Quantum Computing & Cryptography

Richard Perry

Villanova University

Department of Electrical and Computer Engineering

richard.perry@villanova.edu

March 2020

Outline

- 1. Background
- **2. Physics**
- 3. Math
- **4. Simulation**
- **5. Breaking Cryptography**
- 6. Post-Quantum Cryptography

Eniac 1950: 30 tons, 150 KW, 1 KB, 100 KHz

Phone 2020: 5 oz., 1 W, 4 GB, 2 GHz

QC 2020: tons, KW, 50 qubits, 1 MHz

QC 2050: ???

Ion Trap Quantum Device

(a) Schematic of silicon chip-trap mounted on a ceramic pin grid array carrier with raised interposer, confining atomic ions that hover ~75 µm above the surface. The inset is an image of 7 atomic ytterbium (¹⁷¹Yb⁺) ions arranged in a linear crystal and laser-cooled to be nearly at rest. The few-micrometre separation between ions is determined by a balance between the external confinement force and Coulomb repulsion. (**b**,**c**) Reduced energy level diagram of a single ¹⁷¹Yb⁺ atomic ion, showing the atomic hyperfine levels $|\uparrow\rangle$ and $|\downarrow\rangle$ that represent a qubit. The electronic excited states $|e\rangle$ and $|e'\rangle$ are separated from the ground states by an energy corresponding to an optical wavelength of 369.53 nm, and applied laser radiation (blue arrows) drives these transitions for (**b**) initialisation to state $|\downarrow\rangle$, and (**c**) fluorescence detection of the qubit state ($|\uparrow\rangle$, fluorescence, $|\downarrow\rangle$, no fluorescence).

Co-designing a scalable quantum computer with trapped atomic ions, Kenneth R Brown, Jungsang Kim & Christopher Monroe, Nature 2016.

Quantum Key Distribution

A Survey of the Prominent Quantum Key Distribution Protocols, Mart Haitjema. Figure 2, corrected.

Quantum Key Distribution

Alice's bit	0	1	1	0	1	0	0	1
Alice's basis	+	+	Х	+	Х	Х	Х	+
Alice's polarization	↑	-	↖	1	ĸ	↗	1	-
Bob's basis	+	X	Х	X	+	X	+	+
Bob's measurement	1	↗	K	1	-	≯	-	-
Public discussion								
Shared Secret key	0		1			0		1

Alice's bits: secret initially secret, public later Alice's basis: Alice's polarization: secret **Bob's basis:** public **Bob's measurement: secret**

A Survey of the Prominent Quantum Key Distribution Protocols, Mart Haitjema. Figure 3.

Schrödinger Equation

$$i\hbar\frac{d|\psi\rangle}{dt} = H|\psi\rangle$$

Complex state vector Ψ : $|\Psi_i|^2$ = Prob(measure state i)

Hamiltonian matrix H, Hermitian: $H^{\dagger} = H$

$$|\psi(t_2)\rangle = \exp\left[\frac{-iH(t_2 - t_1)}{\hbar}\right] |\psi(t_1)\rangle = U(t_1, t_2)|\psi(t_1)\rangle$$
$$U(t_1, t_2) \equiv \exp\left[\frac{-iH(t_2 - t_1)}{\hbar}\right]$$

Unitary matrix U: $U^{-1} = U^{\dagger}$

Quantum Computation and Quantum Information, 10th Anniversary Edition, Michael A. Nielsen & Isaac L. Chuang, Cambridge University Press, 2010.

One Qubit

The standard basis for \mathbb{C}^2 is denoted by $|0\rangle_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. The standard basis for $(\mathbb{C}^2)^{\otimes q}$, which has 2^q elements, is denoted by $|0\rangle_q, |1\rangle_q, \ldots, |2^q - 1\rangle_q$.

If we pick the standard basis for \mathbb{C}^2 , then a single qubit (q = 1) can be represented as $\alpha|0\rangle + \beta|1\rangle = \alpha \begin{pmatrix} 1\\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0\\ 1 \end{pmatrix}$ where $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$.

Superposition: $\alpha | 0 > + \beta | 1 >$

Complex Amplitudes: α , β

Probabilities: $|\alpha|^2$, $|\beta|^2$

Single Qubit Operations

Definition 11. The four Pauli gates are the following single-qubit gates:

$I = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\1 \end{pmatrix}$	$X = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$
$Y = \begin{pmatrix} 0 \\ i \end{pmatrix}$	$\begin{pmatrix} -i \\ 0 \end{pmatrix}$	$Z = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$

Proposition 5. The Pauli gates form a basis for $\mathbb{C}^{2\times 2}$, they are Hermitian, and they satisfy the relationship XYZ = iI.

The X, Y, Z gates all correspond to 90° rotations, around different axes. The X gate flips a qubit:

$$X|0\rangle = |1\rangle$$
 $X|1\rangle = |0\rangle.$

This is the equivalent of a NOT gate in classical computers. At the same time, the Z gate is also called a phase-flip gate: it leaves $|0\rangle$ unchanged, and maps $|1\rangle$ to $-|1\rangle$.

$$Z|0\rangle = |0\rangle$$
 $Z|1\rangle = -|1\rangle.$

A single-qubit gate that is used in many quantum algorithms is the *Hadamard* gate:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}.$$

The action of H is as follows:

$$H|0\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle\right) \qquad H|1\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle\right)$$

Superposition

Two Qubits

Let us write the basis elements of $(\mathbb{C}^2)^{\otimes 2} = \mathbb{C}^2 \otimes \mathbb{C}^2$:

$$|0\rangle_{2} = |0\rangle \otimes |0\rangle = |00\rangle = \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix} \qquad |1\rangle_{2} = |0\rangle \otimes |1\rangle = |01\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$$
$$|2\rangle_{2} = |1\rangle \otimes |0\rangle = |10\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \qquad |3\rangle_{2} = |1\rangle \otimes |1\rangle = |11\rangle = \begin{pmatrix} 0\\0\\0\\1\\1 \end{pmatrix}$$

$$\begin{aligned} |x\rangle &= \alpha_0 |0\rangle + \alpha_1 |1\rangle \\ |y\rangle &= \beta_0 |0\rangle + \beta_1 |1\rangle. \end{aligned}$$

that taken as a whole will be in state:

$$|x\rangle \otimes |y\rangle = \alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle, \tag{1}$$

with the normalization conditions $|\alpha_0|^2 + |\alpha_1|^2 = 1$ and $|\beta_0|^2 + |\beta_1|^2 = 1$. The general state of a 2-qubit register $|\psi\rangle$ is:

$$|\psi\rangle = \gamma_{00}|00\rangle + \gamma_{01}|01\rangle + \gamma_{10}|10\rangle + \gamma_{11}|11\rangle, \qquad (2)$$

with normalization condition $|\gamma_{00}|^2 + |\gamma_{01}|^2 + |\gamma_{10}|^2 + |\gamma_{11}|^2 = 1.$

Entanglement

CNOT: creating entangled states

Figure 10: The CNOT, or controlled-NOT, gate.

The matrix description of the gate with control qubit 2 and target qubit 1 is as follows:

$$\mathrm{CNOT}_{21} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

initially a = |0>+|1>, b = |0>

q a b	p->al	b⊕a cl	ass TwoQubit:
000	0.5 00	0 0.5	<pre>def cnot(self):</pre>
1 0 1	0	1	'''Controlled NOT operation'''
2 1 0	0.5 1 0	0	<pre>self.onezero, self.oneone = self.oneone, s</pre>
3 1 1	1 3	1 0.5	return self
Using an	array:		Using names for the complex amplitudes:
q[0], q[1	l], q[2],	q[3]	zerozero, zeroone, onezero, oneone
swap q[2]	and q[3]]	Python Quantum Computing simulator, Juliana Pe

eña, 2011.

elf.onezero

Simulation: n qubits -> 2ⁿ complex state amplitudes

Simulation: distributed computing

For n=33 qubits, 128 GB of memory is required just for the array of quantum amplitudes. On a single 128 GB node this causes swapping, and the run-time increases to 43832 seconds (about 12 hours) which is a factor of 36 times what would be expected following the exponential scaling (20 minutes). For n=34 qubits a single node has insufficient memory and can not perform the simulation.

Simulating Single Qubit Gate Operations in a Distributed Environment, R. Perry, 2019

0100001011100110

Grover's Search (1996): Quadratic Speedup

- Search space of size 2^n using $2^{(n/2)}$ function evaluations vs. classical $(2^n)/2$
- Security implications: 256-bit key for ANY algorithm will have only 128-bit security level
- Simulation:

```
for( iter = 1; iter <= k; ++iter)</pre>
// apply f, i.e. flip sign of state m
 //
  q[m] = -q[m];
 // inversion about the average
 //
  avg = 0; for( i = 0; i < N; ++i) avg += q[i];
 avg *= 2.0/N; for( i = 0; i < N; ++i) q[i] = avg - q[i];
}
```

Grover's Search: inversion about the average

0100001011100110101

Grover's Search: 16-bit Example

- $2^{16} = 65536$ possibilities, would take $(2^{16})/2 = 32768$ iterations on average classically
 - Takes only $(\pi/4)2^{(16/2)} = 201$ quantum iterations optimally, success probability 0.999988

Shor factoring (1994): breaking RSA

- \bullet Quantum evaluation of $y^a \mod N$ for random y, and ALL a at once
- Determine period r, mod N: $y^r = 1$, so $(y^{r/2} 1)^*(y^{r/2} + 1) = 0 \rightarrow will share factor with N$

0100001011100110100111101101101101101001

Shor factoring example: N = 33

- DFT probability peaks (205, 410, 614, 819, ...) produce period estimates (9.9902, 4.9951, 3.3355, 2.5006, ...)
- Using $r = 10 \approx 9.9902$: $(5^{10/2} 1)^*(5^{10/2} + 1) = 22^*24$

 \circ gcd(22,N) = 11, gcd(24,N) = 3, both factors of N

00001010100001001

Post-Quantum Cryptography

- NIST = National Institute of Standards and Technology
- Standardizing one or more guantum-resistant public-key cryptographic algorithms
- For use on classical computers
- Must be resistant to classical and quantum computing attacks
- Second-round candidate algorithms include:
 - 17 public-key encryption and key-establishment algorithms
 - 9 algorithms for digital signatures
- "A wide range of mathematical ideas are represented by these algorithms... to hedge against the possibility that if someone breaks one, we could still use another."
- <u>pgcrypto.org</u> Dan Bernstein's post-guantum cryptography resources

NIST Post-Quantum-Cryptography-Standardization

NIST Reveals 26 Algorithms Advancing to the Post-Quantum Crypto 'Semifinals'

References

- 1. <u>An Introduction to Quantum Computing, Without the Physics</u>, Giacomo Nannicini, 2017 (2020). arxiv.org/abs/1708.03684
- 2. <u>Python Quantum Computing simulator</u>, Juliana Pena, 2011. Two qubits and superdense coding protocol example. gist.github.com/limitedmage/945473
- 3. <u>Quantum Computing Emulation</u>, R. Perry, 2018-2020. *fog.misty.com/perry/qce/notes.html*

Hackers of the Future

Already planning attacks on quantum computers:

4. <u>An entangling-probe attack on Shor's algorithm for factorization</u>, Hiroo Azuma, 2017. arxiv.org/abs/1705.00271 : an attacker can steal an exact solution of Shor's algorithm outside an institute where the quantum computer is installed if he replaces its initialized quantum register with entangled qubits.