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One performs the experiment measuring various X;, Z; combinations
according to a table given by Adan Cabello [Cabello, 2000], which cor-
responds to the KS set shown in Fig. 3.18 (a). Quantum mechanics, of
course, always gives a definite set of results, but an attempt to keep the
outcomes of previous measurements fixed and to use them in subsequent
ones must fail. If we try to ascribe 0 and 1 to the points in Fig. 3.18 (a)
according to the rules from p. 168 (any edge must contain one 1 and
three 0s), we will soon find that this is impossible.

3.3 Quantum Algorithms

As we mentioned on pp. xiii and 31, in 1947 the head of that com-
puting center in Harvard, Howard Aiken estimated the no more than
six computers would satisfy the computing needs of the entire United
States. One reason for such an underestimate of future computing needs
was the absence of Boolean algorithms and software at the time. Today
we have a similar situation with quantum algorithms and quantum soft-
ware for would-be quantum computers. Practically all known quantum
algorithms are based on a single function—the quantum Fourier trans-
form (a quantum version of the classical discrete Fourier transform).
On the other hand, there is still no universal quantum algebra for quan-
tum computers analogous to Boolean algebra for classical computers.
Therefore, we will present several algorithms and in the end discuss pos-
sibilities for constructing a universal quantum algebra.

3.3.1 Quantum Coin—Deutsch’s Algorithm

When a magician performs a trick with a classical coin, we can only
see the top side of it, which will show either heads or tails. We are
curious to learn whether the coin is fair or fake (having heads on both
sides or tails on both sides), but we are not allowed to climb the stage to
turn the coin over and look at the bottom side. However, if we gave the
magician a quantum coin and used what is known as Deutsch’s algorithm
[Deutsch, 1985], we would be able to distinguish a fair from a fake coin
in one step.

The algorithm uses two kinds of evaluating functions f: {0,1} —

{0,1}:

s Constant functions fi(z) = 0 and fa(z) = 1, where 0 and 1 stand for
heads and tails respectively (or the other way around) and z for the




