OSTEP Chapter 40

ECE 3600, Fall 2022

Table of Contents

1. File System Implementation
2. Inode Contents

3. Directories

4. Open and Read Access Paths
5. Create and Write Access Paths
6. Exercises

file:///home/perry/tmp/os/Chapters/40-file-implementation/print_1.html
file:///home/perry/tmp/os/Chapters/40-file-implementation/print_1.html
file:///home/perry/tmp/os/Chapters/40-file-implementation/print_2.html
file:///home/perry/tmp/os/Chapters/40-file-implementation/print_2.html
file:///home/perry/tmp/os/Chapters/40-file-implementation/print_3.html
file:///home/perry/tmp/os/Chapters/40-file-implementation/print_3.html
file:///home/perry/tmp/os/Chapters/40-file-implementation/print_4.html
file:///home/perry/tmp/os/Chapters/40-file-implementation/print_4.html
file:///home/perry/tmp/os/Chapters/40-file-implementation/print_5.html
file:///home/perry/tmp/os/Chapters/40-file-implementation/print_5.html
file:///home/perry/tmp/os/Chapters/40-file-implementation/print_6.html
file:///home/perry/tmp/os/Chapters/40-file-implementation/print_6.html

1. File System Implementation

Example with 64 blocks, block size 4 KB:

AN IEEEEEEENIEEEEEEENIEEEEEEEE
0 7 8 1516 23 24 31

HNEEEEENIEEEEEEENEEEEEEENEEEEEEEE
32 39 40 47 48 55 56 63

One block each for superblock, inode bitmap, data bitmap.

5 blocks for inode table (256 bytes per inode, 16 inodes per block), 56 blocks for file data:

~ Inodes . Data Region
EI_ TUTU[UIU[U[UIUTUI [DIDID[D[DID[DID] IUIU[U[DTUIU[W
15 16 23 24
Data Region

39 40 47 48 55 56 63

The Inode Table (Closeup)
' iblock 0 | iblock 1 | iblock 2 | iblock 3 ! iblock 4

0[1[2[3[16[17[18]19[32333435/48[A950p 164656667
. 41567 |20[21[22]23}36}37}38[39]52}53]54]55[68[69]70[71
RNIUE IR MUE NN 5 15 70/77]2425/26]27/40/4 11421435657[5859]72]73]74]75
12[13]14/15[28]29(30[31]44/45/4647|60|6 1/62|6 3{76/77|78|79)

OKB 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB

Super

Reading an inode: address = 12KB + 256 * inumber; block = address / 4KB; offset

address % 4KB

2. Inode Contents

stat() shows subset of the inode contents; also see inode(7)

mode includes file type

Size Name What is this inode field for?
2 mode can this file be read /written /executed?
2 ud who owns this file?
4 size how many bytes are in this file?
4 time what time was this file last accessed?
4 ctime what time was this file created?
4 mtime what time was this file last modified?
4 dtime what time was this inode deleted?
2 gid which group does this file belong to?
2 links.count how many hard links are there to this file?
4 Dblocks how many blocks have been allocated to this file?
4 flags how should ext2 use this inode?
4 osdl an OS-dependent field
60 block a set of disk pointers (15 total)
4 generation file version (used by NFS)
4 file_acl a new permissions model beyond mode bits
4 dir._acl called access control lists

Figure 40.1: Simplified Ext2 Inode

Multi-level indexing for larger files: indirect block pointers, double indirect, triple indirect

3. Directories

Directories are just files with a special structure.

inum |
5
2
12
13
24

reclen

12
12
12
12
36

strlen

2
3
4
4
28

name

foo
bar
foobar_is_a_pretty_longname

4. Open and Read Access Paths

open("/foo/bar", 0 RDONLY)

data inode
bitmap bitmap

root foo

bar

inode inode inode

root foo bar bar bar
data data data data data

0] 11 [2]

read
read
open(bar) read
read
read
read
read() read
write
read
read() read
write
read
read() read
write

Figure 40.3: File Read Timeline (Time Increasing Downward)

5. Create and Write Access Paths

data

inode

bitmap bitmap

root

inode inode inode

foo

bar

root foo bar bar bar
data data data data data

0]] [2]

read
read
read
read
create read
(/foo/bar) write
write
read
write
write
read
read
write() write
write
write
read
read
write() write
write
write
read
read
write() write
write
write

Figure 40.4: File Creation Timeline (Time Increasing Downward)

6. Exercises
Exercises from the book using vsfs.py:
$ python ./vsfs.py -n 4
Initial state

inode bitmap 10000000

inodes [d a:0 r:2] [1 [1 01 010101101
data bitmap 10000000

data [¢.,0) (..,0)1 [1 [T [1 10111 [1 11

Which operation took place?

inode bitmap 11000000

inodes [d @:0 r:3] [d a:1 r:2] []1 [1 [1 [] I1 [1

data bitmap 11000000

data [¢c.,0) (..,0) (g, 1)1 [(.,1) (..,0)1 [1 [T [T [T [T I1

Which operation took place?
inode bitmap 11100000
inodes [d a:0 r:3] [d a:1 r:2] [f a:-1 r:1] []1 [1 [1 [1 []

data bitmap 11000000
data [(¢..e) (..,0) (g9,1) (a,2)1 [(.,1) (..,0)1 [T [T [T [T [T []

Which operation took place?
inode bitmap 11110000
inodes [d a:0 r:3] [d a:1 r:2] [f a:-1 r:1] [f a:-1 r:1] [1 []1 [1 I1

data bitmap 11000000
data [c.,o) ¢..,0) (9,1) (q,2) (u,3)1 [(.,1) (..,0)17 [1 [1 [1 11101

Which operation took place?
inode bitmap 11110000
inodes [d a:0 r:3] [d a:1 r:2] [f a:-1 r:1] [f a:-1 r:2] [] [] [1 []

data bitmap 11000000
data [(¢.,0) ¢..,0) (g,1) (q,2) (u,3) (x,3)1 [(.,1) (..,0)] [1 [T [1 [1 [1 (1

$ python ./vsfs.py -n 4 -r

Initial state

inode bitmap 10000000

inodes [da:0 r:2] [1 [1 [1 [1 [1 [1 Il

data bitmap 10000000

data [(¢.,0) (..,0)1 [1 [1 0101 1110110

mkdir("/g"); State of file system (inode bitmap, inodes, data bitmap, data)?
creat("/q");

creat("/u");

llnk(”/U" , "/X") :

