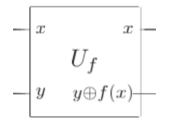
Interference and Quantum Computations

R. Perry, 30 March 2018, QCE

Quantum computation of a function f(x) is generally described by a unitary transformation U_f such that:

$$U_f |x, y\rangle = |x, y \oplus f(x)\rangle$$

corresponding to the circuit diagram ([1], page 31):



These descriptions are correct if $x, y \in \{0,1\}$. But if x and/or y are superpositions then these descriptions may be misleading, and in particular the input x may not pass through U_f unchanged due to interference between the qubits.

Note that the \oplus operation and function f(x) can only be applied directly to $\{0,1\}$ operand values. For superpositions the operations are applied separately to each part.

In general we have:

$$U_f |x, y\rangle = |\Psi\rangle$$

= |w, z> if separable

Consider the CNOT operation, so f(x) = x and U_f performs $y \oplus x$.

If $|x\rangle = |0\rangle + |1\rangle$ and $|y\rangle = |0\rangle - |1\rangle$ then (leaving out some factors of 1/sqrt(2)):

CNOT
$$|x, y\rangle = |0\rangle (|0 \oplus 0\rangle - |1 \oplus 0\rangle) + |1\rangle (|0 \oplus 1\rangle - |1 \oplus 1\rangle)$$

= $|0\rangle (|0\rangle - |1\rangle) + |1\rangle (|1\rangle - |0\rangle)$
= $|0\rangle (|0\rangle - |1\rangle) - |1\rangle (|0\rangle - |1\rangle)$
= $(|0\rangle - |1\rangle) (|0\rangle - |1\rangle)$
= $|w, y\rangle$

So $|x\rangle$ is changed to $|w\rangle = |0\rangle - |1\rangle$ and *y* is unchanged.

In this case the action of operating on y with f(x) changes x and does not affect y.

This effect is due only to interference between the qubits. There is no entanglement as the result is separable into a product state.

For comparison, entanglement would occur using inputs $|x\rangle = |0\rangle + |1\rangle$ and $|y\rangle = |0\rangle$:

CNOT
$$|x, y\rangle = |0\rangle |0 \oplus 0\rangle + |1\rangle |0 \oplus 1\rangle$$

The state $|00\rangle + |11\rangle$ is entangled and can not be factored into a product state.

From the viewpoint of a quantum computing simulation, *x*,*y* are indices into an array of amplitudes.

An amplitude table for $|w,z\rangle = \text{CNOT} |x,y\rangle$ is constructed by setting w=x and $z=x \oplus y$.

Leaving out some factors of 1/sqrt(2), the initialization $|x\rangle = |0\rangle + |1\rangle$ and $|y\rangle = |0\rangle - |1\rangle$ corresponds to:

$$(|0> + |1>) (|0> - |1>) = |00> - |01> + |10> - |11>$$

Letting *a* represent amplitude in the table, with input amplitudes *q* and output amplitudes *r*:

CNOT: $z = x \oplus v$

	ху	а	->	хz	а	=	ху	а	
q[0]	0 0	1		00	1		0 0	1	r[0] = q[0]
q[1]	0 1	- 1		0 1	- 1		0 1	- 1	r[1] = q[1]
q[2]	1 0	1		1 1	1	$\backslash/$	1 0	-1	r[2] = q[3]
q[3]	1 1	- 1		1 0	-1	/	1 1	1	r[3] = q[2]

Effectively, CNOT simply swaps the amplitudes of states $|10\rangle$ and $|11\rangle$.

Although the table was constructed by explicitly replacing *y* with $x \oplus y$, the result is the same as described above for interference, where *x* is changed and *y* is unchanged, which has amplitudes:

$$(|0> - |1>) (|0> - |1>) = |00> - |01> - |10> + |11>$$

For comparison, the amplitude table for entanglement, with initialization $|x\rangle = |0\rangle + |1\rangle$ and $|y\rangle = |0\rangle$, is:

	ху	а	->	ΧZ	а	=	ху	а	
q[0]	0 0	1		00	1		00	1	r[0] = q[0]
q[1]	0 1	0		0 1	0		0 1	0	r[1] = q[1]
q[2]	1 0	1		1 1	1	$\backslash/$	1 0	0	r[2] = q[3]
q[3]	1 1	0		10	0	/	1 1	1	r[3] = q[2]

CNOT: $z = x \oplus y$

References

[1] <u>Quantum Computation and Quantum Information, 10th Anniversary Edition</u>, Michael A. Nielsen & Isaac L. Chuang, Cambridge University Press, 2010.