

Control System Data Authentication and

Verification Using Elliptic Curve

Digital Signature Algorithm

By

Kenneth Alan Fischer

Control System Data Authentication and Verification Using

Elliptic Curve Digital Signature Algorithm

By

Kenneth Alan Fischer

Independent Study

Submitted to Department of Electrical and Computer Engineering

College of Engineering

Villanova University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

In

Computer Engineering

July, 2012

Villanova, Pennsylvania

III

Copyright © 2012 by Kenneth Alan Fischer

All Rights Reserved

IV

Control System Data Authentication and Verification Using

Elliptic Curve Digital Signature Algorithm

By

Kenneth Alan Fischer

Approved:

Dr. Richard Perry

Professor, Department of Computer and Electrical Engineering

Primary Advisor

Approved:

Dr. Pritpal Singh

Chair, Department of Computer and Electrical Engineering

A copy of this independent study is available for research purposes

from the Department of Electrical and Computer Engineering.

V

 STATEMENT BY AUTHOR

This independent study has been submitted in partial fulfillment of requirements for an

advanced degree at the Villanova University.

Brief quotations are allowable without special permission, provided that accurate

acknowledgment of source is made. Requests for permission for extended quotation from

or reproduction of this manuscript in whole or in part may be granted by the head of the

major department or the Associate Dean for Graduate Studies and Research of the

College of Engineering when in his or her judgment the proposed use of the material is in

the interests of scholarship. In all other instances, however, permission must be obtained

from the author.

VI

 ACKNOWLEDGEMENTS

This independent study is the result of my M.Sc studies at Villanova University. Firstly,

I would like to thank my advisor, Dr. Richard Perry, for sharing his time, experience, and

wisdom during my research. I would also to thank my supervisor, Michael Iacovelli

(NSWCCD-SSES C955 Branch Manager) for his support in enabling me to pursue this

work, as well as all of my colleagues within NSWCCD-SSES who took the time to listen

to my ideas and share with me their own insight and practical experience in the field of

Control System Engineering. Lastly and most importantly, I would like to thank my

wife, Ana Fischer, for all the extra work she did in taking care of our two year old

daughter while I pursued this work.

VII

 DEDICATION

I dedicate this independent to my daughter Liviya,

Whose insatiable curiosity in the world

Inspires me to learn daily

And to the men and women of our armed forces

Who deserve our best

As they defend us around the world.

VIII

 TABLE OF CONTENTS

Section Page

STATEMENT BY AUTHOR.. V

ACKNOWLEDGEMENTS .. VI

DEDICATION ... VII

TABLE OF CONTENTS ... VIII

LIST OF FIGURES .. XI

LIST OF ALGORITHMS .. XII

ABSTRACT ... XIII

CHAPTER 1: INTRODUCTION ... 1

1.1 Background .. 1

1.2 Current Practices .. 4

1.3 Literature Review on Smart Grid ... 5

1.3.1 SGiP Cyber Security Working Group NISTIR 7628 8

1.4 Literature Review on NGIPS ... 9

CHAPTER 2: CURRENT PRACTICES .. 12

2.1 Fundamental Objectives ... 12

2.2 Limitations of Control Systems compared to Information / Corporate Systems 13

2.2.1 PLC versus VME .. 15

2.3 Traditional Solutions for Information / Corporate Systems 17

2.3.1 Symmetric-key Cryptography ... 18

2.3.2 Public-key Cryptography .. 19

IX

Section Page

CHAPTER 3: ELLIPTIC CURVE CRYPTOGRAPHY .. 26

3.1 Background .. 26

3.2 Mathematical Foundations ... 27

3.2.1 Finite Fields .. 27

3.2.2 Elliptic Curves .. 31

3.2.3 Projective Coordinates .. 35

3.2.4 Point Multiplication .. 36

3.3 Domain Parameters .. 37

3.3.1 Prime Field Elliptic Curves ... 38

3.3.2 Binary Field Elliptic Curves ... 38

3.3.3 Standardized Versus Random Curves ... 39

3.4 Known Attack Mechanisms against ECC .. 40

3.4.1 Naïve Method.. 40

3.4.2 Pholig-Hellman Attack ... 41

3.4.3 Pollard’s rho Attack .. 41

3.4.4 Index-Calculus Attacks ... 42

3.4.5 Isomorphism Attacks .. 42

3.5 Cryptographic Protocols Useful for Control Systems .. 43

3.5.1 Key Generation ... 43

3.5.2 Elliptic Curve Digital Signature Algorithm (ECDSA) 46

3.5.3 Supported Secure Hash Algorithms .. 48

3.6 Comparing RSA Signatures to ECDSA ... 49

X

Section Page

3.7 OpenSSL ECC Implementation ... 52

3.8 ECC Certificates ... 53

CHAPTER 4: PROPOSAL FOR PROJECT .. 54

REFERENCES ... 57

XI

LIST OF FIGURES

Figure 2.2.A – PLC Rack………………………………….…………….……………. 14

Figure 2.2.B – VME Rack………………………………………………….………… 14

Figure 3.2.1.2.A – Binary Finite Field Reduction Polynomials………………...……. 30

Figure 3.2.2.A – Sample Elliptic Curves………………………………………….….. 31

Figure 3.2.2.B – Geometric Representation of Point Addition and Point Doubling.… 32

Figure 3.2.2.C – Group Law for E(Fp): y
2
=x

3
+ax+b, char(K) ≠2………….………… 33

Figure 3.2.2.D – Group Law for non-supersingular E(F2m): y
2
+xy=x

3
+ax

2
+b…….… 34

Figure 3.2.2.E – Group Law for supersingular E(F2m): y
2
+cy=x

3
+ax+b…………….. 34

Figure 3.2.3.A – Operation Counts on y
2
 = x

3
 - 3x+b………………………..……… 36

Figure 3.6.A – Comparable Key Sizes (in bits)…………………………………... 49

Figure 3.6.B – ECC vs RSA Key Generation………………………………………… 50

Figure 3.6.C – ECC vs RSA Signature Generation…………………………...…........

50

Figure 3.6.D – ECC vs RSA Signature Verification…………………………………. 50

XII

 LIST OF ALGORITHMS

Algorithm 1.1.A – Traditional Control System “Heartbeat”………………………….

4

Algorithm 2.3.2.1.A – Generating RSA Key Pair……………………………………

20

Algorithm 2.3.2.1.B – RSA Encryption………………………………………………

21

Algorithm 2.3.2.1.C – RSA Decryption………………………………………………

21

Algorithm 2.3.2.1.D – RSA Signature Generation……………………………………

21

Algorithm 2.3.2.1.E – RSA Signature Verification…………………………………...

22

Algorithm 2.3.2.2.A – Discrete Logarithm Domain Parameter Generation………….

23

Algorithm 2.3.2.2.B – Discrete Logarithm Key Pair Generation……………………..

23

Algorithm 2.3.2.2.C – DSA Signature Generation……………………………………

24

Algorithm 2.3.2.2.D – DSA Signature Verification………………………………….

24

Algorithm 3.5.1.A – Generating ECC Key Pair………………………………………

44

Algorithm 3.5.1.B – ECC Public Key Validation……………………………………..

45

Algorithm 3.5.2.A – ECDSA Signature Generation…………………………………..

47

Algorithm 3.5.2.B – ECDSA Signature Verification…………………………………

47

XIII

 ABSTRACT

Recent endeavors such as the Smart Grid and the Navy’s Next Generation Integrated

Power System, along with attacks on control systems such as Stuxnet, have highlighted

the need for improved security in control systems and control system communications.

Control system components such as Programmable Logic Controllers (PLCs) and

Human-Machine Interfaces (HMIs) can no longer rely on simple heartbeat logic

algorithms in order to verify communications. We can no longer rely on parity and

checksum algorithms to determine that messages are coming through intact and

unmodified. Advanced cryptographic algorithms for data authentication and verification

are needed in messaging protocols between PLCs, HMIs, and sensors.

Cryptographic algorithms such as RSA or the Digital Signature Algorithm (DSA) appear

to provide a solution to this need on the surface. A deeper look though reveals that the

key sizes required for implementing these solutions are simply not feasible for

implementation in control system equipment. Elliptic Curve DSA (ECDSA) looks to be

a promising solution due to the smaller key sizes which allow for smaller storage

requirements and faster computations (except in signature verification). The

implementation of ECDSA can be complicated, but techniques such as the NIST prime

fields can greatly increase the efficiency of the algorithm for use in control systems.

Before a full control system implementation of ECDSA should be developed, the use of

existing implementations such as those found in OpenSSL can be used with SoftPLCs to

develop a proof of concept. This will allow us to study the effects of using ECDSA on

control system performance, as well as to develop a more complete set of user

requirements for a complete control system solution that will be easy to implement.

1

CHAPTER 1: INTRODUCTION

1.1 Background

Increasing demands in all sectors of an industrial society have led to an ever increasing

need for more sophisticated controls and monitoring equipment and software. Control

systems, once consisting of simple transmitters and relays have evolved into complex

systems containing dozens of controllers communicating with each other, each containing

tens of thousands of lines of code, for even the simplest processes. Complex Human-

Machine Interface (HMI) mechanisms designed to give system owners and operators

enhanced capabilities to remotely operate, maintain, and troubleshot equipment are being

developed and deployed. At the core of most modern control systems is the

Programmable Logic Controller (PLC), a device whose power lies in the ability of a

Control System Engineer to quickly and easily implement complex control schemes at

minimal cost. As a result, PLCs (originally designed to replace relay panels) have

become prevalent in virtually every industrial environment from pharmaceutical plants to

electrical power distribution systems.

The need for PLCs will significantly expand in the coming years, as countries with

mature economies work tirelessly to develop new sophisticated power distribution

networks required to support our growing economy. Our existing power grids were

designed decades ago, with the main aim of delivering electricity from large power

stations to households and businesses. The increasing efficiency and reliable

requirements necessary to support our developing civilization in the face of increasing

energy demands and the real threat of domestic terrorism and foreign aggression require

2

significant modernization of these power distribution networks. The new “Smart Grid”,

as it commonly called, will be characterized by a two-way flow of electricity and

information creating a widely distributed energy network. The control system required to

support this energy network will be of an unheard of scale, the design of which will

introduce significant challenges never before addressed.

In related efforts, the US Navy has been rapidly migrating to ship designs with

propulsion, auxiliary, and weapons systems with significantly higher energy requirements

than in the past. To address these requirements, modern ship designs such as the USS

ZUMWALT DESTROYER (DDG1000) class are using Integrated Power Systems (IPS)

that provide electrical power to propulsion and electrical loads from a common set of

sources. To provide direction for future IPS development, the Navy initiated the Next

Generation Integrated Power Systems (NGIPS) effort to provide smaller, simpler, more

affordable, and more capable systems for all Navy ships.

The NGIPS effort is remarkably similar to the Smart Grid effort in multiple respects, and

in both there is an increasing consensus that the controls communication infrastructure

needs fundamental changes. In an automated electrical system, damage to a complex

communication network, a hostile terrorist act, or even a failing component giving

erroneous data can result in a control system taking improper actions that could result in

large scale power failures on land and weapons, propulsion, or a complete electrical

failure at sea or worse. Earlier this year, we at NSWCCD-SSES documented a case

where erroneous data from a failing control system communications component in an

Improved Navy Lighterage System (INLS) Warping Tug (WT) resulted in a complete

loss of propulsion and steering control whenever a ship was placed into full speed, which

3

would have resulted in the ship colliding into the shore if it were not for conveniently

placed Emergency Stop pushbuttons. It has become clear to controls engineers that more

sophisticated methods are needed for verifying the integrity of the data and commands

being issued to and from control systems.

Implementing control systems on a large, highly integrated scale introduces significant

challenges partly because control system networks were not designed with security being

primarily in mind. Historically, control system networks were designed to be completely

physically isolated from other networks and therefore securing those control system

networks seemed unnecessary. Instead, control system networks were designed to have

maximum throughput with minimal to nonexistent data loss. In recent years though

control systems have gradually been getting connected to the Internet, mostly via

corporate network systems, in order to meet business and maintenance requirements. In

order to secure networks, IT administrators have been applying traditional security

measures in order to prevent attackers from gaining access to the corporate networks thus

protecting control system networks. The last year particularly has highlighted the

deficiencies with this model, as viruses such as Stuxnet have become rapidly prevalent.

There is also significantly more risk in a compromised control system than a

compromised corporate system. For example, an attacker could compromise the control

system of a nuclear power plant resulting in a failure of the reactor cooling system.

Therefore control system designers are realizing that not only do we need improved

algorithms to verify that control system data is accurate, we need algorithms to verify that

the data and commands to the control systems are authenticated (i.e. coming from a valid,

recognized source).

4

1.2 Current Practices

Controls engineers have long recognized the need to verify that components within a

control system are communicating, and that the failure of communications between

control system components should result in critical high priority alarms with possible

equipment shutdowns. Since control system communications operate in real time, 24

hours a day, 7 days a week, algorithms are needed to detect a failure in communications

as soon as it occurs. Traditionally, “heartbeat” logic is implemented between each pair of

communication devices. Algorithm 1.1.A below illustrates an example of commonly

used “heartbeat” logic.

Algorithm 1.1.A – Traditional Control System “Heartbeat”

1. Initialize a bit to a known condition (typically 1 as will be used in this algorithm).

2. Transmit bit (call it B1) to communication partner. Start a 3 second timer (call it

T1)

3. Communication partner receives the bit B1. Communication partner sets another

bit (call it B2) to 1 to match the state of B1 and starts its own 3 second timer (call

it T2).

4. Receive bit B2 from the partner. Verify that the state of B2 matches the state of

B1 and that timer T1 has not timed out. If true, restart timer T1. Change state of

B1 to be opposite that of B2. Transmit B1 back to partner.

5

5. Partner receives bit B1. Partner verifies that the state of B1 does not match the

state of B2 and that timer T2 has not timed out. If true, partner restarts timer T2.

Partner changes B2 to match state of B1, retransmits bit back, and go to step 4.

6. If T1 or T2 times out, alarm for communications failure.

As long as a communications failure alarm does not occur, then the data being

transmitted between the two PLCs is considered to be both valid and sourced between the

communicating pair. This kind of logic has proven to be very effective for general

network health monitoring. Issues in communication, primarily in the physical or

transport layer, can be easily detected using this method. For control system networks

that are physically isolated from any other network, this is generally sufficient to

implement an effective control scheme. Unfortunately, this method does not protect

against any kind of more sophisticated failure or attack such as that documented for the

INLS WT described earlier or a “man-in-the-middle” attack.

1.3 Literature Review on Smart Grid

A number of papers have been written to introduce the Smart Grid concepts and provide

a general overview of the requirements and challenges involved in developing a Smart

Grid.

Bouhafs, Mackay, and Merabti (2012) [1] identified a number of general requirements

including communications and electrical generation needed in order to fully realize the

Smart Grid vision. They noted that underlying communications protocols will need to be

more flexible and enable horizontal data exchange between controllers and remote

6

terminal units (RTUs). The current “heartbeat” logic concept would not be useful in an

implementation where data could flow from a source through multiple sources to a target

since it only verifies the link between pairs and not the data itself. They went on to note

that in the event the Internet is used to connect equipment in the Smart Grid strong

encryption and authentication measures must be taken to ensure the security of the data in

transit.

Yan, Qian, Sharif, and Tipper (2012) [2] noted that it is necessary to have guaranteed

Quality of Service (QoS) for the communications and networking technology. In

particular they highlighted latency, bandwidth, interoperability, scalability, and security

requirements. Of particular interest is the authors analysis of bandwidth requirements

which showed that there will be significant challenges in this area. Therefore, adding a

significant number of bits in any communications protocol for control systems could have

a profoundly negative impact on the operation of the Smart Grid as a whole. The authors

also noted that the effort required to provision symmetric keys (i.e. keys between each

pair of communicating devices) into thousands of devices would be too expensive or

insecure. They noted that the development of key and trust management schemes for

large network deployments would be required. While Navy systems are small enough

that they would not suffer from the same kinds of limitations, it seems obvious that a

solution must be developed for Navy systems that would be applicable to all future

controls systems including the Smart Grid, particularly in support of modernized shore

power connections for Navy systems.

Yan, Qian, Sharif, and Tipper (2012) [3] in a related paper noted that new functions in

the Smart Grid such as demand response introduce significant new cyber attack vectors

7

such as a malware that initiates a massive coordinated and instantaneous drop in demand.

This attack could result in substantial damage to distribution, transmission, and

generation facilities. Research ongoing at NSWCCD-SSES has also noted this risk as

applicable to Navy systems, particularly in combat scenarios with the use of advanced

weapon systems such as the railgun. The authors also noted that a major difference

between Smart Grid controls communication and the Internet is that the controls data is

significantly more concerned with message delay and timing constraints.

Liu, Ning, and Reiter (2009) [4] in their work presented a notable example of a new type

of attack, called false data injection attacks, that highlights the very real risk of attacks

targeting data integrity.

Baumeister (2011) [5] noted that most information systems uses a Public Key

Infrastruction (PKI) solution, but that the nature of power grid systems creates additional

PKI requirements not present in traditional information systems. This same statement

can be generalized to apply to all control systems. For example, Baumeister noted that

control systems must make informed decisions regularly, and that it is unreasonable to

expect a control system to go down or revert to a less efficient predecessor every time a

certificate is unavailable. For example, what happens when a certificate from a sensor

expires? In an information system, the impact of expired certificates is insignificant and

they can be renewed when discovered. However, in a control system this could cause the

process (such as electric flows) to be incorrectly altered.

8

1.3.1 SGiP Cyber Security Working Group NISTIR 7628

In response to the number of concerns related to the Smart Grid and Cyber Security,

NIST established the Smart Grid Interoperability Panel (SGiP) Cyber Security Working

Group which published NISTIR 7628 (2010) [6]. This document broke down the various

kinds of communications that would be prevelant in a full international Smart Grid

system into a number of categories such as “Category 10 – Interface between Control

Systems and Non-Control / Corporate Systems”. SGiP then identifies the unique security

requirements for each of these categories, focusing on the three areas of confidentiality,

integrity, and availability. Most, but not all of the categories identified by SGiP are

directly or indirectly applicable to control systems (some have little to no bearing such as

categories 13 through 18) operating in the Smart Grid and are shown in the list below:

• Category 1: Interface between control systems and equipment with high

availability, and with compute and/or bandwidth constraints

• Category 2: Interface between control systems and equipment without high

availability, but with compute and / or bandwidth constraints

• Category 3: Interface between control systems and equipment with high

availability, without compute or bandwidth constraints

• Category 4: Interface between control systems and equipment without high

availability, without compute or bandwidth constraints

• Category 5: Interface between control systems within the same organization

• Category 6: Interface between control systems in different organizations

• Category 10: Interface between control systems and non-control / corporate

systems

9

• Category 12: Interface between sensor networks and control systems

• Category 19: Interface between operations decision support systems

• Category 20: Interface between engineering / maintenance systems and control

equipment

• Category 21: Interface between control systems and their vendors for standard

maintenance and service

• Category 22: Interface between security / network / system management consoles

and all networks and systems

In reviewing the categories, it becomes obvious that all of them have significant overlap

with NGIPS efforts as well as industrial control systems in general. Going through the

requirements of these categories as identified by SGiP it is seen that the primary concern

in this categories that of data integrity and authentication. Data encryption can be useful

in some circumstances, but is not as critical as the other two requirements.

1.4 Literature Review on NGIPS

Most of the literature focusing on the NGIPS effort has focused on areas such as

electrical generation, propulsion, power conversion and distribution, energy storage, and

zonal survivability. NAVSEA (2007) [7] The NGIPS architecture is broken up into seven

modules types:

• Power Generation Modules (PGM)

• Power Distribution Modules (PDM)

• Power Conversion Modules (PCM)

• Energy Storage Modules (ESM)

10

• Power Loads

• Propulsion Motor Modules (PMM)

• Power Control Modules (PCON)

The PCON module is of particular interest to controls engineers, as it consists of the

software and communications protocols necessary to operate the system. Doerry (2009)

[8] noted that PCON should implement the following functions, and that the software

should be developed for robustness in anticipation of future changes in the life of both a

ship and for modifying for use across multiple ship classes:

• Remote monitoring and control of NGIPS modules and controllable loads

• Resource Planning

• System Configuration

• Mission Priority Load Shedding

• Quality of Service Load Shedding

• Fault Detection and Isolation

• Maintenance Support

• Training

These functions are remarkably similar to the control system functions required for the

development of a Smart Grid, with the notable exception of Quality of Service (QoS) and

Mission Priority Load Shedding. As a result, the same need for data authentication and

verification in the Smart Grid would be applicable to NGIPS, particularly in functions

such as maintenance support where it becomes increasingly common for ships to transmit

data to and from shore based services for software upgrades and maintenance /

troubleshooting support.

11

Desired requirements for QoS also introduce the need to ensure that commands being

transmitted across the ship for electrical service are genuine. As noted by Doerry, a

typical cause of a QoS failure is the shifting of electrical power sources from ship to

shore, and that communications will be required with the terrestrial power system

command and control centers. Failure of the ship and shore to properly establish valid

communications could result in power instabilities for both.

The increasing prevalence of computer viruses specifically targeting control systems will

introduce new challenges to the mission readiness of a ship in times of war. By attacking

PCON, an enemy may be able to cause a control system to incorrectly transfer loads

which could result in a failure of propulsion or weapon systems (or both) at a critical

moment. Modern weapon systems produce substantial electrical loads that may require

realigning of the ship’s electrical distribution prior to being operational.

The Navy has been putting in significant effort to develop open architecture approaches

in the development of control system software to support not only NGIPS development

but also to support development of control systems fleet wide. Doerry, Scherer, Cohen,

and Guertin (2011) [9] pointed out that information assurance and security needs to be

thought of at the outset of any new MCS design, stating that confidentiality, integrity, and

availability of data must be assured. They also highlight that the software should perform

error detection (and error correction if possible) along with filtering of the sensor data.

12

CHAPTER 2: CURRENT PRACTICES

2.1 Fundamental Objectives

Within the field of cryptography there are multiple solutions providing various degrees of

secure communication. In order to be effectively used to establish secure

communications these solutions have the following fundamental objectives:

• Confidentiality – ensuring the data can only be read by those authorized to see it

• Data Integrity – ensuring the data has not been modified by unauthorized means

• Data Origin Authentication – ensuring data supposedly sent by a source actually

originated with that source

• Entity Authentication – ensuring that an entity participating in a data transfer is

who it claims to be

• Non-repudiation – ensuring that a source of data is unable to later deny sending

the data

Information / Corporate systems are concerned with meeting each of the above

objectives. Control systems are also equally concerned with these, with confidentiality to

a significantly lesser degree, but also have unique requirements not present in

information systems. When an information system receives a piece of data through an

unsecure means you can disregard the information with reasonably low risk. Control

systems, on the other hand, need to make critical decisions with the information at hand.

If the data received is insecure, the control system is placed in a position of having to

make critical decisions about the operation of real world machinery without knowing

which decision to take. Unfortunately, the control system will regularly be in the

13

position where it must take some critical action or shut down the equipment, with each

scenario resulting in possible equipment damage and injury/death to personnel operating

that equipment.

2.2 Limitations of Control Systems compared to Information / Corporate

Systems

Information / Corporate Systems will typically consist of x86-based architecture

computers running either Windows or Linux operating systems and a host of other

software programs provided by multiple vendors to provide an integrated solution. At the

heart of the Control System are Programmable Logic Controllers (PLCs), which use

vendor specific developer environments to write software following IEC 61131-3

guidelines (ladder logic, function blocks, etc) to implement a solution that is both easy

and cheap to design and is very effective for controls. The downside of these PLCs is

that they tend to have significantly less processing power and storage capabilities as they

are designed to run very specific software programs extremely efficiently, non-stop, for

20 years or more.

An alternative to PLCs are VERSAmodule Eurocards (VME) which tend to have greater

processing power and contain the same input / output processing capabilities as PLCs but

add significant complexity to the design of a control system. The pros and cons of PLCs

and VMEs are described below. Another alternative to PLCs are SoftPLCs. SoftPLCs

are essentially programmed in the same manner as regular PLCs, but contain additional

underlying base code designed to interface with an operating system (typically Windows

NT based operating systems) in order to run the IEC 61131-3 code on an x86-based

14

architecture. Figures 2.2A and 2.2.B are of running PLC and VME racks on control

systems for Navy Ships

Figure 2.2.A PLC Rack

Figure 2.2.B VME Rack

15

Since VME cards can be obtained that use the x86 architecture, in recent years the Navy

has been implementing control systems on ship classes that use SoftPLCs running on

VMEs to obtain the best of both worlds. This can be a complicated and expensive

solution that is still more in the research and development stage and will likely not be

implemented in either the Smart Grid or regular industrial control systems. However it is

possible from a research perspective to perform cryptography testing on SoftPLCs using

VMEs to do “proof of concept” testing in order to determine the validity of a solution

before expending significant resources in developing an independent and complete PLC

solution.

2.2.1 PLC versus VME

In order to give greater perspective on the usage of PLCs versus VMEs in control

systems, the pros and cons of both technologies are listed below. These SoftPLCs may

become more prevalent in industrial control systems with the advent of new projects such

as OpenPLC which aims to develop an open source software and hardware platform for

industrial control systems.

VME Pros

• Analog and digital I/O boards are available from a large number of vendors

• VME components are open architecture

• Standardized circuit card form factor and data bus

16

• Significantly greater flexibility in software for VME than compared to PLC,

allowing for advanced processing not available with PLCs (such as required for

the DDG1000)

• Ability to implement secure communication protocols

• Operating Temperature of -40
o
C to +85

o
C

VME Cons

• Development of software is complex and difficult, developer must design not only

the control system application but also the low-level system interactions

• Widespread use of proprietary operating systems often creates a virtual sole-

source situation

• Instability in VME Operating System market means it is unlikely developers will

have experience with the operating system chosen for a new project, leading to

longer ramp-up time and increased risk for software defects

• Obsolescence is a major problem

• Integration of new components into an existing system is NOT “plug-and-play”

PLC Pros

• Cost is less than for VME systems

• Programming time is reduced due to ease of programming language (ladder-logic)

• Risk is significantly reduced when using all products from the same vendor

• Integration of new components into an existing system is typically “plug-and-

play”

17

• PLC vendors have a strong record of supporting their products for 20 years or

longer

• Enhanced software troubleshooting features not available with VMEs

PLC Cons

• PLC vendor products generally not compatible with another vendor’s products,

requiring a single vendor to provide all processor, I/O, and network

communication boards

• No standards for PLC form factor or electrical characteristics

• Secure communication protocols are not a common feature with many PLC

vendors

• Increased risk in relying on a single vendor to support their products

• Operating Temperature of 0
o
C to +60

o
C

2.3 Traditional Solutions for Information / Corporate Systems

While traditional solutions for Information / Corporate Systems will not be feasible for

implementation in Control Systems due to the different requirements and architectures, it

is important to establish an understanding of current solutions used in Information

Systems. There are essentially two main categories of cryptographic solutions,

symmetric-key cryptography and public-key cryptography.

18

2.3.1 Symmetric-key Cryptography

Symmetric-key Cryptography includes schemes such as the Data Encryption Standard

(DES) (now obsolete), RC4, and the Advanced Encryption Standard (AES) to achieve

confidentiality. They may also be used with a message authentication code (MAC)

algorithm such as HMAC to achieve data integrity and data origin authentication. In a

typical symmetric-key cryptography scheme two parties already share a secret key k that

has been communicated to the parties by some other means (typically a physical secure

channel such as a trusted courier, or by using a public-key cryptography scheme to

negotiate a shared secret key). Party A wishing to transmit to B uses one of the

previously mentioned schemes to compute a ciphertext c = ENCk(m) to be sent to B. B

then receives the message and using the same k (and knowing the same scheme used to

encrypt m used by A) to recover the plaintext message m = DECk(c).

If data integrity and data origin authentication are desired, then the same principles apply

however instead of encrypting the message m into ciphertext c a tag t is first computed

where t =MACk(m) of the plaintext message using a MAC algorithm (of which there are

many) and the key. The plaintext message and the tag are both transmitted, and the

receiver can use the plaintext message to compute its own tag t’. If t = t’ then the

receiver can accept the message as having originated from the source.

While symmetric-key cryptography can be very efficient, the key distribution and key

management problems tend to render it ineffective for large scale systems

communicating to multiple partners [10]. In a network of N entities, each entity may

have to maintain keying material with each of the other N-1 entitites. Some symmetric-

key systems attempt to alleviate this problem by using an online trusted third party that

19

distributes the keys as required, however for control systems this creates a single critical

point of failure that will be unacceptable as control systems become more and more

distributed and de-centralized. Additionally, while key distribution in symmetric-key

cryptography may be possible through a physical courier on a ship (for NGIPS) it will not

be practical for large scale systems such as the Smart Grid.

2.3.2 Public-key Cryptography

Public-key cryptography began in 1975 to address the aforementioned limitations in

symmetric-key cryptography. Unlike symmetric-key schemes, public-key schemes

require the keying material that is exchanged to only be authentic, but not secret.

Additionally, instead of each pair of entities sharing a secret key, each entity selects a

single pair of keys (e, d) consisting of a public key e and a related private key d. The

entity keeps the private key a secret from all other entities and shares the public key with

all other entities. The keys are mathematically related but share the property that it is

computationally infeasible to determine the private key solely from knowledge of the

public key. Deriving the private key from the public key is equivalent to solving a

computational problem that is believed to be intractable.

2.3.2.1 RSA

The most commonly used public-key cryptography scheme is RSA, named after its

inventors Rivest, Shamir, and Adleman [11]. It was first proposed in 1977 shortly after

the discovery of public-key cryptography. In RSA, the public key consists of a pair of

integers (n, e) where n is the modulus. The modulus is a product of two randomly

20

generated (and secret) primes p and q which are of the same bitlength. Algorithm

2.3.2.1.A below shows how to generate an RSA key pair. RSA encryption and signature

schemes use the fact that m
ed

 = m (mod n). Algorithms 2.3.2.1.B and 2.3.2.1.C show how

basic RSA encryption and decryption work respectively. The hardness in breaking RSA

is based on the integer factorization problem, i.e. determining the secret primes p and q

from the public key for large values of bitlength l.

The RSA signature generation and signature verification algorithms are shown in

algorithm 2.3.2.1.D and 2.3.2.1.E. As in all signature schemes, the signer first generates

a cryptographic hash function H which acts in a similar manner as the tag in symmetric-

key encryption. The signer then generates the signature and transmits the message m

along with the signature s to a verifying party.

In order to increase the efficiency of RSA, smaller exponents can be selected. In

practice, the most commonly chosen values of e are e = 3 and e = 65537 for encryption

and signature generation [11]. Note that there is no known attack against using small

public exponents as long as proper padding is used. Decryption and signature generation

always use the exponent d (the private key) which is the same bitlength as n. Thus RSA

encryption and signature verification with small values of e are significantly faster than

RSA decryption and signature generation.

Algorithm 2.3.2.1.A [10] – Generating RSA Key Pair

 INPUT: bitlength l

OUTPUT: RSA public key (n, e) and private key d

1. Randomly select two primes p and q of the same bitlength l / 2

21

2. Compute n = pq and Φ = (p-1)(q-1)

3. Select an arbitrary integer e with 1 < e < Φ and gcd(e, Φ) = 1

4. Compute the integer d satisfying 1 < d < Φ and ed ≡ 1 (mod Φ)

5. Return (n, e, d)

Algorithm 2.3.2.1.B [10] – RSA Encryption

 INPUT: RSA public key (n, e), plaintext m ϵ [0, n-1]

OUTPUT: Ciphertext c

1. Compute c = m
e
 mod n

2. Return (c)

Algorithm 2.3.2.1.C [10] – RSA Decryption

 INPUT: RSA public key (n, e), RSA private key d, ciphertext c

OUTPUT: Plaintext m

1. Compute m = c
d
 mod n

2. Return (m)

Algorithm 2.3.2.1.D [10] – RSA Signature Generation

 INPUT: RSA public key (n, e), RSA private key d, message m

OUTPUT: Signature s

1. Compute h = H(m) where H is a cryptographic hash function

2. Compute s = h
d
 mod n

3. Return (s)

22

Algorithm 2.3.2.1.E [10] – RSA Signature Verification

 INPUT: RSA public key (n, e), message m, signature s

OUTPUT: Acceptance or rejection of the signature

1. Compute h = H(m) where H is the same cryptographic hash function used by the

signing party

2. Compute h’ = s
e
 mod n

3. If h = h’ then accept the signature, else reject

2.3.2.2 Digital Signature Algorithm

In 1976 Diffie and Hellman proposed developing a key agreement protocol based on the

discrete logarithm problem (DLP) [10], which like the integer factorization problem used

in RSA is computationally infeasible to solve. Discrete logarithms are group-theoretic

analogues of ordinary logarithms. For example, an ordinary logarithm loga(b) is a

solution of the equation a
x
 = b for x. In a discrete logarithm, you have a group G which

consists of a range of integer values from 0 to n-1. If a and b are elements in the group

then a solution of x of the equation a
x
 = b is called a discrete logarithm to the base a of b

in the group G. In a discrete logarithm public-key cryptography system a key pair is

associated with a set of domain parameters (p, q, g). Algorithm 2.3.2.2.A shows how

these domain parameters are generated, and Algorithm 2.3.2.2.B shows how to generate

corresponding key pairs.

In 1984 ElGamal described discrete logarithm public-key encryption and signature

schemes, and since then many different variants have been proposed leading up to the

23

establishment of the Digital Signature Algorithm (DSA) [10]. DSA was proposed in

August 1991 by the U.S. National Institute of Standards and Technology (NIST) and was

specified in a U.S. Government Federal Information Processing Standard (FIPS 186),

adopted in 1993. A minor revision was issued in 1996 as FIPS 186-1, which was

expanded further in 2000 as FIPS 186-2 and again in 2009 as FIPS 186-3 [12].

Algorithms 2.3.2.2.C and 2.3.2.2.D shown below give the procedures respectively for

DSA signature generation and verification.

Algorithm 2.3.2.2.A [10] – Discrete Logarithm Domain Parameter Generation

 INPUT: Parameters l and t

OUTPUT: Discrete logarithm domain parameters (p, q, g)

1. Select a t-bit prime q and an l-bit prime p such that q divides p-1

2. Select an element g of order q

a. Select arbitrary h ϵ [1, p-1] and compute g = h
(p-1)/q

 mod p

b. If g = 1 then repeat 2.a.

3. Return (p, q, g)

Algorithm 2.3.2.2.B [10] – Discrete Logarithm Key Pair Generation

 INPUT: Discrete logarithm domain parameters (p, q, g)

OUTPUT: Public key y and private key x

1. Select x ϵR [1, q-1]

2. Compute y = g
x
 mod p

3. Return (y, x)

24

Algorithm 2.3.2.2.C [10] – DSA Signature Generation

 INPUT: Discrete logarithm domain parameters (p, q, g), private key x, message m

OUTPUT: Signature (r, s)

1. Select k ϵR [1, q-1]

2. Compute T = g
k
 mod p

3. Compute r = T mod q, if r = 0 then go to step 1

4. Compute h = H(m), where H is a cryptographic hash function

5. Compute s = k
-1

(h+xr) mod q, if s = 0 then go to step 1

6. Return (r, s)

Algorithm 2.3.2.2.D [10] – DSA Signature Verification

 INPUT: Discrete logarithm domain parameters (p, q, g), public key y, message m,

signature (r, s)

OUTPUT: Acceptance or rejection of the signature

1. Verify that r and s are integers in the interval [1, q-1], if either verification fails

then reject the signature

2. Compute h = H(m), where H is the same cryptographic hash function used by the

signing party

3. Compute w = s
-1

 mod q

4. Compute u1 = hw mod q and u2 = rw mod q

5. Compute T = g
u1

 y
u2

 mod p

6. Compute r’ = T mod q

25

7. If r’ = r then accept the signature, else reject

2.3.2.3 Limitations Using Public-Key Cryptography

In cryptography, the security of an algorithm cannot exceed its key length (measured in

bits) since any algorithm can be cracked by brute force. A key therefore should be

sufficiently large enough such that a brute force attack is infeasible – i.e. it would take

too long to execute. If there is some indicator that an attack may exist to feasibly break a

key for a particular algorithm in an efficient manner for some bit length, then the size of

the key is increased to provide additional security. The key size to security level ratio is

not the same for all categories of algorithms.

As of 2003 [13] RSA Security claims that 1024-bit RSA keys are equivalent in strength

to 80-bit symmetric keys, 2048-bit RSA keys to 112-bit symmetric keys and 3072-bit

RSA keys to 128-bit symmetric keys. RSA claims that 1024-bit keys are likely to become

crackable some time between 2006 and 2010 and that 2048-bit keys are sufficient until

2030. An RSA key length of 3072 bits should be used if security is required beyond

2030. NIST key management guidelines further suggest that 15360-bit RSA keys are

equivalent in strength to 256-bit symmetric keys. These key lengths, while

implementable in Information / Corporate systems, are infeasible in Control Systems

where processing power and data storage is limited. Therefore an alternative public-key

algorithm is needed that provides the benefits of algorithms such as RSA and DSA

without the excessive key lengths required by these algorithms.

26

CHAPTER 3: ELLIPTIC CURVE CRYPTOGRAPHY

3.1 Background

Elliptic curve public key cryptosystems were first independently proposed by V.S. Miller

(1985) [14] and by N. Koblitz (1987) [15]. They have only begun to recently be used in

commercial systems, and adoption has been slow. This is primarily due to concerns

about intellectual property, as a number of optimizations and special algorithms used to

increase efficiency have been patented in recent years. Despite these concerns, elliptic

curve cryptography (ECC) has grown resulting in its inclusion in standards by accredited

standards organizations such as ANSI (American National Standards Institute) [16, 17],

IEEE (Institute of Electrical and Electronics Engineers) [18], ISO (International

Standards Organization [19, 20], and NIST (National Institute of Standards and

Technology [21].

The most prominent group for the standardization and propagation of ECC technology is

SECG (Standards for Efficient Cryptography Group) [22]. They have published

numerous and detailed works on the subject, including documents on how to implement

ECC and on recommended elliptic curve domain parameters [23, 24]. The SECG

consists of a number of organizations including NIST and key industrial partners such as

VISA, Fujitsu, and Certicom. Certicom, which is a wholly owned subsidiary of Research

in Motion (RIM) is the main industrial leader in ECC, with over 350 patents and patents

pending worldwide covering key aspects of the technology [25].

In order to promote the use of ECC technology, NIST has licensed 26 patents held by

Certicom with the right to grant sublicenses for free to industrial vendors for developing

27

products used for protecting national security information [6]. NIST has also identified a

subset of key ECC technologies for use in Smart Grid and related applications, such as

the Elliptic Curve Digital Signature Algorithm as part of its NSA Suite B collection of

approved encryption, key exchange, digital signature, and hashing protocols. It is also

worth noting that ECC implementation strategies based on the fundamental algorithms of

ECC, which were published prior to filing dates of many patents can be found in the

IETF Memo “Fundamental Elliptic Curve Cryptography Algorithms.” [26]

3.2 Mathematical Foundations

This section presents an overview of the mathematical techniques and concepts required

for an intermediary level of understanding of elliptic curve cryptography. This material

is sufficient for engineering purposes to develop ECC systems using standardized

existing mathematic implementations and standardized elliptic curve domain parameters.

The works of Koblitz [15], Miller [14], Hankerson et al [10], and the SECG [23] can be

referred to for more advanced mathematical concepts that may be helpful should the need

arise for development of new implementations or the use of random elliptic curve domain

parameters.

3.2.1 Finite Fields

A finite field Fqm consists of a finite set of objects called field elements together with the

description of two operations – addition and multiplication – that can be performed on

pairs of field elements. Subtraction and division within a finite field are defined in terms

of an additive inverse and multiplicative inverse, respectively. In ECC there are two

28

kinds of fields that are primarily used: prime finite fields Fp with q=p and m=1, with q

being prime; and binary fields F2m where q=2 for some m ≥ 1. A third type of field less

commonly used is known is Optimal Extension Fields (OEF). The general idea in OEFs

is to select values of q and m, along with a reduction polynomial to more closely match

underlying hardware characteristics [10]. At this time there are no recommended

implementations of ECC by SECG that utilize OEFs, and therefore they are only

mentioned here for completeness.

Equations involving finite fields do not explicitly denote the mod p operation, but it is

understood to be implicit.

3.2.1.1 Prime Finite Fields [23]

Elements in a prime finite field Fp should be represented by the set of integers:

{0, 1, …, p-1}

Operations on prime finite fields are defined as follows:

• Addition: If a, b ϵ Fp, then a + b = r in Fp, where r ϵ [0, p-1] is the remainder

when the integer a + b is divided by p.

• Multiplication: If a, b ϵ Fp, then ab = s in Fp where s ϵ [0, p-1] is the remainder

when the integer ab is divided by p.

• Additive inverse: If a ϵ Fp, then the additive inverse (-a) of a in Fp is the unique

solution to the equation a + x ≡ 0 mod p.

• Multiplicative inverse: If a ϵ Fp, a ≠ 0, then the multiplicative inverse a
-1

 of a in

Fp is the unique solution to the equation ax ≡ 1 mod p.

29

In order to increase efficiency and to facilitate interoperability, prime finite fields using

the NIST primes should be use. These finite fields have:

[log
2
p] ϵ {192, 224, 256, 384, 521]

Except for 521, p is aligned with word size to increase efficiency in computation and

communication. 521 is an anomaly that is often included to align with the U.S.

government’s recommended elliptic curve domain parameters. For control systems with

limited processing power and storage it is recommend to use only the NIST recommend

primes that are aligned with word size such as 384.

3.2.1.2 Binary Finite Fields [23]

Elements of a binary finite field F2m should be represented by the set of binary

polynomials of degree m-1 or less:

{a
m-1

x
m-1

 + a
m-2

x
m-2

+ … + a
1
x + a

0
 : a

i
 ϵ {0,1} }

Operations on binary finite fields are defined as follows:

• Addition: If a = a
m-1

x
m-1

+a
m-2

x
m-2

+…+ a
0
, b = b

m-1
x

m-1
+b

m-2
x

m-2
+…+ b

0
 ϵ F2m,

then a + b = r in F2m where r = r
m-1

x
m-1

+r
m-2

x
m-2

+…+ r
0
 with r

i
 ≡ a

i
+b

i
 mod 2

• Multiplication: If a = a
m-1

x
m-1

+a
m-2

x
m-2

+…+ a
0
, b = b

m-1
x

m-1
+b

m-2
x

m-2
+…+ b

0
 ϵ

F2m, then ab = s in F2m where s = s
m-1

x
m-1

+s
m-2

x
m-2

+…+ s
0
 is the remainder when

the polynomial ab is divided by f(x) with all coefficient arithmetic performed

modulo 2.

• Additive inverse: If a ϵ F2m, then the additive inverse (-a) of a in F2m is the unique

solution to the equation a + x ≡ 0 in F2m.

30

• Multiplicative inverse: If a ϵ F2m, a ≠ 0, then the multiplicative inverse a
-1

 of a in

F2m is the unique solution to the equation ax ≡ 1 in F2m.

In order to increase efficiency and interoperability, the characteristic binary finite fields

used should have:

m ϵ {163, 233, 239, 283, 409, 571]

These fields were chosen in order to construct a suitable Koblitz curve whose order is 2

or 4 times a prime over F2m. The field with m = 239 is an anomaly shown here because it

has already been widely used in practice. The field with m = 283 is an anomaly that is

often included to align with the U.S. government’s recommended elliptic curve domain

parameters.

Addition and multiplication should be performed using one of the irreducible binary

polynomials of degree m in Figure 3.2.1.2.A below. These polynomials enable efficient

calculation of field operations, except for the polynomial with m = 239 which is an

anomaly shown here because it has been widely deployed.

Field Reduction Polynomial(s)

F2163 f(x) = x
163

+x
7
+x

6
+x

3
+1

F2233 f(x) = x
233

+x
74

+1

F2239 f(x) = x
239

+x
36

+1 or x
239

+x
158

+1

F2283 f(x) = x
283

+x
12

+x
7
+x

5
+1

F2409 f(x) = x
409

+x
87

+1

F2571 f(x) = x
571

+x
10

+x
5
+x

2
+1

Figure 3.2.1.2.A Binary Finite Field Reduction Polynomials

31

3.2.2 Elliptic Curves

Elliptic curves are most commonly shown in the form of the simplified Weierstrass

equation in the form of:

y
2
 = x

3
 + ax +b

where

4a
3
 + 27b

2
 ≠ 0

This condition is critical to ensure that the elliptic curve is “smooth”, i.e. that there are no

points at which the curve has two or more distinct tangent lines. The curves shown in

Figure 3.2.2.A illustrate examples of elliptic curves satisfying this condition.

Figure 3.2.2.A Sample Elliptic Curves [10]

The security of ECC is based on the elliptic curve discrete logarithm problem (ECDLP),

which arises when elliptic curves are used over finite fields. The ECDLP is [10]: given

an elliptic curve E defined over a finite field Fq, a point P ϵ E(Fq) or order n, and a point

32

Q ϵ <P>, find the integer l ϵ [0, n-1] such that Q = lP. The integer l is called the discrete

logarithm of Q to the base P, denoted l = log
P
Q. The elliptic curve domain parameters for

cryptographic schemes should be carefully chosen in order to resist all known attacks on

the ECDLP. However, since the methods for computing solutions to the ECDLP are

much less efficient then methods used for computing solutions to integer factorization

(used in RSA) ECC can provide the same level of security as RSA with smaller key

lengths, and scales much better at higher levels of security than RSA.

When an elliptic curve E is defined over a field (call it K) there exist rules for adding two

points in E(K) to give a third point in E(K). This operation is commonly known as point

addition. Furthermore, there also exist rules for doubling a point as to obtain a third

point, an operation commonly known as point doubling. Figure 3.2.2.B below shows a

geometric representation of both of these rules.

Figure 3.2.2.B Geometric Representation of Point Addition and Point Doubling [10]

33

Algebraic formulas for these operations can be derived from the geometric

representation. The exact formulas themselves (the group law) will vary depending on

whether you are using a simplified Weierstrass form or the complete form. They will

also vary depending on the characteristic q of the underlying field [10]:

• The characteristic of the underlying field K is not 2 or 3 (e.g. K = Fp where p > 3

is a prime)

• The curve E is non-supersingular of the form over K = F2m

• The curve E is supersingular of the form over K = F2m

The easiest group law to understand is for that of the simplified Weierstrass form for

char(K)≠2,3, shown in Figure 3.2.2.C. Group laws for the simplified Weierstrass form

for char(K)=2 are shown in Figures 3.2.2.D and 3.2.2.E for non-supersingular and

supersingular curves respectively.

Figure 3.2.2.C Group Law for E(Fp): y
2
=x

3
+ax+b, char(K) ≠2,3 [10]

34

Figure 3.2.2.D Group Law for non-supersingular E(F2m): y
2
+xy=x

3
+ax

2
+b [10]

Figure 3.2.2.E Group Law for supersingular E(F2m): y
2
+cy=x

3
+ax+b [10]

35

3.2.3 Projective Coordinates

The group laws shown in section 3.2.2 illustrate that the formulas for point addition and

point doubling require field inversions and field multiplications. These are complex

operations for the very large fields typically used in cryptographic applications. If

inversion in a field K is significantly more expensive than multiplication (and it typically

has a cost of roughly 80 field multiplications [10]), then the use of a technique known as

projective coordinates may be advantageous to use.

Projective coordinates essentially works by defining an equivalence relationship between

a field K and a set K
3
\{0,0,0}. The relationship is obtained by replacing x with X/Z

c
 and y

with Y/Z
d
, and clearing the denominators. We end up with a 1-1 relationship between the

affine points that lie on E and the projective points on E. There are a number of different

versions of projective coordinates, with varying values of c and d.

In the “standard projective coordinates” c and d are both set to one. Another form of

projective coordinates known as “Jacobian coordinates” sets c=2 and d=3. This changes

the simplified Weierstrass equation from:

y
2
 = x

3
 + ax +b

to the projective form:

Y
2
 = X

3
 + aXZ

4
 + bZ

6

The result of this change allows a new group law to be formed in which point doubling

can be computed using six field squarings and four field multiplications [10]. The use of

field inversions is now no longer required. Algorithms also exist to perform point

multiplication between points in different coordinate systems, such as affine and

36

Jacobian. Jacobian coordinates yield the fastest point doubling, while mixed Jacobian-

affine coordinates yield the fastest point addition.

A third type of coordinate system is “Chudnovsky coordinates”. In Chudnovsky

coordinates Jacobian coordinates (X:Y:Z) are represented as (X:Y:Z:Z
2
:Z

3
). There are

some point multiplication algorithms that make use of the redundancy in Chudnovsky

coordinates and use mixed Jacobian-Chudnovsky and mixed Chudnovsky-affine

coordinates for point addition. Figure 3.2.3.A below gives some example operation

counts for using projective coordinates in point addition. In the figure A represents affine

coordinates, P represents standard projective coordinates, J represents Jacobian

coordinates, and C represents Chudnovsky coordinates. The mathematical operations of

field inversion, field multiplication, and field squaring are representated as I, M, and S

respectively.

Figure 3.2.3.A Operation Counts on y
2
 = x

3
 - 3x+b [10]

3.2.4 Point Multiplication

In cryptographic applications point multiplication (the computation of kP where P is a

point on the curve and k is an integer) dominates the execution time of ECC schemes.

There are three cases where point multiplication occurs:

• kP where precomputation must be online

• kP for P known in advance and precomputation may be offline

37

• kP + lQ where only the precomputation for P may be done offline

The last two cases are motivated by the Elliptic Curve Digital Signature Algorithm

(ECDSA), where signature generation requires a calculation kP where P is fixed, and

signature verification requires a calculation kP + lQ where P is fixed and Q is known a

priori.

There are a number of mathematical techniques that can be used in order to increase the

efficiency of point multiplications. Some methods, such the “sliding-window methods”,

require that extra memory be available. Additionally, if the point P is fixed and some

storage is available, then the point multiplication kP can be accelerated by pre-computing

some of the data dependent on P using a type of fixed-base windowing method such as

that proposed by Brickell, Gordon, McCurley, and Wilson [10]. Shamir’s Trick is yet

another method used specifically to speed up the calculation of kP + lQ by performing

simultaneous multiple point multiplication [10].

3.3 Domain Parameters

As stated previously, the elliptic curve domain parameters for cryptographic schemes

should be carefully chosen in order to resist all known attacks on the ECDLP. In general,

for elliptic curves over a finite field Fqm , the following domain parameters are required to

be specified:

D = (q, FR, S, a, b, P, n, h)

Where:

q – field order

FR – field representation

38

S – seed, used if the elliptic curve was generated randomly

a & b – coefficients in the field Fqm that define the equation over the field

P – the base point P=(xp, yp) ϵ Fqm that has prime order

n – the order of P

h – the cofactor h=#E(Fqm) / n

This section describes the domain parameters needed to generate curves for the prime and

binary finite fields used in ECC. We then go on to discuss the use of standardized special

curves and the generation of new random curves, discussing the pros and cons of each.

3.3.1 Prime Field Elliptic Curves

For elliptic curve domain parameters over Fp the domain parameters are the sextuple:

D = (p, a, b, P, n, h)

They consist of an integer p specifying the finite field along with certain general domain

parameters defined above. Elliptic curve domain parameters over Fp precisely specify an

elliptic curve and a base point. This is necessary to define public-key cryptography

schemes based on ECC [24]. If the elliptic curve domain parameters are verifiably

random than they should be accompanied by the seed value S from which they are

derived [24].

3.3.2 Binary Field Elliptic Curves

For elliptic curve domain parameters over F2m the domain parameters are the septuple:

D = (m, f(x), a, b, P, n, h)

39

They consist of an integer m specifying the finite field F2m, an irreducible binary

polynomial f(x) of degree m specifying the representation of F2m, along with certain

general domain parameters defined above. Elliptic curve domain parameters over F2m

precisely specify an elliptic curve and a base point. This is necessary to define public-

key cryptography schemes based on ECC [24]. If the elliptic curve domain parameters

are verifiably random than they should be accompanied by the seed value S from which

they are derived [24].

3.3.3 Standardized Versus Random Curves

In order to increase efficiency of cryptographic implementations and to prevent all known

attacks, various standardized domain parameters have been developed for elliptic curves

over both prime and finite fields. These standardized, or “special”, curves have been

published by the SECG [24] and are recommended by NIST for use in U.S. government

applications. However, in order to guard against future attacks against these curves one

might decide to generate a new curve randomly but that has a validation process that

proves the new curve resists all known attacks on the ECDLP. Fortunately algorithms

exist to accomplish this very task [10].

The conventional wisdom of ECC has been, as described by Koblitz [27]:

• For greatest security choose parameters as randomly as possible

• It is safest to choose the defining equation to have random coefficients

• It is okay to use special curves for reasons of efficiency if you insist, however that

choice may one day come back to bit you

40

Recent work on isogenies in elliptic curve cryptography has shown that there are various

scenarios in which a special curve is better than a random curve. Isogenies, simply put,

allow one to transport the discrete logarithm problem from one curve to another. It is

“random self-reducible” within a set of endomorphism classes with small conductor gaps.

Work in this area has shown that we need to assume that some version of a Weil Descent

attack or another approach someday will lead to a faster-than-sqrt attack on a small but

non-negligible portion of random curves [27].

It is unknown at this time whether random curves are truly more secure than special

curves. Therefore, for control systems for the Smart Grid and NGIPS following the NIST

recommendation seems to be the most prudent.

3.4 Known Attack Mechanisms against ECC

This section presents a basic overview of the theory behind various attacks against ECC,

focusing more on the implications of these attack methods and the countermeasures to

these attacks. Attacks against ECC focus on finding ways to solve the ECDLP in sub-

exponential time. It should be noted that using ECC technologies such as the Elliptic

Curve Digital Signature Algorithm (ECDSA) using any of the SECG recommended

elliptic curve domain parameters [24] will provide protection against all known attacks

(i.e. render these attacks computationally infeasible).

3.4.1 Naïve Method

The most naïve method for solving the ECDLP is to perform an exhaustive search where

one computes the sequence of points 1P, 2P, 3P,…lP until Q is encountered. On average

41

this will take n/2 steps. Therefore the naïve method can be circumvented by selecting

elliptic curve domain parameters with n being sufficiently large to represent an infeasible

number of calculations (e.g. n = 2
80

) [10]. Therefore other methods of solving the

ECDLP must be sought.

The best general-purpose attack known on the ECDLP is the combination of the Pohlig-

Hellman algorithm and Pollard’s rho algorithm. Even these attacks can have an

exponential running time depending on the selection of the domain parameters.

However, it should be noted that there exists no mathematical proof that there does not

exist an efficient algorithm for solving the ECDLP. Some evidence for the intractability

of the ECDLP does exist and researchers have been studying the problem extensively

since 1985 when it was first proposed [10].

3.4.2 Pholig-Hellman Attack

The Pholig-Hellman attack uses an algorithm that reduces the computation of l = log
p
Q

to the computation of discrete logarithms in the prime order subgroups of <P>.

Therefore in order to maximize resistance to the attack domain parameters should be

selected such that the order n of P is divisible by a large prime so that the subgroup field

is large.

3.4.3 Pollard’s rho Attack

The idea of Pollard’s rho attack is to find distinct pairs (c’, d’) and (c’’, d’’) of integers

modulo n such that:

c’P + d’Q = c”P + d”Q

42

Hence l = log
p
Q can be obtained by computing

L = (c’-c”)(d’-d”)
-1

 mod n

This attack on its own takes roughly the same expected time as the naïve method but has

negligible storage requirements [10]. There are multiple ways of speeding up this attack,

including methods of parallelizing the attack to allow multiple processors to work

together to solve an ECDLP instance in which the speedup is linear to the number of

processors used. The processors also do not have to communicate to each other and

need only limited communications to a central server.

3.4.4 Index-Calculus Attacks

Index-calculus algorithms are the most powerful methods known for computing discrete

logarithms in groups such as the multiplicative group of a finite field. The question that

naturally arises is if these algorithms can be used to solve the ECDLP in sub-exponential

time. The problem for the ECDLP is that no one knows how to efficiently lift points in

E(Fp) to E(Q) and it has been proven under some reasonable assumptions that the number

of points of the small height required for these algorithms is extremely small so that only

an insignificant proportion of the points can be lifted. Therefore, so far no one has found

an index-calculus approach that yields a general subexponential-time (or better)

algorithm for the ECDLP [10].

3.4.5 Isomorphism Attacks

Isomorphism attacks essentially try to reduce the ECDLP to the DLP in groups for which

subexponential-time (or faster) algorithms are known. Consequently the ECDLP for

43

curves on which an isomorphism attack are found can be efficiently solved. Weil and

Tate pairing attacks and Weil descent attacks are examples of isomorphism attacks.

3.5 Cryptographic Protocols Useful for Control Systems

As discussed in section 1.3.1 the primary need for control systems is to verify data

integrity and authentication. This need is fulfilled in corporate / non-control systems

through the use of the Digital Signature Algorithm discussed in section 2.3.2.2.

However, as discussed in section 2.3.2.3 the use of this algorithm is infeasible for control

systems. Elliptic curves offer us an alternative path through the use of the Elliptic Curve

Digital Signature Algorithm (ECDSA). There are also a number of other alternative

elliptic curve signature schemes, such as Elliptic Curve ElGamal Signatures (ECES) and

Abbreviated ECES Signatures (AECES). Since ECDSA is approved by NIST and

included in their NSA Suite B it is therefore the most suitable candidate for use in control

systems. The subsections below detail the algorithm, beginning with generating private

and public keys for use in ECDSA.

3.5.1 Key Generation

ECC key pairs are associated with the particular elliptic curve domain parameters used in

the generation of the key pair. The public key is a randomly selected point Q in the

group <P> generated by P. The private key that corresponds to the public key is the

solution to the ECDLP d = log
p
Q. The entity that is generating the key pair must have

the assurance that the domain parameters are valid (i.e. resistant to all known attacks),

44

and the association between the domain parameters and the public key must be verifiable

by all entities in the communication.

In non-control / corporate systems this would normally be done by a certification

authority that generates a certificate attesting to the association between a public key and

its domain parameters. Large scale control systems such as the Smart Grid will need to

perform the same function on some level. For smaller control systems, such as those

planned for use on US Navy ships for NGIPS, this association can be achieved by context

(i.e. all entities in the system use the same domain parameters).

Algorithm 3.5.1.A below illustrates how to generate an ECC key pair assuming valid

domain parameters. It is critical that the number d generated be random, as in the

likelihood that any particular value of d would be chosen over any other value is so small

that an adversary is unable to narrow down the search space for d. This is akin to the idea

that someone should not select a password that includes their spouse’s name.

Algorithm 3.5.1.A [10] – Generating ECC Key Pair

 INPUT: Domain Parameters D = (q, FR, S, a, b, G, n, h)

OUTPUT: Public key Q, Private key d

1. Randomly select d ϵ
R
 [1, n-1]

2. Compute Q = dP

3. Return (Q, d)

Entities that receive a public key Q and a set of associated domain parameters will need

to validate the public key to ensure that the private key actually exists and that the keys

45

lie on the curve. Failure to perform public key validation could allow an attacker to try to

get you to use the invalid public key in such a way that information about your private

key could be revealed. Algorithm 3.5.1.B illustrates how to perform the required

validation.

Algorithm 3.5.1.B [10] – ECC Public Key Validation

 INPUT: Domain Parameters D = (q, FR, S, a, b, G, n, h), public key Q

OUTPUT: Acceptance or rejection of the validity of Q

1. Verify that Q ≠ ∞

2. Verify that x
Q
 and y

Q
 are properly represented elements of Fq (i.e. integers in the

interval [0, q-1] if the field is prime, and bit strings of length m bits if the field is

a binary field of order 2
m

)

3. Verify that Q satisfies the elliptic curve equation defined by a and b

4. Verify that nQ = ∞

5. If any verification fails then return invalid, else return valid

Note that the check is step 4 of Algorithm 3.5.1.B involves an expensive point

multiplication. Faster methods do exist for certain curves. For example, if the cofactor h

of a prime field curve is equal to 1 (which is usually the case in practice and for all of the

SECG recommend prime field curves [24]) then successful completion of the checks in

steps 1 through 3 imply that nQ = ∞ [10].

46

3.5.2 Elliptic Curve Digital Signature Algorithm (ECDSA)

Algorithms 3.5.2A and 3.5.2.B below define how to generate and verify ECDSA

signatures, respectively. In these algorithms, H denotes some cryptographic hash

function whose outputs have bitlength no more than that of n. If this condition is not

satisfied though, the outputs of H can be truncated. More information on hash functions

can be found in section 3.5.3 below.

ECDSA uses a per-message secret k that if discovered by an adversary can be used to

recover the private key since:

d = r
-1

(ks-e) mod n where e = H(m)

Furthermore it has been shown that if an adversary even obtains a few consecutive bits of

the secret k then the adversary can easily compute the private key. It is therefore of

utmost importance that k be randomly and securely generated, securely stored, and

securely destroyed after it has been used. The reason why k should be generated

randomly is to help ensure that k does not repeat. If the same per-message secret k was

used to generate ECDSA signatures (r, s1) and (r, s2) on two messages m1 and m2 then if

s1 ≠ s2 (which with overwhelming probability they will not be equal) it can be shown

that:

k ≡ (s
1
-s

2
)
-1

(e
1
-e

2
) mod n where e

1
 = H(m

1
) and e

2
 = H(m

2
) [10]

Thus an adversary could determine k and then use it to determine the private key d.

47

Algorithm 3.5.2.A [10] – ECDSA Signature Generation

INPUT: Domain Parameters D = (q, FR, S, a, b, P, n, h), private key d, message m

OUTPUT: Signature (r, s)

1. Randomly select k ϵ
R
 [1, n-1]

2. Compute kP = (x
1
, y

1
) and convert x

1
 to an integer x

1

3. Compute r = x
1

 mod n and if r =0 go to step 1

4. Compute e = H(m)

5. Compute s = k
-1

(e + dr) mod n and if s = 0 go to step 1

6. Return (r, s)

Algorithm 3.5.2.B [10] – ECDSA Signature Verification

INPUT: Domain Parameters D = (q, FR, S, a, b, P, n, h), public key Q, message m,

signature (r, s)

OUTPUT: Acceptance or rejection of the signature

1. Verify that r and s are integers in the interval [1, n-1], if any verification fails then

reject the signature

2. Compute e = H(m)

3. Compute w = s
-1

 mod n

4. Compute u
1
 = ew mod n and u

2
 = rw mod n

5. Compute X = u
1
P + u

2
Q

6. If X = ∞ then reject the signature

7. Convert the x-coordinate x
1
 of X to an integer x

1
 ; compute v = x

1
 mod n

48

8. If v = r then accept the signature, else reject

3.5.3 Supported Secure Hash Algorithms

Cryptographic hash functions are used in many applications within ECC, including

verifiably random curve and base point generators, key derivation functions, and

ECDSA. According to the SECG [24] supported hash functions for ECC are:

• SHA-1

• SHA-224

• SHA-256

• SHA-384

• SHA-512

NIST is holding a competition for a new SHA-3 hash function that is scheduled for

completion this year (2012) [28]. Future versions of SECG standards are likely to allow

use of the new SHA-3 [23].

The security level associated with a hash function depends on its application. Collision

resistance is generally needed for computing message digests in ECDSA, and where

collision resistance is needed the security level is at most half the output length (in bits)

of the hash function. Recent results have shown that SHA-1 provides less than 80 bits of

collision resistance [23] and therefore should be used with ECDSA only when providing

backwards compatibility.

49

3.6 Comparing RSA Signatures to ECDSA

It has already been stated that ECDSA offers security equivalent to RSA using much

smaller key sizes which can lead to increased efficiency. Figure 3.6.A below shows a

chart of comparable key sizes for equivalent levels of security. Figures 3.6.B through

3.6.D below show execution times for ECDSA and RSA signature algorithms running

algorithms for key generation, signature generation, and signature verification.

These times were taken from tests performed on an Intel Pentium 4 2.0 GHz machine

with 512MB of RAM, on a 100KB text file used as a message [29]. As discussed

previously though, the architecture for control system components such as PLCs is

radically different than that of an x86 architecture, and therefore these timings only

provide a very basic indication of what the performance of ECC might look like in

control system applications. Further research is required in this area.

Figure 3.6.A ECC vs RSA Comparable Key Sizes (in bits) [29]

50

Figure 3.6.B ECC vs RSA Key Generation [29]

Figure 3.6.C ECC vs RSA Signature Generation [29]

Figure 3.6.D ECC vs RSA Signature Verification [29]

The results show that ECC outperforms RSA significantly in key generation, and

performs signature generation faster than RSA for higher key sizes. RSA outperforms

ECC in signature verification significantly for all key sizes. The times appear to show

that RSA signature verification time is fairly independent of key size and for practical

51

purposes this is true, however this is really just do to the resolution at which testing was

performed (for example RSA signature verification at 7680 bit key size should be

approximately 0.008 seconds while signature verification at 15360 bit key size should be

approximately 0.032 seconds). ECC signature verification grows linearly with an increase

in key size, however the times show that RSA significantly outperforms ECC in this area.

Signature verification is therefore of particular concern in looking at implementing ECC

signature algorithms for control systems. At stronger levels of security with larger key

sizes, ECDSA will outperform RSA for the total message transmission (including both

signature generation and verification) since ECC signature verification timing scales

linearly while RSA signature generation timing scales exponentially (due to the

exponential increase in key sizes) for equivalent levels of security.

A variant of ECDSA, known as the Elliptic Curve Korean Certificate-based Digital

Signature Algorithm (EC-KCDSA) may hold promise if ECDSA does not proof to be

efficient for use in control systems. In EC-KCDSA the signer’s private key is an integer d

ϵ
R
 [1, n-1] as is in ECDSA, but the public key is instead Q= d

-1
P (instead of dP). This

allows for the design of signature generation and verification procedures that do not

require performing modular inversion and therefore could potentially be more applicable

in meeting control system needs should ECDSA prove impractical. EC-KCDSA has

been proven secure under the assumptions that the discrete logarithm problem is

intractable and that the hash function is a random function.

An alternative variant of ECDSA, proposed by Antipa et al (2005) [32], involves

reconstructing the ephermeral elliptic curve point R from the signature component r. In

other words one converts the ECDSA signature (r, s) over some message m to a new

52

ECDSA* signature (R, s). Antipa et al provide a general procedure for this change which

accepts the ECDSA signature as an input, performs the reconstruction/conversion, and

returns either acceptance or rejection of the signature. This speeds up ECDSA signature

verification by 35-40% at the cost of only a small number of bits appended to traditional

ECDSA signatures.

Unfortunately, the EC-KCDSA algorithm and the ECDSA*algorithms are non-compliant

with any of the existing ECDSA standards.

3.7 OpenSSL ECC Implementation

As much as has been discussed up to this point on the underlying mathematics and

implementation theory of ECC and ECDSA in particular most engineers will never

develop their own implementations. They will instead rely on existing implementations

which they will incorporate into their own products. OpenSSL provides a suite of

cryptographic toolkits including toolkits for ECC written in C+ that can be readily

incorporated into new products.

The ECC implementations present in OpenSSL were contributed by Sun (now Oracle)

and offered freely with “patent peace provision” language (meaning they will not sue

anyone for using their implementation and ask, but not require, that you do not sue them

if they use a product you develop with their technology). This implementation was

theoretically written in a way that avoids any patented method by basing the

implementation on the current IETF [26] draft [30]. However the issue of patents

appears to be far from settled, and some versions of Linux such as Red Hat do not include

53

the ECC toolkits in their versions of OpenSSL. There also exist JAVA and .NET

implementations.

While it is true that in control systems the OpenSSL toolkit cannot be used by PLCs

(since they cannot run C+ binaries), VME technologies including SoftPLC may be able

to leverage the OpenSSL implementation. Currently there are no known implementations

of ECC written specifically for control systems that are compliant with IEC 61131-3 or

IEC 61499.

3.8 ECC Certificates

As discussed in section 3.5.1, certificates play a key role in cryptographic systems. In

ECC, they are used in order to associate a public key with a set of domain parameters.

The problem with ECC is that current there are no Certificate Authorities supported by

major web browsers for ECC, causing some to not consider ECC a true public-key

cryptography scheme. SECG is working hard on changing this, establishing itself as an

ECC certificate authority and publishing standards to indicate ECC keys and their usage

within X.509 certificates [31]. However there is still significant work to do in this area in

order to truly make ECC a viable solution for complex control systems such as that in the

Smart Grid. For smaller control systems such as those planned for usage in NGIPS the

lack of a strong ECC certificate authority is not as much of a roadblock.

54

CHAPTER 4: PROPOSAL FOR PROJECT

ECDSA shows promise for use in control systems, however there are a number of

questions that arise from the perspective of a controls engineer such as:

• How difficult will this be to implement?

• What impacts will this have on the performance of my controls algorithms?

• What kind of software maintenance is needed to support ECDSA in control

systems?

• What are the costs of implementing these algorithms?

In order to begin to answer these questions, a prototype control system must be

developed that matches architectures used in real applications to run actual control

algorithms. The goal of the prototype will be to determine the viability of using ECDSA

in control system data authentication and verification.

Given the sheer complexity of developing a brand new implementation of ECDSA in IEC

61131-3 code “proof of concept” studies are needed to more accurately assess the validity

of using ECC technology in control systems before significant time and money are

invested. We propose a project to perform this “proof of concept” testing in which two

SoftPLCs running on VME racks will be configured that utilize the existing

implementations of ECDSA in OpenSSL. Successful “proof of concept” testing will, in

future projects, be followed up by developing an efficient implementation of IEC 61131-

3 code that can be utilized for regular PLCs, opening the door to the widespread

industrial and military adoption of ECC and specifically ECDSA in control systems.

55

The SoftPLCs and VMEs will be configured to match the existing control system

architecture used on some classes of US Navy ships that are already outfitted with an

integrated power system. Siemens WinAC software will be used to run the SoftPLCs,

and sample control algorithms will be developed in IEC 61131-3 compliant code that will

perform simulated functions similar to those that will be required in an NGIPS or Smart

Grid controls system. Siemens WinAC allows a SoftPLC developer to create IEC 61131-

3 code that is capable of calling C+ and JAVA code running on an x86 platform such as

Windows XP. This will enable the utilization of OpenSSL for ECDSA algorithms in the

control system allowing us to perform a series of timing and cryptographic validation

tests. The goal of these tests will be to determine what the impacts will be on the control

system when ECDSA is utilized.

The project will allow the development of a software template that can be easily reused

by control system engineers in other applications at minimal cost. Currently, PLC

instructions such as “MSG” (for message) are used IEC 61131-3 code and with only

minor adjustments communications messages can be programmed between PLCs. This

project will endeavor to create a similar kind of application instruction. The project will

also include additional features beyond messaging such as enhanced alarming functions

that will not only indicate communications status but failures in signature verifications

indicating a potential hardware failure or adversary attack.

A simple HMI application will be developed along with the two SoftPLCs that will

communicate to both and accept simulated inputs from an operator as would be done in a

normal control system. Scripting will be developed in the application to enable the use of

56

ECDSA between the HMI and the SoftPLCs, including the annunciation and

acknowledgement of alarms related to signature verifications.

Prime field ECC will be utilized in the project. Testing will be performed on each of the

five recommended SECG curves in order to establish a relationship between control

system performance and key size.

57

 REFERENCES

1. Bouhafs, F., Mackay, M., Merabti, M. (2012). “Links to the Future.” IEEE Power

and Energy Magazine 1540-7977/12, pp. 24-32

2. Yan, Y., Qian, Y., Sharif, H., Tipper, D. (2012) “A Survey on Smart Grid

Communication Infrastructures: Motivations, Requirements, and Challenges.”

IEEE Communications Surveys & Tutorials, Accepted for Publication 1553-

877X/12

3. Yan, Y., Qian, Y., Sharif, H., Tipper, D. (2012) “A Survey on Cyber Security for

Smart Grid Communications.” IEEE Communications Surveys & Tutorials,

Accepted for Publication 1553-877X/12

4. Liu, Y., Ning, P., Reiter, M. (2009) “False data injection attacks against state

estimation in electric power grids.” In Proc. ACM Conference on Computer and

Communications Security (CCS 09)

5. Baumeister, T. (2011) “Adapting PKI for the Smart Grid.” IEEE

SmartGridComm, 978-1-4577-1702-4/11

6. NISTIR 7628 Volume 1 (2010) “Guidelines for Smart Grid Cyber Security: Vol.

1, Smart Grid Cyber Security Strategy, Architecture, and High-Level

Requirements.”

7. Naval Sea Systems Command (2007) “Next Generation Integrated Power System

Technology Development Roadmap.” Ser 05D/349 of 30 Nov 2007

58

8. Doerry, N., CAPT USN, "Next Generation Integrated Power Systems for the

Future Fleet," Presented at the Corbin A. McNeill Symposium, United States

Naval Academy, Annapolis, MD, March 30, 2009

9. Doerry, N., Scherer, T., Cohen, J., Guertin, N., "Open Architecture Machinery

Control System ," Presented at ASNE Intelligent Ships Symposium 2011, May

25-26, 2011, Philadelphia, PA.

Also Published in ASNE Naval Engineers Journal, Mar 2012, Vol 124 No. 1, pp.

101-114.

10. Hankerson, D., Menezes, A., Vanstone, S. (2004) Guide to Elliptic Curve

Cryptography, ©2004, Springer-Verlag New York, Inc.

11. Wikipedia: RSA Algorithm

(http://en.wikipedia.org/wiki/RSA_%28algorithm%29) Accessed: 3rd July, 2012

12. Wikipedia: Digital Signature Algorithm

(http://en.wikipedia.org/wiki/Digital_Signature_Algorithm) Accessed: 3rd July,

2012

13. Wikipedia: Key Size (http://en.wikipedia.org/wiki/Key_size) Accessed: 3rd July

2012

14. Miller, V.S. (1985). “Use of elliptic curves in cryptography.” Advances in

Cryptology Proc. Crypto ’85, LNCS 218, H.C. Williams, Ed., Springer-Verlag,

pp. 417-426

15. Koblitz, N. (1987). “Elliptic curve cryptosystems.” Mathematics of Computation,

Vol. 48, No. 177, p. 279-287

59

16. ANSI X9.62 (1999). “Public Key Cryptography for the Financial Services

Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)

17. ANSI X9.63 (2000- Working Draft). “Public Key Cryptography for the Financial

Services Industry: Elliptic Curve Key Agreement and Key Transport Protocols.”

18. IEEE 1363-2000 (2000) “Standard Specifications for Public-Key Cryptography.”

19. ISO/IEC 14888-3 (1998). “Information Technology – Security Techniques –

Digital Signatures with Appendix – Part 3: Certificate Based Mechanisms.”

20. ISO/IEC 15946 (1999 – Committee Draft). “Information Technology – Security

Techniques – Cryptographic Techniques Based on Elliptic Curves.”

21. NIST FIPS Pub 186-2 (2000). “Digital Signature Standard.”

22. Standards For Efficient Cryptography Group (SECG) (http://www.secg.org)

Accessed: 9th July 2012

23. SECG SEC 1 Version 2.0 (2009). “SEC 1: Elliptic Curve Cryptography.”

24. SECG SEC 2 Version 2.0 (2010). “SEC 2: Recommended Elliptic Curve Domain

Parameters.”

25. Certicom (http://www.certicom.com) Accessed: 9th July 2012

26. McGrew, D. (IETF) (2009-Working Draft). “Fundamental Elliptic Curve

Cryptography Algorithms.” (http://tools.ietf.org/html/draft-mcgrew-fundamental-

ecc-01) Accessed: 15th May 2012

27. Koblitz, N. (2010) “My Last 24 Years in Crypto: A Few Good Judgments and

Many Bad Ones” (http://2010.eccworkshop.org/slides/Koblitz.pdf)

Accessed: 24
th

 June 2012

60

28. Wikipedia: NIST hash function competition

(http://en.wikipedia.org/wiki/NIST_hash_function_competition) Accessed: 12
th

July 2012

29. Jansma, N., Arrendondo, B. (2004). “Performance Comparison of Elliptic Curve

and RSA Digital Signatures.”

(http://nicj.net/files/performance_comparison_of_elliptic_curve_and_rsa_digital_

signatures.pdf) Accessed 12
th

 July 2012

30. Oracle Labs: FAQ (related to ECC)

(https://labs.oracle.com/projects/crypto/FrequenlyAskedQuestions.html)

Accessed: 12
th

 July 2012

31. SECG X.509 WG Working Group Draft Version 0.2 (1999). “ECC in X.509.”

32. Antipa, A., Brown, D., Gallant, R., Lambert, R., Struik, R., Vanstone, S. (2005).

“Accelerated Verification of ECDSA Signatures.”

(http://www.mathnet.or.kr/mathnet/preprint_file/cacr/2005/cacr2005-28.pdf)

Accessed: 14
th

 July 2012

