```
ULONG_MAX
4294967295 // 2 32-1
```

- minimum value for an object of type long long int

```
LLONG_MIN -9223372036854775807 // -(263 - 1)
```

- maximum value for an object of type long long int

```
LLONG_MAX +9223372036854775807 // 263 - 1
```

- maximum value for an object of type unsigned long long int

ULLONG_MAX $18446744073709551615 / / 2^{64}-1$

2 If an object of type char can hold negative values, the value of CHAR_MIN shall be the same as that of SCHAR_MIN and the value of CHAR_MAX shall be the same as that of SCHAR_MAX. Otherwise, the value of CHAR_MIN shall be 0 and the value of CHAR_MAX shall be the same as that of UCHAR_MAX. ${ }^{20)}$ The value UCHAR_MAX shall equal $2^{\text {CHAR_BIT }}-1$.
Forward references: representations of types (6.2.6), conditional inclusion (6.10.1).

5.2.4.2.2 Characteristics of floating types <float. h>

1 The characteristics of floating types are defined in terms of a model that describes a representation of floating-point numbers and values that provide information about an implementation's floatingpoint arithmetic. ${ }^{21)}$ The following parameters are used to define the model for each floating-point type:
$s \quad \operatorname{sign}(\pm 1)$
$b \quad$ base or radix of exponent representation (an integer >1)
$e \quad$ exponent (an integer between a minimum $e_{\min }$ and a maximum $e_{\max }$)
$p \quad$ precision (the number of base- b digits in the significand)
$f_{k} \quad$ nonnegative integers less than b (the significand digits)
2 A floating-point number (x) is defined by the following model:

$$
x=s b^{e} \sum_{k=1}^{p} f_{k} b^{-k}, \quad e_{\min } \leq e \leq e_{\max }
$$

3 In addition to normalized floating-point numbers $\left(f_{1}>0\right.$ if $\left.x \neq 0\right)$, floating types may be able to contain other kinds of floating-point numbers, such as subnormal floating-point numbers $(x \neq 0$, $e=e_{\min }, f_{1}=0$) and unnormalized floating-point numbers $\left(x \neq 0, e>e_{\min }, f_{1}=0\right)$, and values that are not floating-point numbers, such as infinities and NaNs. A NaN is an encoding signifying Not-a-Number. A quiet NaN propagates through almost every arithmetic operation without raising a floating-point exception; a signaling NaN generally raises a floating-point exception when occurring as an arithmetic operand. ${ }^{22)}$
4 An implementation may give zero and values that are not floating-point numbers (such as infinities and NaNs) a sign or may leave them unsigned. Wherever such values are unsigned, any requirement in this International Standard to retrieve the sign shall produce an unspecified sign, and any requirement to set the sign shall be ignored.

5 The minimum range of representable values for a floating type is the most negative finite floatingpoint number representable in that type through the most positive finite floating-point number representable in that type. In addition, if negative infinity is representable in a type, the range of

[^0]that type is extended to all negative real numbers; likewise, if positive infinity is representable in a type, the range of that type is extended to all positive real numbers.
6 The accuracy of the floating-point operations ($+,-, *, /$) and of the library functions in <math. $\mathrm{h}>$ and <complex. $\mathrm{h}>$ that return floating-point results is implementation-defined, as is the accuracy of the conversion between floating-point internal representations and string representations performed by the library functions in <stdio.h>, <stdlib.h>, and <wchar.h>. The implementation may state that the accuracy is unknown.
7 All integer values in the <float. h> header, except FLT_ROUNDS, shall be constant expressions suitable for use in \#if preprocessing directives; all floating values shall be constant expressions. All except DECIMAL_DIG, FLT_EVAL_METHOD, FLT_RADIX, and FLT_ROUNDS have separate names for all three floating-point types. The floating-point model representation is provided for all values except FLT_EVAL_METHOD and FLT_ROUNDS.

8 The rounding mode for floating-point addition is characterized by the implementation-defined value of FLT_ROUNDS: ${ }^{23)}$

```
-1 indeterminable
0 toward zero
1 to nearest
2 toward positive infinity
3 toward negative infinity
```

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.
9 Except for assignment and cast (which remove all extra range and precision), the values yielded by operators with floating operands and values subject to the usual arithmetic conversions and of floating constants are evaluated to a format whose range and precision may be greater than required by the type. The use of evaluation formats is characterized by the implementation-defined value of FLT_EVAL_METHOD: ${ }^{24)}$
-1 indeterminable;
0 evaluate all operations and constants just to the range and precision of the type;
1 evaluate operations and constants of type float and double to the range and precision of the double type, evaluate long double operations and constants to the range and precision of the long double type;

2 evaluate all operations and constants to the range and precision of the long double type.

All other negative values for FLT_EVAL_METHOD characterize implementation-defined behavior.
10 The presence or absence of subnormal numbers is characterized by the implementation-defined values of FLT_HAS_SUBNORM, DBL_HAS_SUBNORM, and LDBL_HAS_SUBNORM:
-1 indeterminable ${ }^{25)}$
$0 \quad$ absent (type does not support subnormal numbers) ${ }^{26)}$

[^1]present (type does support subnormal numbers)
11 The values given in the following list shall be replaced by constant expressions with implementa-tion-defined values that are greater or equal in magnitude (absolute value) to those shown, with the same sign:
— radix of exponent representation, b

```
FLT_RADIX 2
```

- number of base-FLT_RADIX digits in the floating-point significand, p

```
FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG
```

- number of decimal digits, n, such that any floating-point number with p radix b digits can be rounded to a floating-point number with n decimal digits and back again without change to the value,

$$
\begin{cases}p \log _{10} b & \text { if } b \text { is a power of } 10 \\ \left\lceil 1+p \log _{10} b\right\rceil & \text { otherwise }\end{cases}
$$

```
FLT_DECIMAL_DIG 6
DBL_DECIMAL_DIG 10
LDBL_DECIMAL_DIG 10
```

- number of decimal digits, n, such that any floating-point number in the widest supported floating type with $p_{\max }$ radix b digits can be rounded to a floating-point number with n decimal digits and back again without change to the value,

$$
\begin{cases}p_{\max } \log _{10} b & \text { if } b \text { is a power of } 10 \\ \left\lceil 1+p_{\max } \log _{10} b\right\rceil & \text { otherwise }\end{cases}
$$

```
DECIMAL_DIG 10
```

- number of decimal digits, q, such that any floating-point number with q decimal digits can be rounded into a floating-point number with p radix b digits and back again without change to the q decimal digits,

$$
\begin{cases}p \log _{10} b & \text { if } b \text { is a power of } 10 \\ \left\lfloor(p-1) \log _{10} b\right\rfloor & \text { otherwise }\end{cases}
$$

FLT_DIG	6
DBL_DIG	10
LDBL_DIG	10

- minimum negative integer such that FLT_RADIX raised to one less than that power is a normalized floating-point number, $e_{\text {min }}$

```
FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP
```

- minimum negative integer such that 10 raised to that power is in the range of normalized floating-point numbers, $\left\lceil\log _{10} b^{e_{\min }-1}\right\rceil$

```
FLT_MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL_MIN_10_EXP -37
```

- maximum integer such that FLT_RADIX raised to one less than that power is a representable finite floating-point number, $e_{\max }$

```
FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP
```

- maximum integer such that 10 raised to that power is in the range of representable finite floating-point numbers, $\left\lfloor\log _{10}\left(\left(1-b^{-p}\right) b^{e_{\max }}\right)\right\rfloor$

```
FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37
```

12 The values given in the following list shall be replaced by constant expressions with implementa-tion-defined values that are greater than or equal to those shown:

- maximum representable finite floating-point number, $\left(1-b^{-p}\right) b^{e_{\max }}$

FLT_MAX	$1 \mathrm{E}+37$
DBL_MAX	$1 \mathrm{E}+37$
LDBL_MAX	$1 \mathrm{E}+37$

13 The values given in the following list shall be replaced by constant expressions with implementa-tion-defined (positive) values that are less than or equal to those shown:

- the difference between 1 and the least value greater than 1 that is representable in the given floating point type, b^{1-p}

```
FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9
```

- minimum normalized positive floating-point number, $b^{e_{\min }-1}$

FLT_MIN	$1 \mathrm{E}-37$
DBL_MIN	$1 \mathrm{E}-37$
LDBL_MIN	$1 \mathrm{E}-37$

- minimum positive floating-point number ${ }^{27)}$

```
FLT_TRUE_MIN
1E-37
DBL_TRUE_MIN 1E-37
LDBL_TRUE_MIN 1E-37
```

[^2]
Recommended practice

14 Conversion from (at least) double to decimal with DECIMAL_DIG digits and back should be the identity function.
15 EXAMPLE 1 The following describes an artificial floating-point representation that meets the minimum requirements of this International Standard, and the appropriate values in a <float. $h>$ header for type float:

$$
x=s 16^{e} \sum_{k=1}^{6} f_{k} 16^{-k}, \quad-31 \leq e \leq+32
$$

FLT_RADIX	16
FLT_MANT_DIG	6
FLT_EPSILON	$9.53674316 E-07 \mathrm{~F}$
FLT_DECIMAL_DIG	9
FLT_DIG	6
FLT_MIN_EXP	-31
FLT_MIN	$2.93873588 \mathrm{E}-39 \mathrm{~F}$
FLT_MIN_10_EXP	-38
FLT_MAX_EXP	+32
FLT_MAX	$3.40282347 \mathrm{E}+38 \mathrm{~F}$
FLT_MAX_10_EXP	+38

EXAMPLE 2 The following describes floating-point representations that also meet the requirements for single-precision and double-precision numbers in IEC $60559,{ }^{28)}$ and the appropriate values in a <float. $h>$ header for types float and double:

$$
\begin{array}{ll}
x_{f}=s 2^{e} \sum_{k=1}^{24} f_{k} 2^{-k}, & -125 \leq e \leq+128 \\
x_{d}=s 2^{e} \sum_{k=1}^{53} f_{k} 2^{-k}, & -1021 \leq e \leq+1024
\end{array}
$$

[^3]```
DBL_MIN_10_EXP -307
DBL_MAX_EXP +1024
DBL_MAX 1.7976931348623157E+308 // decimal constant
DBL_MAX 0X1.fffffffffffffP1023 // hex constant
DBL_MAX_10_EXP +308
```

If a type wider than double were supported, then DECIMAL_DIG would be greater than 17. For example, if the widest type were to use the minimal-width IEC 60559 double-extended format ( 64 bits of precision), then DECIMAL_DIG would be 21.
Forward references: conditional inclusion (6.10.1), complex arithmetic <complex.h> (7.3), extended multibyte and wide character utilities <wchar.h> (7.29), floating-point environment <fenv.h> (7.6), general utilities <stdlib.h> (7.22), input/output <stdio. $\mathrm{h}>$ (7.21), mathematics <math . h> (7.12).


[^0]:    ${ }^{20)}$ See 6.2.5.
    ${ }^{21)}$ The floating-point model is intended to clarify the description of each floating-point characteristic and does not require the floating-point arithmetic of the implementation to be identical.
    ${ }^{22)}$ IEC 60559:1989 specifies quiet and signaling NaNs. For implementations that do not support IEC 60559:1989, the terms quiet NaN and signaling NaN are intended to apply to encodings with similar behavior.

[^1]:    ${ }^{23)}$ Evaluation of FLT_ROUNDS correctly reflects any execution-time change of rounding mode through the function fesetround in <fenv.h>.
    ${ }^{24}$ The evaluation method determines evaluation formats of expressions involving all floating types, not just real types. For example, if FLT_EVAL_METHOD is 1, then the product of two float _Complex operands is represented in the double _Complex format, and its parts are evaluated to double.
    ${ }^{25)}$ Characterization as indeterminable is intended if floating-point operations do not consistently interpret subnormal representations as zero, nor as nonzero.
    ${ }^{26)}$ Characterization as absent is intended if no floating-point operations produce subnormal results from non-subnormal inputs, even if the type format includes representations of subnormal numbers.

[^2]:    ${ }^{27}$ If the presence or absence of subnormal numbers is indeterminable, then the value is intended to be a positive number no greater than the minimum normalized positive number for the type.

[^3]:    ${ }^{28)}$ The floating-point model in that standard sums powers of $b$ from zero, so the values of the exponent limits are one less than shown here.

