## **Single Qubit Operations**

**Definition 11.** The four Pauli gates are the following single-qubit gates:

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

**Proposition 5.** The Pauli gates form a basis for  $\mathbb{C}^{2\times 2}$ , they are Hermitian, and they satisfy the relationship XYZ = iI.

The X,Y,Z gates all correspond to  $90^\circ$  rotations, around different axes. The X gate flips a qubit:

$$X|0\rangle = |1\rangle$$
  $X|1\rangle = |0\rangle$ .

This is the equivalent of a NOT gate in classical computers. At the same time, the Z gate is also called a phase-flip gate: it leaves  $|0\rangle$  unchanged, and maps  $|1\rangle$  to  $-|1\rangle$ .

$$Z|0\rangle = |0\rangle$$
  $Z|1\rangle = -|1\rangle$ .

A single-qubit gate that is used in many quantum algorithms is the *Hadamard* gate:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

The action of H is as follows:

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
  $H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$ 

## **Superposition**

An Introduction to Quantum Computing, Without the Physics, Giacomo Nannicini, 2017 (2020).