Quantum Computing Simulation and Visualization

 

Richard Perry

Villanova University

Department of Electrical and Computer Engineering

richard.perry@villanova.edu

fog.misty.com/perry

 

010000101110011010100111101101101110100110111111000010101000100110101001101110101101100010100111100000111111010010100001101000101011111111100010101100111111100000101011011110011010101101111111


---

Outline

  • Simulation: What and Why, Visualization

  • Classical and Reversible Computing

  • Classical Bits

  • Quantum Bits

  • Measurements

  • Entanglement

  • Algorithms - addition, Grover, QFT


---

  • Simulation = software implementation of a mathematical model

  • Why? Visualization, study algorithms, experiment with parameters and noise

  • Advantages: see all state amplitudes, probabilities, entanglement

           

  • Disadvantage: need O(2n) space and time for n qubits

    Simulation limit: n ≈ 30 on single node, n ≈ 50 distributed on 65000 nodes

  • Pure states (state vector) vs. mixed states (density matrix) vs. unentangled (separable)

Grover, MPI
---

Classical Maze Search Visualization

Andela
---

Supposed Quantum Maze Search Visualization

Andela
---

Actual Quantum Maze Search

Can find a specially marked node, but not a path

arxiv
---

Actual Quantum Maze Search

For tree graphs can find a path

arxiv
---

Quantum Wordle Visualization

(animations: normal, sequential)

wordle
---

Classical Computing

  • Separate input and output bits

  • Generally not reversible

  • Distributed in space

               

Reversible Computing

  • Input bits become the output bits

  • Distributed in time

Ion Trap Quantum Device

AND, Toffoli, Ion
---

One Classical Bit

4 possible functions
~   x  f0 f1 f2 f3     reversible: f1 = x,  f2 = NOT x
~   0   0  0  1  1
~   1   0  1  0  1

Two Classical Bits

16 possible functions
~  x y  f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff
~  0 0   0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1
~  0 1   0  0  0  0  1  1  1  1  0  0  0  0  1  1  1  1
~  1 0   0  0  1  1  0  0  1  1  0  0  1  1  0  0  1  1
~  1 1   0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

~ (x,y) -> (x,f(x,y)) reversible: f5 = y,  fa = NOT y,  f6 = x XOR y,  f9 = NOT (x XOR y)

~ f6: CNOT(x,y) -> (x, x XOR y)


---

Simulating One Classical Bit

void X( int b[]) { b[0] = !b[0]; } // NOT

int main( void) { int b[1] = { 0 }; // constraint: b[i] = 0 or 1
...
Simulating Two (or more) Classical Bits

void X( int b[], int k) { b[k] = !b[k]; } // NOT on bit k

void CX( int b[], int c, int k) // controlled-NOT on bit k controlled by bit c, c != k
{
~  b[k] ^= b[c]; // if( b[c]) b[k] = !b[k];
}

int main( void) { int b[2] = { 0, 0 }; 
...


---

One Quantum Bit

Bloch Sphere Geometrical Representation

Bloch
---

Simulating One Quantum Bit

//     q0
// a0  0
// a1  1
//
typedef double complex Complex;

// swap a[i] and a[j]
void swap( Complex a[], int i, int j) { Complex t = a[i]; a[i] = a[j]; a[j] = t; }

void X( Complex a[]) { swap( a, 0, 1); } // NOT

void Z( Complex a[]) { a[1] = -a[1]; } // phase flip

void S( Complex a[]) { a[1] = CMPLX(0,1)*a[1]; } // sqrt(Z)

void H( Complex a[]) // Hadamard
{ 
~  double s2 = 1/sqrt(2);

~  Complex t0 = a[0], t1 = a[1]; a[0] = s2*(t0+t1); a[1] = s2*(t0-t1);
}
...
int main( void) { Complex a[2] = { 3.0/5.0, CMPLX(0,4.0/5.0) }; // constraint: sum |a[i]|2 = 1
...


---

Single Qubit General Unitary Operation

// OpenQASM3 U with global phase gamma
//
void U( Complex a[], double theta, double phi, double lambda, double gamma)
{
~  double t = theta/2; Complex t0 = a[0], t1 = a[1], p = exp(CMPLX(0,gamma)),

~  c = p*cos(t), s = p*sin(t), u00 = c, u01 = -exp(CMPLX(0,lambda))*s,

~  u10 = exp(CMPLX(0,phi))*s, u11 = exp(CMPLX(0,phi+lambda))*c;

~  a[0] = u00*t0+u01*t1; a[1] = u10*t0+u11*t1;
}

OpenQASM3
---

Simulating Two Quantum Bits

//    q1 q0
// a0  0 0
// a1  0 1
// a2  1 0
// a3  1 1
//
void X( Complex a[], int k) // NOT on qubit k
{
~  if( k == 0) { swap( a, 0, 1); swap( a, 2, 3); }

~  else        { swap( a, 0, 2); swap( a, 1, 3); }
}
void CX( Complex a[], int c, int k) // controlled-NOT on qubit k controlled by qubit c
{
~  if( c == 1) swap( a, 2, 3); else swap( a, 1, 3);
}
void Z( Complex a[], int k) // phase-flip qubit k
{
~  if( k == 0) { a[1] = -a[1]; a[3] = -a[3]; }

~  else        { a[2] = -a[2]; a[3] = -a[3]; }
}
...
int main( void) { Complex a[4] = { 1, 0, 0, 0 };
...


---

Simulating Two Quantum Bits - Hadamard

//    q1 q0
// a0  0 0
// a1  0 1
// a2  1 0
// a3  1 1
//
void h( Complex a[], int i, int j) // half Hadamard
{
~  Complex t0 = a[i], t1 = a[j]; a[i] = s2*(t0+t1); a[j] = s2*(t0-t1);
}
void H( Complex a[], int k) // Hadamard on qubit k
{
~  if( k == 0) { h( a, 0, 1); h( a, 2, 3); }

~  else        { h( a, 0, 2); h( a, 1, 3); }
}


---

Simulating n Quantum Bits - Hadamard

// Hadamard on qubit k
//
// n qubits, N = 2n amplitudes
//
~ unsigned long i = 0, j, k1 = 1LU << k; // k1 = 0...010...0, k'th bit = 1

~ while( i < N) { // i will have k'th bit = 0, j will have k'th bit = 1

~   j = i | k1; Complex t0 = a[i], t1 = a[j];

~   a[i] = s2*(t0+t1); a[j] = s2*(t0-t1);

~   ++i; i += (i & k1); // skip i values with k'th bit = 1

~ }


---

Simulating Measurements

One Qubit
// complex magnitude squared
//
double abs2( Complex c) { double x = creal(c), y = cimag(c); return x*x + y*y; }

//  0.0  ... r ...       1.0
//   |<------->|<-------->|
//       p0         p1
// 
void M( Complex a[]) { // measure

~  double r = rand() / (RAND_MAX + 1.0); // 0.0 <= r < 1.0

~  double p = abs2( a[0]);

~  if( r < p) { printf( "M = 0\\\\n"); a[0] = 1; a[1] = 0; }

~  else       { printf( "M = 1\\\\n"); a[0] = 0; a[1] = 1; }
}


---

Simulating Measurements

Two Qubits - measure both
//
//  0.0       ... r ...                       1.0
//   |<------->|<-------->|<------->|<-------->|
//       p00        p01       p10       p11
//
int Mk( Complex a[]) { // measure overall state

~  double r = rand() / (RAND_MAX + 1.0); // 0.0 <= r < 1.0

~  double p = 0; // cumulative probability

~  int k = 3; for( int i = 0; i < 4; ++i) { p += abs2( a[i]); if( r < p) { k = i; break; } }

~  printf( "k = %i\\\\n", k); return k;
}

void M10( Complex a[]) { // measure qubits 1 and 0

~  int k = Mk( a); a[0]=a[1]=a[2]=a[3]=0; a[k] = 1;
}


---

Simulating Measurements

Two Qubits - measure one
void M1( Complex a[]) { // measure qubit 1

~  int k = Mk( a); if( k == 0 || k == 1) { // qubit 1 is 0

~    printf( "M1 = 0\\\\n"); a[2] = a[3] = 0; // normalize remaining states

~    double s = sqrt( abs2(a[0]) + abs2(a[1])); a[0] /= s; a[1] /= s; }

~  else { // qubit 1 is 1

~    printf( "M1 = 1\\\\n"); a[0] = a[1] = 0;

~    double s = sqrt( abs2(a[2]) + abs2(a[3])); a[2] /= s; a[3] /= s; }
}


---

Measuring Entanglement - Theory

     

  • trace distance = 0 for no entanglement, 1 for max entanglement = 1-fidelity

     

  • fidelity = (|<A,B>|/(||A||*||B||))2

    where A (B) is the reduced state with qubit k equal to 0 (1)

     

  • If qubit k is not entangled with any of the other qubits,

    then the reduced state A should be the same as the reduced state B,

    i.e. the reduced state should be independent of qubit k.

     

  • <A,B>/(||A||*||B||)) is the cosine of the angle between vectors A and B.

     

  • A and B represent the same state if the angle is 0 or 180 degrees,

    which corresponds to the cosine having a magnitude squared value of 1.


---

Measuring Entanglement - Code

Real tangle( unsigned int k) const {

~ Complex prod = 0; Real A = 0, B = 0, r = 0;

~ unsigned long i = 0, j, k1 = 1LU << k; // k1 = 0...010...0, k'th bit = 1

~ while( i < N) { // i will have k'th bit = 0, j will have k'th bit = 1

~   j = i | k1; prod += Conj(a[i])*a[j];

~   A += abs2(a[i]); B += abs2(a[j]);

~   ++i; i += (i & k1); // skip i values with k'th bit = 1
~ }

~ Real t = 2*eps*eps*N; // threshold for zero norm squared: 2*sum{|e+i*e|**2} = 2*(2*e*e*(N/2))

~ if( A > t && B > t) r = 1 - abs2(prod)/(A*B);

~ return r;
}

qce++
---

Entanglement Example - Super Dense Coding

  • Alice and Bob start with two qubits in state |00> with random global phase.

  • After performing H1, then CX10, Bob takes qubit #0 and goes away.

    E is the qubit entanglement measure.

    ~    q: (0.0849528,0.996385) (0,0) (0,0) (0,0)
    ~    E: 0 0
    ~   H1: (0.0600707,0.704551) (0,0) (0.0600707,0.704551) (0,0)
    ~    E: 0 0
    ~ CX10: (0.0600707,0.704551) (0,0) (0,0) (0.0600707,0.704551)
    ~    E: 1 1
    
  • Later, to communicate the value 3, Alice performs X1, then Z1, then sends qubit #1 to Bob.
    ~   X1: (0,0) (0.0600707,0.704551) (0.0600707,0.704551) (0,0)
    ~    E: 1 1
    ~   Z1: (0,0) (0.0600707,0.704551) (-0.0600707,-0.704551) (0,0)
    ~    E: 1 1
    
  • Bob then performs CX10, then H1, then measures.
    ~ CX10: (0,0) (0.0600707,0.704551) (0,0) (-0.0600707,-0.704551)
    ~    E: 0 0
    ~   H1: (0,0) (0,0) (0,0) (0.0849528,0.996385)
    ~    E: 0 0
    ~  P(3) = 1
    

SDC.cc
---

Super Dense Coding with Hadamard Phase Shift Error (p/p0 = 0.8)

Alice + Bob
~    q: (0.285804,0.958288) (0,0) (0,0) (0,0)
~    E: 0 0
~   H1: (0.202094,0.677612) (0,0) (-0.0171906,0.706898) (0,0)
~    E: 0 0
~ CX10: (0.202094,0.677612) (0,0) (0,0) (-0.0171906,0.706898)
~    E: 1 1
Alice
~   X1: (0,0) (-0.0171906,0.706898) (0.202094,0.677612) (0,0)
~    E: 1 1
~   Z1: (0,0) (-0.0171906,0.706898) (-0.202094,-0.677612) (0,0)
~    E: 1 1
Bob
~ CX10: (0,0) (-0.0171906,0.706898) (0,0) (-0.202094,-0.677612)
~    E: 0 0
~   H1: (0,0) (-0.296127,0.0883184) (0,0) (-0.0231213,0.950775)
~    E: 0 0
~  P(3) = 0.904508


---

Addition

low-level implementation

add
---

Addition

high-level simulation, (x,y)->(x,(x+y)%M)
    I = state index

    x = I >> m;       // top m bits, M = 2m

    y = I & mask;     // bottom m bits, mask = M-1 = 0111..1 (m 1's)

    j = (x + y) % M;  // classical addition

    J = (x << m) | j; // concatenate the bits

    tj = a[J];        // temporarily save original a[J]

    a[J] = a[I];      // update a[J]

add
---

Grover's Algorithm

inversion about the average

Nannicini
---

Grover's Algorithm

geometric interpretation

Wikipedia
---

Grover's Algorithm

low-level implementation

Nannicini
---

Grover's Algorithm

high-level simulation
// flip sign of state m
//
q.a[m] = -q.a[m]; 

// inversion about the average
//
Complex avg = 0; for( unsigned long i = 0; i < q.N; ++i) avg += q.a[i];

avg *= 2.0/q.N; for( unsigned long i = 0; i < q.N; ++i) q.a[i] = avg - q.a[i];

Grover.c
---

Grover's Algorithm

Entanglement


---

Quantum Fourier Transform

low-level implementation

QFT
---

Quantum Fourier Transform

high-level simulation
~ // quantum FFT
~ //
~ void qfft( int inv = 0) {

~   fft<Complex,Real>( a, N, inv); // classical FFT, without scaling and bit reversal

~  // scale values and bit-reverse the indices
~  //
~   Real s = 1/std::sqrt((Real)N);

~   for( unsigned long i = 0, j = 0; i < N; ++i) {

~     j = bitrev( i, n);

~     if( i < j) { swap( i, j); a[i] *= s; a[j] *= s; }

~     else if( i == j) a[i] *= s;
~   }
~ }

fft.h
---

Future Work

 

  • Simulated quantum state is the same,

    simulated at a low-level or simulated at a high-level.

    Do both and compare.

     

  • Is simulated quantum state the same as physical implementation?

    Probably not, depending on noise.

     

  • How to realistically simulate noise?

     

  • How to design quantum algorithms resistant to noise?