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of qubits can represent and manipu-
late an exponentially larger number 
of combinations. Exploiting this pos-
sibility for computing seemed like a 
pipe dream, however, until research-
ers devised algorithms to extract use-
ful information from the qubits. The 
first such algorithm, described in 
1994 by Peter Shor, then at Bell Labs 
in New Jersey, efficiently finds the 
prime factors of a number, poten-

T
HE  HISTORY  OF science and 
mathematics includes many 
examples of surprising paral-
lels between seemingly unre-
lated fields. Sometimes these 

similarities drive both fields forward in 
profound ways, although often they are 
just amusing.

In December, Adam Brown, a phys-
icist at Google, described a surpris-
ingly precise relationship between a 
foundational quantum-computing 
algorithm and a whimsical method of 
calculating the irrational number π. 
“It’s just a curiosity at the moment,” 
but “the aspiration might be that 
if you find new ways to think about 
things, that people will use that to lat-
er make connections that they’d not 
previously been able to make,” Brown 
said. “It’s very useful to have more 
than one way to think about a given 
phenomenon.”

In a preprint posted online (but 
not yet peer-reviewed at press time),  
Brown showed a mathematical cor-
respondence between two seemingly 
unconnected problems. One is the 
well-known Grover search algorithm 
proposed for quantum computers, 
which should be faster than any classi-
cal equivalent. The other is a surprising 

procedure in which counting the num-
ber of collisions between idealized bil-
liard balls produces an arbitrarily pre-
cise value for the π. 

Quantum Algorithms
Quantum computing exploits quan-
tum bits, or qubits, such as ions or 
superconducting circuits, that can si-
multaneously represent two distinct 
states. In principle, a modest number 

Bouncing Balls and 
Quantum Computing 
A lighthearted method for calculating π is analogous  
to a fundamental algorithm for quantum computing.
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 N tially cracking important cryptogra-
phy schemes. The trick is to frame the 
problem as determining the repeti-
tion period of a sequence, essentially 
a Fourier transform, which can be 
found using global operations on an 
entire set of qubits.

The second fundamental algo-
rithm, devised in 1996 by Lov Grover 
working independently at Bell Labs, 
operates quite differently. “Shor and 
Grover are the two most canonical 
quantum algorithms,” according 
to Scott Aaronson of the University 
of Texas at Austin. “Even today, the 
vast majority of quantum algorithms 
that we know are recognizably either 
‘Shor-inspired’ or ‘Grover-inspired’, 
or both.”

Grover’s algorithm is often de-
scribed as a database search, exam-
ining a list of N items to find the item 
that has a desired property. If the list 
is ordered by some label (for example, 
alphabetized), any label can be found 
by repeatedly dividing the list in suc-
cessive halves, eventually requiring 
log2N queries. For an unsorted list, 
however, checking each item in turn 
requires, on average N/2 steps (and 
possibly as many as N).

Like other quantum algorithms, 
Grover’s manipulates the entire set 
of qubits simultaneously, while pre-
serving the relationships between 
them (prematurely querying any qu-
bit to determine its state turns it into 
an ordinary bit, squandering any 
quantum advantage). However, Gro-
ver showed the desired item can gen-
erally be found with only π4 √

 
N  global 

operations.
This improvement is less than that 

seen in Shor-style algorithms, which 
typically are exponentially faster than 
their classical counterparts. The Gro-
ver approach, however, can be ap-
plied to more general, unstructured 
problems, Brown notes.

The calculation starts with an 
equal admixture of all N qubits. The 
algorithm then repeatedly subjects all 
the qubits to two alternating manipu-
lations. The first operation embod-
ies the target: it inverts the state of a 
specific, but unknown, bit. The task is 
to determine which bit is altered, but 
not by measuring them all. The sec-
ond operation does not require any 
information about the target. Grover 

found that each time this sequence 
is repeated, the weight of the target 
in the admixture increases (although 
this cannot be measured). After the 
correct number of repetitions, there 
is an extremely high chance a mea-
surement will yield the correct result.

Bouncing Billiards
These sophisticated quantum manip-
ulations may seem to have little rela-
tionship to bouncing billiard balls. 
Yet Brown, while working on issues 
related to Grover’s algorithm, came 
across an animation by math popular-
izer Grant Sanderson that made him 
notice the similarities. In his paper, 
Brown shows there is a precise map-
ping between the two problems.

Sanderson’s animation illustrates 
a surprising observation described 
in 2003 by Gregory Galperin, a math-
ematician at Eastern Illinois Univer-
sity in Charleston. In the paper “Play-
ing Pool with π,” he imagined two 
billiard balls moving without friction 
along a horizontal surface, bouncing 
off each other and off a wall on the 
left side in completely elastic col-
lisions (which preserve their com-
bined kinetic energy).

If the right-hand ball is sent left-
ward toward a second stationary ball 
that is much lighter, the smaller ball 
will be sent back toward the left-hand 
wall without slowing the larger ball 
much. The small ball will bounce off 
the wall, and then collide with the 
large one again, repeating this mul-
tiple times. Eventually the collisions 
will turn the large ball around until it 
finally escapes to the right faster than 
the small ball can pursue it.

The number of collisions needed 
before this escape can occur grows 

larger with the ratio of the mass of the 
large ball compared to the small one. If 
the masses are equal, it will take three 
bounces: the first transfers all mo-
tion from the right ball to the left one, 
which bounces off the wall and then 
transfers its momentum back to the 
right ball again. If the large ball is 100 
times as massive, the process will take 
31 bounces. If the mass ratio is 10,000, 
there will be 314 bounces. In a spec-
tacularly impractical computation, for 
every increase of a factor of 100 in the 
mass ratio, the number of collisions 
(divided by the square root the mass ra-
tio) includes another digit to the digital 
representation of π, 3.141592654 . . . 

Brown fortuitously encountered 
Sanderson’s animation (which uses 
blocks instead of balls) when Grover’s 
algorithm was fresh in his mind, and 
recognized significant similarities 
between the two situations. The two 
quantum operations, for example, 
correspond respectively to collisions 
between the balls and between the 
lighter ball and the wall. The mass 
ratio corresponds to the size of the 
database. Moreover, the final result 
was that the number of operations (or 
bounces) is proportional to π and to 
the square root of this size or mass ra-
tio. (There are also two factors of two 
that reflect simple bookkeeping dif-
ferences between the problems.)

Beyond the surprising connection 
between such different systems, what 
on earth is the number π doing in both 
cases? This irrational number is of 
course best known as the ratio of the 
circumference of a circle to its diame-
ter, although it also appears in the pro-
portions of ellipses, as well as higher-
dimensional objects like spheres. One 
way to define a circle is through an 
algebraic constraint on the horizontal 
and vertical coordinates, x and y: The 
points of a circle with radius r are con-
strained to satisfy x2 + y2 = r2.

As it turns out, both the billiard 
problem and the Grover algorithm 
have constraints of this form. Colli-
sions of the balls or manipulations 
of the quantum system correspond to 
rotations along the circle defined by 
these constraints. 

For example, for two billiards 
of mass m (with velocity vm) and M 
(with velocity vM), an elastic collision 
preserves their total kinetic energy, 

Grover’s algorithm 
manipulates the 
entire set of qubits 
simultaneously, 
while preserving 
the relationships 
between them. 
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particle quantum systems and gravi-
tational models incorporating curved 
spacetime with one higher dimension. 
There is even hope the wormholes in 
spacetime can help resolve paradoxes 
associated with quantum-mechanical 
“entanglement” of distant particles. 

Mathematics has frequently ad-
vanced through connections between 
disparate fields. For example, Fer-
mat’s “last theorem,” involving inte-
ger solutions of a simple equation, 
was only proved centuries later using 

½mvm
2 + ½MvM

2. Completely revers-
ing the velocity of the larger ball re-
quires a total “rotation” by 180° (π ra-
dians) in the plane with coordinates 
vm and vM.

Similarly, for quantum systems, 
the probability of observing a partic-
ular outcome is proportional to the 
square of the “wave function” corre-
sponding to that outcome. The sum 
of the probability (squared amplitude) 
for the target and all other outcomes 
must be one.

Historical Examples of Connections
There is still the question, “Is this 
profound insight into the nature of 
reality, or is it just a sort of curiosity?” 
Brown said. “Maybe Grover search is 
telling us something profound about 
the nature of reality, and maybe the 
bouncing-ball thing is more of a curi-
osity, and maybe connecting them is 
more in the spirit of the second one 
than the first one.”

Still, there have been numerous 
cases in physics, and especially in 
mathematics, where such connec-
tions have contributed profoundly 
to progress. For example, physicists 
have spent more than two decades ex-
ploring a surprising correspondence 
between strongly interacting multi-

For quantum 
systems,  
the probability  
of seeing a particular 
outcome is 
proportional to  
the square of the 
wave function 
corresponding  
to that outcome. 

methods from “elliptic curves.” In an-
other example, in January, computer 
scientists proved a theorem relating 
entanglement to Alan Turing’s notion 
of decidable computations, which 
continues to shake up other seem-
ingly unrelated fields.

For his part, Aaronson suspects 
the Grover-billiard correspondence, 
although “striking in its precision,” is 
probably “just a cute metaphor (in the 
sense that I don’t know how to use it 
to deduce anything about Grover’s al-
gorithm that we didn’t already know). 
And that’s fine.” 
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