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This paper studies a well-known π machine illustrated by Fig. (1). It is shown that the π machine
can compute digits of π if the ratio of block weights, m2/m1, satisfies certain conditions, and that
dynamics of the π machine is identical to that of Grover’s algorithm [1] in quantum computing.
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I. INTRODUCTION

Computation of π has never ceased to delight us1. One
intereting method[6–9] is shown in Fig. (1), where digits
of π is computed by counting the number of elastic col-
lisions between two sliding blocks of masses m1 and m2,
and collisions between block m1 and a wall. This paper
is to take a fresh look at this simple machine.

FIG. 1. Initial state of two sliding block elastic collision π
machine.

The rest of this paper is organized as follows. Section
II shows that calculability of π digits depends on m2/m1.
Section III shows that dynamics of the π machine is the
same as that of Grover’s algorithm [1], and that Grover’s
quantum computing [10] can be visualized classically by
the π machine. Our conclusion is summarized in Section
V.

II. THE π MACHINE

Consider a weighted velocity space shown by Fig. (2),
where

vt ≡
( √

m2v2,t√
m1v1,t

)
(1)

and v1,t and v2,t are the velocities of m1 and m2 at t.
Conservation of kinetic energy requires that vt be on a
circle of radius |vt| =

√
m2v2,0. Conservation of momen-

tum implies

m2v2,t+1 +m1v1,t+1 = m2v2,t −m1v1,t, (2)

where minus sign of m1v1,t rises from m1 bouncing off the
wall. In polar coordinates, where

√
m2v2,t = |vt| cos θt

∗ jiangliu@alumni.cmu.edu
1 Current world record of π digits is 31.4 trillion by Emma Haruka
Iwao using Chudnovsky algorithm [2] on Google Cloud [3–5]

FIG. 2. Geometric representation of a π machine’s dynamics
whose θ∗ = π/12. Doted lines parallel to (0, v)− (0,−v) axis,
represent m1 bouncing off the wall. Doted lines parallel to
(0, v∗) − (0,−v∗) axis represent m1 −m2 collision. θt is the
polar angle of vt after each m1 −m2 collision.

and
√
m1v1,t = |vt| sin θt, Eq. (2) can be simplified to

cos(θt+1 − θ∗) = cos(θt + θ∗), (3)

where

sin θ∗ =

√
m1

m1 +m2
. (4)

Solution to Eq. (3) with initial condition θ0 = π is

θt = 2tθ∗ + π. (5)

Collision stops at T when v1,T → 0, i.e., θT → 2π. Total
number of collisions between t = 0 and t = T is 2T and
from Eq. (5)

2T =
⌊ π
θ∗

⌋
. (6)

Clearly, number of collisions prints digits of π if θ∗ =
10−n, where n is a positive integer. This happens when
m2/m1 = 102n � 1 (see Eq. (4)). This is the necessary
condition for the calculability of the π machine. Other-
wise, the π machine cannot produce digits of π.
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III. THE π MACHINE AND GROVER’S
ALGORITHM

That dynamics of the π machine and Grover’s algo-
rithm [1] are identical can be viewed most conveniently
from Hamiltonian formulation, in which collisions are de-
scribed by evolution of states of bases v and v∗.

In v basis, vt is an eigenvector of Hamiltonian for m1

bouncing off the wall. Geometrically, vt reflects over the
(v, 0) axis of Fig. (2), i.e.,

vt →
(

1 0
0 −1

)
vt. (7)

v basis is referred to as computational basis in the lit-
erature. It is called computational due to interactions
between internal system (blocks of the π machine) and
environment(the wall).

v∗ basis is related to v basis by a rotation (see Fig. (2))
with θ∗ given by Eq. (4)

v∗
t = Uθ∗vt, (8)

where

Uθ∗ =

(
cos θ∗ sin θ∗

− sin θ∗ cos θ∗

)
. (9)

In v∗
t basis, v∗

t is an eigenvector of Hamiltonian for
block collision. Geometrically, v∗

t reflects over the (v∗, 0)
axis of Fig. (2), i.e.,

v∗
t+1 =

(
1 0
0 −1

)
v∗
t . (10)

v∗ basis is referred to as canonical basis in the literature.
Canonical basis does not involve environment.

It then follows from Eqs. (7) to (10) that dynamics of
the π machine in v basis (computational basis) is

vt+1 = Gθ∗vt, (11)

where

Gθ∗ = U†θ∗

(
1 0
0 −1

)
Uθ∗

(
1 0
0 −1

)
. (12)

Upper component of Eq. (11) is Eq. (3) discussed in the
previous section. Lower component of Eq. (11) is the
conjugate of Eq. (3), sin(θt+1 − θ∗) = sin(θt + θ∗). Both
lead to the same result.

Apart from an overall phase of no physical significance,
dynamics described by Eqs. (11) and (12) is the same as
that of Grover’s diffusion operator [1, 10].

As a result, processes described by Fig. (2) for the
π machine can be interpolated into Grover’s quantum
circuits shown by Fig. (3). This interpolation allows us to
visualize Grover’s quantum computing by the π machine.

Working qubits |W 〉 in Grover’s algorithm can be visu-
alized as the wall, searching target |k〉 as

√
m1v1,0 and su-

perposition of the rest of qubits as
√
m2v2,0; Total num-

ber of qubits n is determined by n = dlog2(1 +m2/m1)e.

FIG. 3. Quantum π machine simulator (Grover’s circuit).
|W 〉 is Grover’s working qubit representing the wall. |0〉 is
the initial n-qubit state in canonical basis representing block
state (−v, 0). |k〉 is the search target state in computational
basis representing block state

√
m1v1,0.

Grover’s diffusion operator Gθ∗ can be visualized as
m1 bouncing off the wall in computational basis, which
plays the same role as Grover’s Oracle, i.e., |k〉 → −|k〉,
followed by m1 and m2 collision in canonical basis, which
plays the same role as phase shift, i.e., |0〉 → −|0〉. Num-
ber of diffusion operators can be visualized as number of
collisions.

Most remarkably, basis mixing Eq. (9), which is gen-
erated in Grover’s algorithm by Hadamard gate rotating
qubit along polar axis of Bloch Sphere[11], is a conse-
quence of conservation of kinetic energy and momentum
of the π machine.

There is one difference between the π machine and
Grover’s search. In the π machine, initial state can be
prepared and final state can be measured in computa-
tional basis alone. In Grover’s search, however, initial
state |0〉 is prepared in canonical basis and final state is
measured in computational basis. Probability of finding
|k〉 of computational basis, which is equivalent to mea-
suring

√
m1v1,t, from initial state |0〉 of canonical basis

is

Pr(〈k|0〉)t = sin2 θt, (13)

where θt = 2tθ∗ + θ∗ (mod π), which has an extra θ∗

when compared to Eq. (5).
Apart from the difference of initial state, dynamics

of the π machine and Grover’s algorithm are identical.
Computational complexity of these two processes is the
same. In order words, the classical π machine is effec-
tively simulating a type of Grover’s quantum computing.

IV. CONCLUSION

Results of this paper can be summarized as follows:
digits of π can be computed by the π machine only in
limited cases. Dynamics of the π machine is the same as
that of Grover’s algorithm in all cases. Grover’s quan-
tum computing may be classically visualized by the π
machine.

After the completion of this work, I noticed from
Quanta Magazine [12] a very interesting recent work
of Adam Brown [13] on the same subject. Although
our approaches are somewhat different, we independently
reached the same conclusion.
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