One Qubit

The standard basis for \mathbb{C}^2 is denoted by $|0\rangle_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. The standard basis for $(\mathbb{C}^2)^{\otimes q}$, which has 2^q elements, is denoted by $|0\rangle_q, |1\rangle_q, \ldots, |2^q - 1\rangle_q$.

If we pick the standard basis for \mathbb{C}^2 , then a single qubit (q=1) can be represented as $\alpha|0\rangle+\beta|1\rangle=\alpha\begin{pmatrix}1\\0\end{pmatrix}+\beta\begin{pmatrix}0\\1\end{pmatrix}$ where $\alpha,\beta\in\mathbb{C}$ and $|\alpha|^2+|\beta|^2=1$.

Superposition: $\alpha \mid 0 > + \beta \mid 1 >$

Complex Amplitudes: α , β

Probabilities: $|\alpha|^2$, $|\beta|^2$

An Introduction to Quantum Computing, Without the Physics, Giacomo Nannicini, 2017 (2020).