
ISO/IEC 9899:2017 C17 ballot N2176

ULONG_MAX 4294967295 // 232 − 1

— minimum value for an object of type long long int

LLONG_MIN -9223372036854775807 // −(263 − 1)

— maximum value for an object of type long long int

LLONG_MAX +9223372036854775807 // 263 − 1

— maximum value for an object of type unsigned long long int

ULLONG_MAX 18446744073709551615 // 264 − 1

2 If an object of type char can hold negative values, the value of CHAR_MIN shall be the same as that of
SCHAR_MIN and the value of CHAR_MAX shall be the same as that of SCHAR_MAX. Otherwise, the value
of CHAR_MIN shall be 0 and the value of CHAR_MAX shall be the same as that of UCHAR_MAX.20) The
value UCHAR_MAX shall equal 2CHAR

_BIT − 1.

Forward references: representations of types (6.2.6), conditional inclusion (6.10.1).

5.2.4.2.2 Characteristics of floating types <float.h>
1 The characteristics of floating types are defined in terms of a model that describes a representation

of floating-point numbers and values that provide information about an implementation’s floating-
point arithmetic.21) The following parameters are used to define the model for each floating-point
type:

s sign (±1)
b base or radix of exponent representation (an integer > 1)
e exponent (an integer between a minimum emin and a maximum emax)
p precision (the number of base-b digits in the significand)
fk nonnegative integers less than b (the significand digits)

2 A floating-point number (x) is defined by the following model:

x = sbe
p∑
k=1

fkb
−k, emin ≤ e ≤ emax

3 In addition to normalized floating-point numbers (f1 > 0 if x 6=0), floating types may be able to
contain other kinds of floating-point numbers, such as subnormal floating-point numbers (x 6= 0,
e = emin, f1 = 0) and unnormalized floating-point numbers (x 6= 0, e > emin, f1 = 0), and values
that are not floating-point numbers, such as infinities and NaNs. A NaN is an encoding signifying
Not-a-Number. A quiet NaN propagates through almost every arithmetic operation without raising a
floating-point exception; a signaling NaN generally raises a floating-point exception when occurring
as an arithmetic operand.22)

4 An implementation may give zero and values that are not floating-point numbers (such as infinities
and NaNs) a sign or may leave them unsigned. Wherever such values are unsigned, any requirement
in this International Standard to retrieve the sign shall produce an unspecified sign, and any
requirement to set the sign shall be ignored.

5 The minimum range of representable values for a floating type is the most negative finite floating-
point number representable in that type through the most positive finite floating-point number
representable in that type. In addition, if negative infinity is representable in a type, the range of

20)See 6.2.5.
21)The floating-point model is intended to clarify the description of each floating-point characteristic and does not require

the floating-point arithmetic of the implementation to be identical.
22)IEC 60559:1989 specifies quiet and signaling NaNs. For implementations that do not support IEC 60559:1989, the terms

quiet NaN and signaling NaN are intended to apply to encodings with similar behavior.

22 Environment § 5.2.4.2.2

N2176 C17 ballot ISO/IEC 9899:2017

that type is extended to all negative real numbers; likewise, if positive infinity is representable in a
type, the range of that type is extended to all positive real numbers.

6 The accuracy of the floating-point operations (+ ,- , * , /) and of the library functions in <math.h>
and <complex.h> that return floating-point results is implementation-defined, as is the accuracy of
the conversion between floating-point internal representations and string representations performed
by the library functions in <stdio.h>, <stdlib.h>, and <wchar.h>. The implementation may state
that the accuracy is unknown.

7 All integer values in the <float.h> header, except FLT_ROUNDS, shall be constant expressions
suitable for use in #if preprocessing directives; all floating values shall be constant expressions. All
except DECIMAL_DIG, FLT_EVAL_METHOD, FLT_RADIX, and FLT_ROUNDS have separate names for all
three floating-point types. The floating-point model representation is provided for all values except
FLT_EVAL_METHOD and FLT_ROUNDS.

8 The rounding mode for floating-point addition is characterized by the implementation-defined
value of FLT_ROUNDS:23)

−1 indeterminable

0 toward zero

1 to nearest

2 toward positive infinity

3 toward negative infinity

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

9 Except for assignment and cast (which remove all extra range and precision), the values yielded
by operators with floating operands and values subject to the usual arithmetic conversions and of
floating constants are evaluated to a format whose range and precision may be greater than required
by the type. The use of evaluation formats is characterized by the implementation-defined value of
FLT_EVAL_METHOD:24)

−1 indeterminable;

0 evaluate all operations and constants just to the range and precision of the type;

1 evaluate operations and constants of type float and double to the range and precision of
the double type, evaluate long double operations and constants to the range and precision
of the long double type;

2 evaluate all operations and constants to the range and precision of the long double type.

All other negative values for FLT_EVAL_METHOD characterize implementation-defined behavior.

10 The presence or absence of subnormal numbers is characterized by the implementation-defined
values of FLT_HAS_SUBNORM, DBL_HAS_SUBNORM, and LDBL_HAS_SUBNORM:

−1 indeterminable25)

0 absent (type does not support subnormal numbers)26)

23)Evaluation of FLT_ROUNDS correctly reflects any execution-time change of rounding mode through the function
fesetround in <fenv.h>.

24)The evaluation method determines evaluation formats of expressions involving all floating types, not just real
types. For example, if FLT_EVAL_METHOD is 1, then the product of two float _Complex operands is represented in the
double _Complex format, and its parts are evaluated to double.

25)Characterization as indeterminable is intended if floating-point operations do not consistently interpret subnormal
representations as zero, nor as nonzero.

26)Characterization as absent is intended if no floating-point operations produce subnormal results from non-subnormal
inputs, even if the type format includes representations of subnormal numbers.

§ 5.2.4.2.2 Environment 23

ISO/IEC 9899:2017 C17 ballot N2176

1 present (type does support subnormal numbers)

11 The values given in the following list shall be replaced by constant expressions with implementa-
tion-defined values that are greater or equal in magnitude (absolute value) to those shown, with the
same sign:

— radix of exponent representation, b

FLT_RADIX 2

— number of base-FLT_RADIX digits in the floating-point significand, p

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

— number of decimal digits, n, such that any floating-point number with p radix b digits can be
rounded to a floating-point number with n decimal digits and back again without change to
the value,{

p log10 b if b is a power of 10

d1 + p log10 be otherwise

FLT_DECIMAL_DIG 6
DBL_DECIMAL_DIG 10
LDBL_DECIMAL_DIG 10

— number of decimal digits, n, such that any floating-point number in the widest supported
floating type with pmax radix b digits can be rounded to a floating-point number with n decimal
digits and back again without change to the value,{

pmax log10 b if b is a power of 10

d1 + pmax log10 be otherwise

DECIMAL_DIG 10

— number of decimal digits, q, such that any floating-point number with q decimal digits can be
rounded into a floating-point number with p radix b digits and back again without change to
the q decimal digits,{

p log10 b if b is a power of 10

b(p− 1) log10 bc otherwise

FLT_DIG 6
DBL_DIG 10
LDBL_DIG 10

— minimum negative integer such that FLT_RADIX raised to one less than that power is a normal-
ized floating-point number, emin

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

24 Environment § 5.2.4.2.2

N2176 C17 ballot ISO/IEC 9899:2017

— minimum negative integer such that 10 raised to that power is in the range of normalized
floating-point numbers,

⌈
log10b

emin−1
⌉

FLT_MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL_MIN_10_EXP -37

— maximum integer such that FLT_RADIX raised to one less than that power is a representable
finite floating-point number, emax

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

— maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers, blog10((1− b−p)bemax)c

FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37

12 The values given in the following list shall be replaced by constant expressions with implementa-
tion-defined values that are greater than or equal to those shown:

— maximum representable finite floating-point number, (1− b−p)bemax

FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

13 The values given in the following list shall be replaced by constant expressions with implementa-
tion-defined (positive) values that are less than or equal to those shown:

— the difference between 1 and the least value greater than 1 that is representable in the given
floating point type, b1−p

FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9

— minimum normalized positive floating-point number, bemin−1

FLT_MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37

— minimum positive floating-point number27)

FLT_TRUE_MIN 1E-37
DBL_TRUE_MIN 1E-37
LDBL_TRUE_MIN 1E-37

27)If the presence or absence of subnormal numbers is indeterminable, then the value is intended to be a positive number
no greater than the minimum normalized positive number for the type.

§ 5.2.4.2.2 Environment 25

ISO/IEC 9899:2017 C17 ballot N2176

Recommended practice
14 Conversion from (at least) double to decimal with DECIMAL_DIG digits and back should be the

identity function.
15 EXAMPLE 1 The following describes an artificial floating-point representation that meets the minimum requirements of this

International Standard, and the appropriate values in a <float.h> header for type float:

x = s16e
6∑

k=1
fk16

−k , −31 ≤ e ≤ +32

FLT_RADIX 16
FLT_MANT_DIG 6
FLT_EPSILON 9.53674316E-07F
FLT_DECIMAL_DIG 9
FLT_DIG 6
FLT_MIN_EXP -31
FLT_MIN 2.93873588E-39F
FLT_MIN_10_EXP -38
FLT_MAX_EXP +32
FLT_MAX 3.40282347E+38F
FLT_MAX_10_EXP +38

16 EXAMPLE 2 The following describes floating-point representations that also meet the requirements for single-precision and
double-precision numbers in IEC 60559,28) and the appropriate values in a <float.h> header for types float and double:

xf = s2e
24∑

k=1
fk2

−k , −125 ≤ e ≤ +128

xd = s2e
53∑

k=1
fk2

−k , −1021 ≤ e ≤ +1024

FLT_RADIX 2
DECIMAL_DIG 17
FLT_MANT_DIG 24
FLT_EPSILON 1.19209290E-07F // decimal constant
FLT_EPSILON 0X1P-23F // hex constant
FLT_DECIMAL_DIG 9
FLT_DIG 6
FLT_MIN_EXP -125
FLT_MIN 1.17549435E-38F // decimal constant
FLT_MIN 0X1P-126F // hex constant
FLT_TRUE_MIN 1.40129846E-45F // decimal constant
FLT_TRUE_MIN 0X1P-149F // hex constant
FLT_HAS_SUBNORM 1
FLT_MIN_10_EXP -37
FLT_MAX_EXP +128
FLT_MAX 3.40282347E+38F // decimal constant
FLT_MAX 0X1.fffffeP127F // hex constant
FLT_MAX_10_EXP +38
DBL_MANT_DIG 53
DBL_EPSILON 2.2204460492503131E-16 // decimal constant
DBL_EPSILON 0X1P-52 // hex constant
DBL_DECIMAL_DIG 17
DBL_DIG 15
DBL_MIN_EXP -1021
DBL_MIN 2.2250738585072014E-308 // decimal constant
DBL_MIN 0X1P-1022 // hex constant
DBL_TRUE_MIN 4.9406564584124654E-324 // decimal constant
DBL_TRUE_MIN 0X1P-1074 // hex constant
DBL_HAS_SUBNORM 1

28)The floating-point model in that standard sums powers of b from zero, so the values of the exponent limits are one less
than shown here.

26 Environment § 5.2.4.2.2

N2176 C17 ballot ISO/IEC 9899:2017

DBL_MIN_10_EXP -307
DBL_MAX_EXP +1024
DBL_MAX 1.7976931348623157E+308 // decimal constant
DBL_MAX 0X1.fffffffffffffP1023 // hex constant
DBL_MAX_10_EXP +308

If a type wider than double were supported, then DECIMAL_DIG would be greater than 17. For example, if the widest type
were to use the minimal-width IEC 60559 double-extended format (64 bits of precision), then DECIMAL_DIG would be 21.

Forward references: conditional inclusion (6.10.1), complex arithmetic <complex.h> (7.3), ex-
tended multibyte and wide character utilities <wchar.h> (7.29), floating-point environment
<fenv.h> (7.6), general utilities <stdlib.h> (7.22), input/output <stdio.h> (7.21), mathematics
<math.h> (7.12).

§ 5.2.4.2.2 Environment 27

