
Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

ECE 2620: C++, Data Structures & Algorithms
Linked Lists Using Pointers

Dr. Sarvesh Kulkarni

Department of Electrical & Computer Engineering
Villanova University, Villanova, PA 19085
Email: sarvesh.kulkarni@villanova.edu

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 1 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

Table of Contents

1 Singly Linked Lists (SLLs)
SLL Node Class & Its Use
SL List Class & Its Member Functions

2 Doubly Linked Lists (DLLs)
DLL Node Class
DL List Class & Its Member Functions

3 Circular Lists: CSLLs & CDLLs

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 2 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

Linked Lists

Disadvantages of Automatic Arrays (non-dynamically allocated):

1 Array size must be known at compile time

2 Insertions, deletions (with compacting), reordering of array
elements is computationally expensive

Disadvantage 1 is overcome by using dynamically allocated arrays

But that still does not address disadvantage 2!

However, both disadvantages are overcome if we implement
linked lists ..

As either singly, or doubly linked lists

With dynamic data structures

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 3 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

Singly & Doubly Linked Lists

Figure: Singly Linked List (SLL): Only forward traversal

Figure: Doubly Linked List (DLL): Forward & backward traversal

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 4 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Singly Linked Lists

Let us construct a list of integers (to replace an array of integers),
implemented as an SLL

Suppose our array was previously defined like so:
int info[MAXSIZE];

Then, the equivalent SLL would look like this:

List nodes do not have indices since this is not an array
SLL Nodes are implemented in the class shown on the next slide

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 5 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

A Class for SLL Nodes (in header file sllnode.h)
#ifndef SLL NODE

#define SLL NODE

class intSLLNode { // Objects of this class are nodes in our SLL

friend class intSLList; //so that we may access node members

// in intSLList class that follows

public:

intSLLNode(int el=0, intSLLNode *ptr=nullptr) {

info = el;

next = ptr;

}

protected:

int info; // int type data member

intSLLNode *next; // pointer type data member

};

#endif

Data members may be declared as public, but it is better to declare them

as protected. If they are protected, we must make intSLList class our

friend; else our intSLList class cannot access intSLLNode’s data members
Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 6 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Stringing SLL Nodes Into a List (1)

We can now get the list started:

1 // Declare pointer p capable of pointing to intSLLNode

intSLLNode *p;

2 // Dynamically create new node and make p point to it

// And, initialize info to 10 using class constructor

p = new intSLLNode(10);

The above two steps result in a single-node list:

To initialize ‘info’ and ‘next’ fields, we could have written a member

function, instead of using the constructor (implicitly)

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 7 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Stringing SLL Nodes Into a List (2)

Continuing with the example from the earlier slide ..
3 // Let us add another node with value 8 in the 'info' field:

p->next = new intSLLNode(8);

We get:

4 // Adding a third node with value 15 in the 'info' field:

p->next->next = new intSLLNode(15);

We get:

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 8 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Stringing SLL Nodes Into a List (3)

Now we have three nodes in our list ..

p // points to (1)

p->next // points to (2), same as (*p).next

(p->next)->next // points to (3), = (*((*p).next)).next

((p->next)->next)->next // points to NULL

p->info // has value of 10, same as (*p).info

(p->next)->info // has value of 8, = (*((*p).next)).info

((p->next)->next)->info // has value of 15

(((p->next)->next)->next)->info // is an invalid reference

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 9 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

A Quick Reminder

The following two statements:

intSLLNode *ptr; // declare pointer ptr of type intSLLNode

ptr = nullptr; // point ptr to NULL address

may be replaced by the single statement:

intSLLNode *ptr = nullptr; // declare pointer ptr of type

// intSLLNode AND point it to NULL

// address

To simplify matters and to promote data abstraction, we now
define the class intSLList on the next slide

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 10 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Class To Manage List of SLL Nodes (in header file sllist.h) (1)

#ifndef SLL

#define SLL

// An object of this class is a list of nodes of type intSLLNode

// defined in slide 6

class intSLList {

public:

intSLList() {head= tail= nullptr;}

~intSLList();

bool isEmpty() {return (head == nullptr);}

void addToHead(int);

void addToTail(int);

int deleteFromHead(); //delete head & return its info

int deleteFromTail(); //delete tail & return its info

void deleteNode(int);

bool isInList(int) const;

private:

intSLLNode *head, *tail;

};

#endif

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 11 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

The intSLList Class’s Destructor (2)

intSLList::~intSLList() {

for (intSLLNode *p; !isEmpty(); head = p;) {

p = head->next;

delete head;

} // for

tail = nullptr; // No need to set tail ptr to NULL; WHY?

}

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 12 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Strategy Sketch for Member Function addToHead (3)

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 13 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Strategy Sketch for Member Function addToTail (4)

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 14 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Member Functions addToHead & addToTail (5)

All member functions go in the file sllist.cc

The code: the addToHead member function

void intSLList::addToHead(int el) {

head = new intSLLNode(el,head); // Understand this

if (tail == nullptr) tail = head;

}

The code: the addToTail member function

void intSLList::addToTail(int el) {

if (tail != nullptr) { // if list is not empty

tail->next = new intSLLNode(el);

tail = tail->next;

}

else head = tail = new intSLLNode(el);

}

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 15 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Strategy: The “Before” & “After” Sketches (6)

Figure: Use this template to sketch your strategy

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 16 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Member Function deleteFromHead (7)

Sketch your strategy first; use template on previous slide

int intSLList::deleteFromHead() {

if(!isEmpty()) {

int el = head->info;

intSLLNode *tmp = head;

if (head == tail) // i.e. if only 1 node in list

head = tail = nullptr;

else

head = head->next;

delete tmp;

return (el);

}

else throw(EMPTY_LIST);

// where, EMPTY_LIST is declared (somewhere globally) as ..

// const int EMPTY_LIST = 1;

}

throw throws an exception called “EMPTY LIST”. A try-catch
clause around the fn call must “catch” this exception; see next slide

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 17 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

try-catch Clause in Fn Call to deleteFromHead (8)

void foo() { // or, int main()

: :

int val;

try {

val = list.deleteFromHead(); // call to member fn

} catch (int error_code)

{

cerr << " Error: " << error_code << endl;

switch (error_code)

{ // DO SOMETHING IN RESPONSE TO THE ERROR HERE

: :

}

} // catch ends

: :

}

NOTE: cerr is unbuffered output, unlike cout
If the try-catch exception handler is missing, a thrown exception will cause a program

crash. The programmer must handle the exception gracefully once it is caught!

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 18 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Member Function deleteFromTail (9)

Sketch your strategy first; use template on slide 16

int intSLList::deleteFromTail() {

if(!isEmpty()) {

int el = tail->info;

if (head == tail) { // i.e. if only 1 node in list

delete tail;

head = tail = nullptr;

}

else { // i.e if there is more than 1 node in the list

intSLLNode *tmp;

// find predecessor of tail before deleting tail

for (tmp=head; tmp->next!=tail; tmp=tmp->next);

delete tail;

tail = tmp; // the predecessor of tail becomes tail

tail->next = nullptr;

}

return (el);

}

else throw(EMPTY_LIST);

}

throw throws an exception called “EMPTY LIST”. A try-catch
clause around the fn call must “catch” this exception; see next slide

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 19 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Member Function isInList (10)

bool intSLList::isInList(int el) const {

intSLLNode *tmp;

for (tmp = head; tmp != nullptr && tmp->info != el;

tmp = tmp->next);

return (tmp != nullptr);

}

NOTE:

The const keyword (in the 1st line, after the input parameter list)
disallows this member fn from altering any data members (i.e.
head & tail pointers) in class intSLList

In short, the data members of this class are treated as constants in
this member fn.

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 20 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Member Function isInList (11)

Observations on this slide refer to the example from the previous slide

The statement:
return (tmp != nullptr);

may also be written as:
if (tmp != nullptr) return true;

else return false;

We cannot replace the code above (to determine whether the
element has been found), with the following code:
if (tmp->info == el) return true;

else return false;

because it will cause a seg-fault if the list is empty, or if the
element is not found (since, in those cases, tmp points to a NULL
address after the for loop terminates)

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 21 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Member Function deleteNode (12)

void intSLList::deleteNode(int el) {

if (head != nullptr) // if nonempty list

if (head == tail && el == head->info) { // 1 node in list

delete head;

head = tail = nullptr;

}

else {

if (el == head->info) { // if > 1 node is in list

intSLLNode *tmp = head; // and if el is in head node

head = head->next; // then advance head ptr

delete tmp; // and delete old head node

}

else { // > 1 node in list, & element is not in head

intSLLNode *pred, *tmp;

for (pred = head, tmp = head->next;

tmp != nullptr && tmp->info != el;

pred = pred->next, tmp = tmp->next); //loop ends

if (tmp != nullptr) { // 'tmp->info == el' is true

pred->next = tmp->next;

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 22 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Member Function deleteNode (contd.) (13)

// contd. from previous slide .

if (tmp == tail) tail = pred;

delete tmp; // and delete non-head node

} // inner else ends

} // outer else ends

} fn ends

Here too, a seg-fault is imminent if we replace the test shown in
red on previous slide with:
if (tmp->info == el)

So, be sure to avoid that pitfall!

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 23 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Concluding Notes on the intSLList class

To create an object called lst from the class intSLList:
intSLList lst;

The SLL implementation we just saw uses two classes:

The list nodes created from class intSLLNode

The head and tail pointers from class intSLList that point to
the first and last nodes of the list

List nodes cannot be accessed without using head or tail
pointers which are private data members of class intSLList;
thus only member fns from the same class may access them

Since only head & tail pointers can provide access to list nodes,
some textbooks designate data members as ‘public’ without
violating information hiding principles. While this approach is
fine, it is better to declare data members as ‘protected’

If data members of intSLLNode were ‘private’ then classes
derived from intSLLNode would not be able to access them

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 24 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Asymptotic Time Complexity of SLL Operations

Asymptotic running time complexity ..

Creation of (empty) list:

Creation of node:

Insertion at head of list:

Insertion at tail of list:

Deletion at head of list:

Deletion at tail of list:

Insertion or deletion in middle of list:

Search nodes in list:

Destruction of list:

What about average case run-times?

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 25 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

SLL Node Class & Its Use
SL List Class & Its Member Functions

Asymptotic Time Complexity of SLL Operations

Asymptotic running time complexity ..

Creation of (empty) list: O(1)

Creation of node: O(1)

Insertion at head of list: O(1)

Insertion at tail of list: O(1)

Deletion at head of list: O(1)

Deletion at tail of list: O(n)

Insertion or deletion in middle of list: O(n)

Search nodes in list: O(n)

Destruction of list: O(n)

What about average case run-times?

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 26 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

DLL Node Class
DL List Class & Its Member Functions

Doubly Linked Lists (DLLs)

We will create a DLL using a strategy that is very similar to that
used in SLLs except that:

Each node now has two pointers (prev, next) instead of one

Therefore, the new default constructor takes three input
parameters, not two

Operations near or just before the list’s tail can be done easily
using the tail pointer instead of having to traverse the list
from head to tail

Data member info is declared to be of generic type T instead
of int
Thus, templates make the list flexible enough to store any
kind of data, not just integers

Our SLL code can be easily modified to use templates too!

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 27 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

DLL Node Class
DL List Class & Its Member Functions

A Class for DLL Nodes (in header file dllnode.h) (1)

#ifndef DLL NODE

#define DLL NODE

template <typename T>

class DLLNode { // Objects of this class are nodes in our DLL

template<typename U> // Since DLL class is templated

friend class DLL; // To allow access to protected node

// members from DLL class

public:

DLLNode(const T& el, DLLNode *n=nullptr, DLLNode *p=nullptr)

{

info = el;

next = n;

prev = p;

}

protected:

T info; // generic type data

DLLNode *next, *prev; // ptrs to next, prev nodes

};

#endif
Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 28 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

DLL Node Class
DL List Class & Its Member Functions

Class To Manage List of DLL Nodes (in header file dllist.h) (2)

#ifndef DLL

#define DLL

template<typename T>

class DLL { // Declaration for class DLL

public:

DLL() { head = tail = nullptr; }

void addToDLLTail(const T&);

T deleteFromDLLTail();

: :

private:

DLLNode<T> *head, *tail; // Again, note the '<T>'
};

// Since we are using templates, member fn definitions go HERE,

// and not in a .cc file

#endif // NOTE: 'ifndef' ends AFTER member fn definitions

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 29 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

DLL Node Class
DL List Class & Its Member Functions

Strategy: The “Before” & “After” Sketches (3)

Figure: Use this template to sketch your strategy

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 30 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

DLL Node Class
DL List Class & Its Member Functions

Member Function addToTail (4)

Sketch your strategy first; use template on previous slide

template<typename T>

void DLL<T>::addToDLLTail(const T& el) {

if (tail != nullptr) {

tail = new DLLNode<T>(el, nullptr, tail);

tail->prev->next = tail;

}

else head = tail = new DLLNode<T>(el);

}

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 31 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

DLL Node Class
DL List Class & Its Member Functions

Member Function deleteFromTail (5)

Sketch your strategy first; use template on slide 30

template<typename T>

T DLL<T>::deleteFromTail() {

if (head != nullptr) { // if non-empty list

T el = tail->info;

if (head == tail) { // if list has just one node

delete tail;

head = tail = nullptr;

}

else { // if list has >1 node

tail = tail->prev;

delete tail->next;

tail->next = nullptr;

}

return el;

}

else throw(EMPTY_LIST);

}

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 32 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

DLL Node Class
DL List Class & Its Member Functions

Asymptotic Time Complexity of DLL Operations

Asymptotic running time complexity ..

Creation of (empty) list:

Creation of node:

Insertion at head of list:

Insertion at tail of list:

Deletion at head of list:

Deletion at tail of list:

Insertion or deletion in middle of list:

Search nodes in list:

Destruction of list:

What about average case run-times?

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 33 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

Circular Lists: CSLLs & CDLLs

Figure: A Circular Singly Linked List (CSLL)

Figure: A Circular Doubly Linked List (CDLL)

Successor of the tail is always the head; head ptr is not needed
Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 34 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

CSLL: Node Insertion

Figure: (a) Insertion at front (b) Insertion at rear

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 35 / 36



Singly Linked Lists (SLLs)
Doubly Linked Lists (DLLs)

Circular Lists: CSLLs & CDLLs

Practice!

Do the following:

Use the nodes from intSLLNode class to create a CSLL class ..

Start by writing the declaration for a CSLL class, and then rewrite
all the member functions that you wrote for the intSLList class. Be
sure to sketch the “before” and “after” cases prior to writing code

Dr. Sarvesh Kulkarni, ECE Dept., Villanova University ECE 2620 - Set 5: Linked Lists Using Pointers 36 / 36


	Singly Linked Lists (SLLs)
	SLL Node Class & Its Use
	SL List Class & Its Member Functions

	Doubly Linked Lists (DLLs)
	DLL Node Class
	DL List Class & Its Member Functions

	Circular Lists: CSLLs & CDLLs

