
42 CommUniCations of the aCm | SepTeMBeR 2011 | Vol. 54 | no. 9

practice

infOrmatiOn teChnOlOgY (it) BOth drives and
implements the modern Western-style economy.
Thus, we regularly see headlines about staggeringly
large amounts of money connected with IT mistakes.
Which IT or CS decision has resulted in the most
expensive mistake?

Not long ago, a fair number of pundits were doing
a lot of hand waving about the financial implications
of Sony’s troubles with its PlayStation Network,
but an event like that does not count here. In my
school days, I talked with an inspector from The
Guinness Book of World Records who explained that
for something to be “a true record,” it could not be
a mere accident; there had to be direct causation
starting with human intent (such as, we stuffed
26 high-school students into our music

teacher’s Volkswagon Beetle and
closed the doors).

Sony (probably) did not intend to
see how big a mess it could make
with the least attention to security, so
this and other such examples of false
economy will not qualify. Another
candidate could be IBM’s choice of
Bill Gates over Gary Kildall to supply
the operating system for its personal
computer. The damage from this deci-
sion is still accumulating at breakneck
speed, with StuxNet and the OOXML
perversion of the ISO standardization
process being exemplary bookends for
how far and wide the damage spreads.
But that was not really an IT or CS deci-
sion. It was a business decision that, as
far as history has been able to uncover,
centered on Kildall’s decision not to
accept IBM’s nondisclosure demands.

A better example would be the deci-
sion for MS-DOS to invent its own di-
rectory/filename separator, using the
backslash (\) rather than the forward
slash (/) that Unix used or the period
that DEC used in its operating sys-
tems. Apart from the actual damage
being relatively modest, however, this
does not qualify as a good example ei-
ther because it was not a real decision
selecting a true preference. IBM had
decided to use the slash for command
flags, eliminating Unix as a precedent,
and the period was used between file-
name and filename extension, making
it impossible to follow DEC’s example.

Space exploration history offers a
pool of well-publicized and expensive
mistakes, but interestingly, I did not
find any valid candidates there. For-
tran syntax errors and space shuttle
computer synchronization mistakes
do not qualify for lack of intent. Run-
ning one part of a project in impe-
rial units and the other in metric is a
“random act of management” that has
nothing to do with CS or IT.

The best candidate I have been able
to come up with is the C/Unix/Posix
use of NUL-terminated text strings.
The choice was really simple: Should
the C language represent strings as an
address + length tuple or just as the

Doi:10.1145/1995376.1995391

 Article development led by
 queue.acm.org

Did Ken, Dennis, and Brian choose wrong
with NUL-terminated text strings?

BY PoUL-henninG KamP

the most
expensive
one-Byte
mistake

SepTeMBeR 2011 | Vol. 54 | no. 9 | CommUniCations of the aCm 43

i
l

l
u

s
t

r
a

t
i

o
n

 b
y

 g
a

r
y

 n
e

i
l

l

address with a magic character (NUL)
marking the end? This is a decision
that the dynamic trio of Ken Thomp-
son, Dennis Ritchie, and Brian Ker-
nighan must have made one day in the
early 1970s, and they had full freedom
to choose either way. I have not found
any record of the decision, which I ad-
mit is a weak point in its candidacy:
I do not have proof that it was a con-
scious decision.

As far as I can determine from my
research, however, the address +
length format was preferred by the
majority of programming languages at
the time, whereas the address + mag-
ic _ marker format was used mostly
in assembly programs. As the C lan-
guage was a development from assem-
bly to a portable high-level language,
I have a difficult time believing Ken,
Dennis, and Brian gave it no thought.

Using an address + length for-
mat would cost one more byte of
overhead than an address + mag-
ic _ marker format, and their PDP
computer had limited core memory.
In other words, this could have been a
perfectly typical and rational IT or CS
decision, like the many similar deci-
sions we all make every day; but this
one had quite atypical economic con-
sequences.

Hardware development costs. Ini-
tially, Unix had little impact on hard-
ware and instruction set design. The
CPUs that offered string manipula-
tion instructions—for example, Z-80
and DEC VAX—did so in terms of the
far more widespread adr+len model.
Once Unix and C gained traction, how-
ever, the terminated string appeared
on the radar as an optimization tar-
get, and CPU designers started to add

instructions to deal with them. One
example is the Logical String Assist
instructions IBM added to the ES/9000
520-based processors in 1992.1

Adding instructions to a CPU is not
cheap, and it happens only when there
are tangible and quantifiable mon-
etary reasons to do so.

Performance costs. IBM added in-
structions to operate on NUL-termi-
nated strings because its customers
spent expensive CPU cycles handling
such strings. That bit of information,
however, does not tell us if fewer CPU
cycles would have been required if a
ptr+len format had been used.

Thinking a bit about virtual mem-
ory (VM) systems settles that question
for us. Optimizing the movement of a
known-length string of bytes can take
advantage of the full width of memory
buses and cache lines, without ever

44 CommUniCations of the aCm | SepTeMBeR 2011 | Vol. 54 | no. 9

practice

Security costs. Even if your compil-
er does not have hostile intent, source
code should be written to hold up to
attack, and the NUL-terminated string
has a dismal record in this respect. Ut-
ter security disasters such as gets(3),
which “assume the buffer will be large
enough,” are a problem “we have rela-
tively under control.”3

Getting it under control, however,
takes additions to compilers that
would complain if the gets(3) func-
tion were called. Despite 15 years of
attention, over- and underrunning
string buffers is still a preferred attack
vector for criminals, and far too often
it pays off.

Mitigation of these risks has been
added at all levels. Long-missed no-
execute bits have been added to CPUs’
memory management hardware; op-
erating systems and compilers have
added address-space randomization,
often at high costs of performance;
and static and dynamic analyses of
programs have soaked up countless
hours, trying to find out if the byzan-
tine diagnostics were real bugs or clev-
er programming.

Yet, absolutely nobody would be
surprised if Sony’s troubles were re-
vealed to start with a buffer overflow or
false NUL-termination assumption.

slashdot sensation
Prevention section
We learn from our mistakes, so let me
say for the record, before somebody
comes up with a catchy but totally
misleading Internet headline for this
article, that there is absolutely no way
Ken, Dennis, and Brian could have
foreseen the full consequences of their
choice some 30 years ago, and they dis-
claimed all warranties back then. For
all I know, it took at least 15 years be-
fore anybody realized why this subtle
decision was a bad idea, and few, if
any, of my own IT decisions have stood
up that long.

In other words, Ken, Dennis, and
Brian did the right thing.

But that Doesn’t solve the Problem
To a lot of people, C is a dead lan-
guage, and ${lang} is the language of
the future, for ever-changing transient
values of ${lang}. The reality of the
situation is that all other languages
today directly or indirectly sit on top

touching a memory location that is
not part of the source or destination
string.

One example is FreeBSD’s libc,
where the bcopy(3)/memcpy(3) im-
plementation will move as much data
as possible in chunks of “unsigned
long,” typically 32 bits or 64 bits, and
then “mop up any trailing bytes” as the
comment describes it, with byte-wide
operations.2

If the source string is NUL terminat-
ed, however, attempting to access it in
units larger than bytes risks attempt-
ing to read characters after the NUL. If
the NUL character is the last byte of a
VM page and the next VM page is not
defined, this would cause the process
to die from an unwarranted “page not
present” fault.

Of course, it is possible to write
code to detect that corner case before
engaging the optimized code path, but
this adds a relatively high fixed cost to
all string moves just to catch this un-
likely corner case—not a profitable
trade-off by any means.

If we have out-of-band knowledge
of the strings, things are different.

Compiler development cost. One
thing a compiler often knows about a
string is its length, particularly if it is
a constant string. This allows the com-
piler to emit a call to the faster mem-
cpy(3) even though the programmer
used strcpy(3) in the source code.

Deeper code inspection by the
compiler allows more advanced opti-
mizations, some of them very clever,
but only if somebody has written the
code for the compiler to do it. The de-
velopment of compiler optimizations
has historically been neither easy nor
cheap, but obviously Apple is hoping
this will change with Low-level Virtual
Machine (LLVM), where optimizers
seem to come en gros.

The downside of heavy-duty com-
piler optimization—in particular, op-
timizations that take holistic views
of the source code and rearrange it
in large-scale operations—is that
the programmer must be really care-
ful that the source code specifies his
or her complete intention precisely.
A programmer who worked with the
compilers on the Convex C3800 series
supercomputers related his experi-
ence as “having to program as if the
compiler was my ex-wife’s lawyer.”

of Posix API and the NUL-terminated
string of C.

When your Java, Python, Ruby,
or Haskell program opens a file, its
runtime environment passes the file-
name as a NUL-terminated string to
open(3), and when it resolves cacm.
acm.org to an IP number, it passes
the host name as a NUL-terminated
string to getaddrinfo(3). As long
as you keep doing that, you retain all
the advantages when running your
programs on a PDP/11, and all of the
disadvantages if you run them on any-
thing else.

I could write a straw-man API pro-
posal here, suggest representations,
operations, and error-handling strate-
gies, and I am quite certain it would be
a perfectly good waste of a nice after-
noon. Experience shows that such pro-
posals go nowhere because the back-
ward compatibility with the PDP/11
and the finite number of programs
written are much more important than
the ability to write the potentially infi-
nite number of programs in the future
in an efficient and secure way.

Thus, the costs of the Ken, Dennis,
and Brian decision will keep accumu-
lating, like the dust that over the cen-
turies has almost buried the monu-
ments of ancient Rome.

 Related articles
 on queue.acm.org

Massively Multiplayer Middleware
Michi Henning
http://queue.acm.org/detail.cfm?id=971591

The Seven Deadly Sins of Linux Security
Bob Toxen
http://queue.acm.org/detail.cfm?id=1255423

B.Y.O.C. (1,342 Times and Counting)
Poul-Henning Kamp
http://queue.acm.org/detail.cfm?id=1944489

References

1. Computer business review. Partitioning and escon
enhancements for top-end es/9000s (1992); http://
www.cbronline.com/news/ibm_announcements_71.

2. ViewVC. Contents of /head/lib/libc/string/bcopy.c
(2007); http://svnweb.freebsd.org/base/head/lib/libc/
string/bcopy.c?view=markup.

3. Wikipedia. lifeboat sketch (2011); http://en.wikipedia.
org/wiki/lifeboat_sketch.

Poul-henning Kamp (phk@FreebsD.org) has
programmed computers for 26 years and is the inspiration
behind bikeshed.org. his software has been widely
adopted as “under the hood” building blocks in both open
source and commercial products. his most recent project
is the Varnish httP accelerator, which is used to speed up
large Web sites such as Facebook.

© 2011 aCM 0001-0782/11/09 $10.00

