the execution time of ECC schemes. 

There are three cases where point multiplication occurs: 

• kP where precomputation must be online 

• kP for P known in advance and precomputation may be offline 
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• kP + lQ where only the precomputation for P may be done offline 

The last two cases are motivated by the Elliptic Curve Digital Signature Algorithm 

(ECDSA), where signature generation requires a calculation kP where P is fixed, and 

signature verification requires a calculation kP + lQ where P is fixed and Q is known a 

priori.   

There are a number of mathematical techniques that can be used in order to increase the 

efficiency of point multiplications.  Some methods, such the “sliding-window methods”, 

require that extra memory be available.  Additionally, if the point P is fixed and some 

storage is available, then the point multiplication kP can be accelerated by pre-computing 

some of the data dependent on P using a type of fixed-base windowing method such as 

that proposed by Brickell, Gordon, McCurley, and Wilson [10].  Shamir’s Trick is yet 

another method used specifically to speed up the calculation of kP + lQ by performing 

simultaneous multiple point multiplication [10]. 

 

3.3 Domain Parameters 

As stated previously, the elliptic curve domain parameters for cryptographic schemes 

should be carefully chosen in order to resist all known attacks on the ECDLP.  In general, 

for elliptic curves over a finite field Fqm , the following domain parameters are required to 

be specified: 

D = (q, FR, S, a, b, P, n, h) 

Where: 

q – field order 

FR – field representation 
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S – seed, used if the elliptic curve was generated randomly 

a & b – coefficients in the field Fqm that define the equation over the field 

P – the base point P=(xp, yp) ϵ Fqm that has prime order 

n – the order of P 

h – the cofactor h=#E(Fqm) / n 

This section describes the domain parameters needed to generate curves for the prime and 

binary finite fields used in ECC.  We then go on to discuss the use of standardized special 

curves and the generation of new random curves, discussing the pros and cons of each. 

 

3.3.1 Prime Field Elliptic Curves 

For elliptic curve domain parameters over Fp the domain parameters are the sextuple: 

D = (p, a, b, P, n, h) 

They consist of an integer p specifying the finite field along with certain general domain 

parameters defined above.  Elliptic curve domain parameters over Fp precisely specify an 

elliptic curve and a base point.  This is necessary to define public-key cryptography 

schemes based on ECC [24].  If the elliptic curve domain parameters are verifiably 

random than they should be accompanied by the seed value S from which they are 

derived [24].   

 

3.3.2 Binary Field Elliptic Curves 

For elliptic curve domain parameters over F2m the domain parameters are the septuple: 

D = (m, f(x), a, b, P, n, h) 
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They consist of an integer m specifying the finite field F2m, an irreducible binary 

polynomial f(x) of degree m specifying the representation of F2m, along with certain 

general domain parameters defined above. Elliptic curve domain parameters over F2m 

precisely specify an elliptic curve and a base point.  This is necessary to define public-

key cryptography schemes based on ECC [24].  If the elliptic curve domain parameters 

are verifiably random than they should be accompanied by the seed value S from which 

they are derived [24].   

 

3.3.3 Standardized Versus Random Curves 

In order to increase efficiency of cryptographic implementations and to prevent all known 

attacks, various standardized domain parameters have been developed for elliptic curves 

over both prime and finite fields.  These standardized, or “special”, curves have been 

published by the SECG [24] and are recommended by NIST for use in U.S. government 

applications.  However, in order to guard against future attacks against these curves one 

might decide to generate a new curve randomly but that has a validation process that 

proves the new curve resists all known attacks on the ECDLP.  Fortunately algorithms 

exist to accomplish this very task [10]. 

The conventional wisdom of ECC has been, as described by Koblitz [27]: 

• For greatest security choose parameters as randomly as possible 

• It is safest to choose the defining equation to have random coefficients 

• It is okay to use special curves for reasons of efficiency if you insist, however that 

choice may one day come back to bit you 
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Recent work on isogenies in elliptic curve cryptography has shown that there are various 

scenarios in which a special curve is better than a random curve.  Isogenies, simply put, 

allow one to transport the discrete logarithm problem from one curve to another.  It is 

“random self-reducible” within a set of endomorphism classes with small conductor gaps.  

Work in this area has shown that we need to assume that some version of a Weil Descent 

attack or another approach someday will lead to a faster-than-sqrt attack on a small but 

non-negligible portion of random curves [27]. 

It is unknown at this time whether random curves are truly more secure than special 

curves.  Therefore, for control systems for the Smart Grid and NGIPS following the NIST 

recommendation seems to be the most prudent.   

 

3.4 Known Attack Mechanisms against ECC 

This section presents a basic overview of the theory behind various attacks against ECC, 

focusing more on the implications of these attack methods and the countermeasures to 

these attacks.  Attacks against ECC focus on finding ways to solve the ECDLP in sub-

exponential time.  It should be noted that using ECC technologies such as the Elliptic 

Curve Digital Signature Algorithm (ECDSA) using any of the SECG recommended 

elliptic curve domain parameters [24] will provide protection against all known attacks 

(i.e. render these attacks computationally infeasible). 

 

3.4.1 Naïve Method 

The most naïve method for solving the ECDLP is to perform an exhaustive search where 

one computes the sequence of points 1P, 2P, 3P,…lP until Q is encountered.  On average 
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this will take n/2 steps.  Therefore the naïve method can be circumvented by selecting 

elliptic curve domain parameters with n being sufficiently large to represent an infeasible 

number of calculations (e.g. n = 2
80

) [10].  Therefore other methods of solving the 

ECDLP must be sought.   

The best general-purpose attack known on the ECDLP is the combination of the Pohlig-

Hellman algorithm and Pollard’s rho algorithm.  Even these attacks can have an 

exponential running time depending on the selection of the domain parameters.  

However, it should be noted that there exists no mathematical proof that there does not 

exist an efficient algorithm for solving the ECDLP.  Some evidence for the intractability 

of the ECDLP does exist and researchers have been studying the problem extensively 

since 1985 when it was first proposed [10]. 

 

3.4.2 Pholig-Hellman Attack 

The Pholig-Hellman attack uses an algorithm that reduces the computation of l = log
p
Q 

to the computation of discrete logarithms in the prime order subgroups of <P>.  

Therefore in order to maximize resistance to the attack domain parameters should be 

selected such that the order n of P is divisible by a large prime so that the subgroup field 

is large. 

 

3.4.3 Pollard’s rho Attack 

The idea of Pollard’s rho attack is to find distinct pairs (c’, d’) and (c’’, d’’) of integers 

modulo n such that: 

c’P + d’Q = c”P + d”Q 
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Hence l = log
p
Q can be obtained by computing 

L = (c’-c”)(d’-d”)
-1

 mod n 

This attack on its own takes roughly the same expected time as the naïve method but has 

negligible storage requirements [10]. There are multiple ways of speeding up this attack, 

including methods of parallelizing the attack to allow multiple processors to work 

together to solve an ECDLP instance in which the speedup is linear to the number of 

processors used.  The processors also do not have to communicate to each other  and 

need only limited communications to a central server. 

 

3.4.4 Index-Calculus Attacks 

Index-calculus algorithms are the most powerful methods known for computing discrete 

logarithms in groups such as the multiplicative group of a finite field. The question that 

naturally arises is if these algorithms can be used to solve the ECDLP in sub-exponential 

time.  The problem for the ECDLP is that no one knows how to efficiently lift points in 

E(Fp) to E(Q) and it has been proven under some reasonable assumptions that the number 

of points of the small height required for these algorithms is extremely small so that only 

an insignificant proportion of the points can be lifted.  Therefore, so far no one has found 

an index-calculus approach that yields a general subexponential-time (or better) 

algorithm for the ECDLP [10].   

 

3.4.5 Isomorphism Attacks 

Isomorphism attacks essentially try to reduce the ECDLP to the DLP in groups for which 

subexponential-time (or faster) algorithms are known.  Consequently the ECDLP for 
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curves on which an isomorphism attack are found can be efficiently solved.  Weil and 

Tate pairing attacks and Weil descent attacks are examples of isomorphism attacks.   

 

3.5 Cryptographic Protocols Useful for Control Systems 

As discussed in section 1.3.1 the primary need for control systems is to verify data 

integrity and authentication.  This need is fulfilled in corporate / non-control systems 

through the use of the Digital Signature Algorithm discussed in section 2.3.2.2.  

However, as discussed in section 2.3.2.3 the use of this algorithm is infeasible for control 

systems.  Elliptic curves offer us an alternative path through the use of the Elliptic Curve 

Digital Signature Algorithm (ECDSA).  There are also a number of other alternative 

elliptic curve signature schemes, such as Elliptic Curve ElGamal Signatures (ECES) and 

Abbreviated ECES Signatures (AECES).  Since ECDSA is approved by NIST and 

included in their NSA Suite B it is therefore the most suitable candidate for use in control 

systems. The subsections below detail the algorithm, beginning with generating private 

and public keys for use in ECDSA. 

  

3.5.1 Key Generation 

ECC key pairs are associated with the particular elliptic curve domain parameters used in 

the generation of the key pair.  The public key is a randomly selected point Q in the 

group <P> generated by P.  The private key that corresponds to the public key is the 

solution to the ECDLP d = log
p
Q.  The entity that is generating the key pair must have 

the assurance that the domain parameters are valid (i.e. resistant to all known attacks), 
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and the association between the domain parameters and the public key must be verifiable 

by all entities in the communication.  

In non-control / corporate systems this would normally be done by a certification 

authority that generates a certificate attesting to the association between a public key and 

its domain parameters.  Large scale control systems such as the Smart Grid will need to 

perform the same function on some level. For smaller control systems, such as those 

planned for use on US Navy ships for NGIPS, this association can be achieved by context 

(i.e. all entities in the system use the same domain parameters).   

Algorithm 3.5.1.A below illustrates how to generate an ECC key pair assuming valid 

domain parameters.  It is critical that the number d generated be random, as in the 

likelihood that any particular value of d would be chosen over any other value is so small 

that an adversary is unable to narrow down the search space for d.  This is akin to the idea 

that someone should not select a password that includes their spouse’s name. 

 

Algorithm 3.5.1.A [10] – Generating ECC Key Pair 

 INPUT:  Domain Parameters D = (q, FR, S, a, b, G, n, h) 

OUTPUT: Public key Q, Private key d  

1. Randomly select d ϵ
R
 [1, n-1] 

2. Compute Q = dP 

3. Return (Q, d)  

 

Entities that receive a public key Q and a set of associated domain parameters will need 

to validate the public key to ensure that the private key actually exists and that the keys 
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lie on the curve.  Failure to perform public key validation could allow an attacker to try to 

get you to use the invalid public key in such a way that information about your private 

key could be revealed.  Algorithm 3.5.1.B illustrates how to perform the required 

validation. 

 

Algorithm 3.5.1.B [10] – ECC Public Key Validation 

 INPUT:  Domain Parameters D = (q, FR, S, a, b, G, n, h), public key Q  

OUTPUT: Acceptance or rejection of the validity of Q 

1. Verify that Q ≠ ∞ 

2. Verify that x
Q
 and y

Q
 are properly represented elements of Fq (i.e. integers in the 

interval [0, q-1] if the field is prime, and bit strings of length m bits if the field is 

a binary field of order 2
m 

) 

3. Verify that Q satisfies the elliptic curve equation defined by a and b 

4. Verify that nQ = ∞ 

5. If any verification fails then return invalid, else return valid 

 

Note that the check is step 4 of Algorithm 3.5.1.B involves an expensive point 

multiplication.  Faster methods do exist for certain curves.  For example, if the cofactor h 

of a prime field curve is equal to 1 (which is usually the case in practice and for all of the 

SECG recommend prime field curves [24] ) then successful completion of the checks in 

steps 1 through 3 imply that nQ = ∞ [10]. 
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3.5.2 Elliptic Curve Digital Signature Algorithm (ECDSA) 

Algorithms 3.5.2A and 3.5.2.B below define how to generate and verify ECDSA 

signatures, respectively.  In these algorithms, H denotes some cryptographic hash 

function whose outputs have bitlength no more than that of n.  If this condition is not 

satisfied though, the outputs of H can be truncated.  More information on hash functions 

can be found in section 3.5.3 below. 

ECDSA uses a per-message secret k that if discovered by an adversary can be used to 

recover the private key since: 

d = r
-1

(ks-e) mod n      where e = H(m) 

Furthermore it has been shown that if an adversary even obtains a few consecutive bits of 

the secret k then the adversary can easily compute the private key.  It is therefore of 

utmost importance that k be randomly and securely generated, securely stored, and 

securely destroyed after it has been used.  The reason why k should be generated 

randomly is to help ensure that k does not repeat.  If the same per-message secret k was 

used to generate ECDSA signatures (r, s1) and (r, s2) on two messages m1 and m2 then if 

s1 ≠ s2 (which with overwhelming probability they will not be equal) it can be shown 

that: 

k ≡ (s
1
-s

2
)
-1

(e
1
-e

2
) mod n  where e

1
 = H(m

1
) and e

2
 = H(m

2
) [10] 

Thus an adversary could determine k and then use it to determine the private key d.   
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Algorithm 3.5.2.A [10] – ECDSA Signature Generation 

INPUT:  Domain Parameters D = (q, FR, S, a, b, P, n, h), private key d, message m  

OUTPUT: Signature (r, s) 

1. Randomly select k ϵ
R
 [1, n-1] 

2. Compute kP = (x
1
, y

1
) and convert x

1
 to an integer x

1
  

3. Compute r = x
1

 mod n and if r =0 go to step 1 

4. Compute e = H(m) 

5. Compute s = k
-1

(e + dr) mod n and if s = 0 go to step 1 

6. Return (r, s) 

 

Algorithm 3.5.2.B [10] – ECDSA Signature Verification 

INPUT:  Domain Parameters D = (q, FR, S, a, b, P, n, h), public key Q, message m, 

signature (r, s)  

OUTPUT: Acceptance or rejection of the signature 

1. Verify that r and s are integers in the interval [1, n-1], if any verification fails then 

reject the signature 

2. Compute e = H(m) 

3. Compute w = s
-1

 mod n 

4. Compute u
1
 = ew mod n and u

2
 = rw mod n 

5. Compute X = u
1
P + u

2
Q 

6. If X = ∞ then reject the signature 

7. Convert the x-coordinate x
1
 of X to an integer x

1
 ; compute v = x

1
 mod n 
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8. If v = r then accept the signature, else reject 

 

3.5.3 Supported Secure Hash Algorithms 

Cryptographic hash functions are used in many applications within ECC, including 

verifiably random curve and base point generators, key derivation functions, and 

ECDSA.  According to the SECG [24] supported hash functions for ECC are: 

• SHA-1 

• SHA-224 

• SHA-256 

• SHA-384 

• SHA-512 

NIST is holding a competition for a new SHA-3 hash function that is scheduled for 

completion this year (2012) [28].  Future versions of SECG standards are likely to allow 

use of the new SHA-3 [23].   

The security level associated with a hash function depends on its application.  Collision 

resistance is generally needed for computing message digests in ECDSA, and where 

collision resistance is needed the security level is at most half the output length (in bits) 

of the hash function.  Recent results have shown that SHA-1 provides less than 80 bits of 

collision resistance [23] and therefore should be used with ECDSA only when providing 

backwards compatibility. 
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3.6 Comparing RSA Signatures to ECDSA 

It has already been stated that ECDSA offers security equivalent to RSA using much 

smaller key sizes which can lead to increased efficiency.  Figure 3.6.A below shows a 

chart of comparable key sizes for equivalent levels of security.  Figures 3.6.B through 

3.6.D below show execution times for ECDSA and RSA signature algorithms running 

algorithms for key generation, signature generation, and signature verification.   

These times were taken from tests performed on an Intel Pentium 4 2.0 GHz machine 

with 512MB of RAM, on a 100KB text file used as a message [29].  As discussed 

previously though, the architecture for control system components such as PLCs is 

radically different than that of an x86 architecture, and therefore these timings only 

provide a very basic indication of what the performance of ECC might look like in 

control system applications.  Further research is required in this area. 

 

 

Figure 3.6.A  ECC vs RSA Comparable Key Sizes (in bits) [29] 
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Figure 3.6.B  ECC vs RSA Key Generation [29] 

 

 

Figure 3.6.C  ECC vs RSA Signature Generation [29] 

 

 

Figure 3.6.D  ECC vs RSA Signature Verification [29] 

 

The results show that ECC outperforms RSA significantly in key generation, and 

performs signature generation faster than RSA for higher key sizes.  RSA outperforms 

ECC in signature verification significantly for all key sizes. The times appear to show 

that RSA signature verification time is fairly independent of key size and for practical 
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purposes this is true, however this is really just do to the resolution at which testing was 

performed (for example RSA signature verification at 7680 bit key size should be 

approximately 0.008 seconds while signature verification at 15360 bit key size should be 

approximately 0.032 seconds). ECC signature verification grows linearly with an increase 

in key size, however the times show that RSA significantly outperforms ECC in this area.  

Signature verification is therefore of particular concern in looking at implementing ECC 

signature algorithms for control systems. At stronger levels of security with larger key 

sizes, ECDSA will outperform RSA for the total message transmission (including both 

signature generation and verification) since ECC signature verification timing scales 

linearly while RSA signature generation timing scales exponentially (due to the 

exponential increase in key sizes) for equivalent levels of security.   

A variant of ECDSA, known as the Elliptic Curve Korean Certificate-based Digital 

Signature Algorithm (EC-KCDSA) may hold promise if ECDSA does not proof to be 

efficient for use in control systems. In EC-KCDSA the signer’s private key is an integer d 

ϵ
R
 [1, n-1] as is in ECDSA, but the public key is instead Q= d

-1
P (instead of dP).  This 

allows for the design of signature generation and verification procedures that do not 

require performing modular inversion and therefore could potentially be more applicable 

in meeting control system needs should ECDSA prove impractical.  EC-KCDSA has 

been proven secure under the assumptions that the discrete logarithm problem is 

intractable and that the hash function is a random function.   

An alternative variant of ECDSA, proposed by Antipa et al (2005) [32], involves 

reconstructing the ephermeral elliptic curve point R from the signature component r.  In 

other words one converts the ECDSA signature (r, s) over some message m to a new 
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ECDSA* signature (R, s).  Antipa et al provide a general procedure for this change which 

accepts the ECDSA signature as an input, performs the reconstruction/conversion, and 

returns either acceptance or rejection of the signature.  This speeds up ECDSA signature 

verification by 35-40% at the cost of only a small number of bits appended to traditional 

ECDSA signatures.   

Unfortunately, the EC-KCDSA algorithm and the ECDSA*algorithms are non-compliant 

with any of the existing ECDSA standards.   

 

3.7 OpenSSL ECC Implementation 

As much as has been discussed up to this point on the underlying mathematics and 

implementation theory of ECC and ECDSA in particular most engineers will never 

develop their own implementations.  They will instead rely on existing implementations 

which they will incorporate into their own products.  OpenSSL provides a suite of 

cryptographic toolkits including toolkits for ECC written in C+ that can be readily 

incorporated into new products.  

The ECC implementations present in OpenSSL were contributed by Sun (now Oracle) 

and offered freely with “patent peace provision” language (meaning they will not sue 

anyone for using their implementation and ask, but not require, that you do not sue them 

if they use a product you develop with their technology).  This implementation was 

theoretically written in a way that avoids any patented method by basing the 

implementation on the current IETF [26] draft [30].  However the issue of patents 

appears to be far from settled, and some versions of Linux such as Red Hat do not include 
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the ECC toolkits in their versions of OpenSSL. There also exist JAVA and .NET 

implementations.   

While it is true that in control systems the OpenSSL toolkit cannot be used by PLCs 

(since they cannot run C+ binaries), VME technologies including SoftPLC may be able 

to leverage the OpenSSL implementation.  Currently there are no known implementations 

of ECC written specifically for control systems that are compliant with IEC 61131-3 or 

IEC 61499.   

 

3.8 ECC Certificates 

As discussed in section 3.5.1, certificates play a key role in cryptographic systems.  In 

ECC, they are used in order to associate a public key with a set of domain parameters.  

The problem with ECC is that current there are no Certificate Authorities supported by 

major web browsers for ECC, causing some to not consider ECC a true public-key 

cryptography scheme.  SECG is working hard on changing this, establishing itself as an 

ECC certificate authority and publishing standards to indicate ECC keys and their usage 

within X.509 certificates [31].  However there is still significant work to do in this area in 

order to truly make ECC a viable solution for complex control systems such as that in the 

Smart Grid.  For smaller control systems such as those planned for usage in NGIPS the 

lack of a strong ECC certificate authority is not as much of a roadblock. 
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CHAPTER 4: PROPOSAL FOR PROJECT 

 

ECDSA shows promise for use in control systems, however there are a number of 

questions that arise from the perspective of a controls engineer such as: 

• How difficult will this be to implement? 

• What impacts will this have on the performance of my controls algorithms? 

• What kind of software maintenance is needed to support ECDSA in control 

systems? 

• What are the costs of implementing these algorithms? 

In order to begin to answer these questions, a prototype control system must be 

developed that matches architectures used in real applications to run actual control 

algorithms.  The goal of the prototype will be to determine the viability of using ECDSA 

in control system data authentication and verification.   

Given the sheer complexity of developing a brand new implementation of ECDSA in IEC 

61131-3 code “proof of concept” studies are needed to more accurately assess the validity 

of using ECC technology in control systems before significant time and money are 

invested. We propose a project to perform this “proof of concept” testing in which two 

SoftPLCs running on VME racks will be configured that utilize the existing 

implementations of ECDSA in OpenSSL. Successful “proof of concept” testing will, in 

future projects, be followed up by developing an efficient implementation of IEC 61131-

3 code that can be utilized for regular PLCs, opening the door to the widespread 

industrial and military adoption of ECC and specifically ECDSA in control systems. 
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The SoftPLCs and VMEs will be configured to match the existing control system 

architecture used on some classes of US Navy ships that are already outfitted with an 

integrated power system.  Siemens WinAC software will be used to run the SoftPLCs, 

and sample control algorithms will be developed in IEC 61131-3 compliant code that will 

perform simulated functions similar to those that will be required in an NGIPS or Smart 

Grid controls system.  Siemens WinAC allows a SoftPLC developer to create IEC 61131-

3 code that is capable of calling C+ and JAVA code running on an x86 platform such as 

Windows XP.  This will enable the utilization of OpenSSL for ECDSA algorithms in the 

control system allowing us to perform a series of timing and cryptographic validation 

tests.  The goal of these tests will be to determine what the impacts will be on the control 

system when ECDSA is utilized. 

The project will allow the development of a software template that can be easily reused 

by control system engineers in other applications at minimal cost.  Currently, PLC 

instructions such as “MSG” (for message) are used IEC 61131-3 code and with only 

minor adjustments communications messages can be programmed between PLCs.  This 

project will endeavor to create a similar kind of application instruction.  The project will 

also include additional features beyond messaging such as enhanced alarming functions 

that will not only indicate communications status but failures in signature verifications 

indicating a potential hardware failure or adversary attack. 

A simple HMI application will be developed along with the two SoftPLCs that will 

communicate to both and accept simulated inputs from an operator as would be done in a 

normal control system.  Scripting will be developed in the application to enable the use of 
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ECDSA between the HMI and the SoftPLCs, including the annunciation and 

acknowledgement of alarms related to signature verifications. 

Prime field ECC will be utilized in the project.  Testing will be performed on each of the 

five recommended SECG curves in order to establish a relationship between control 

system performance and key size.   
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