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High-level quantum computing emulation is described and simulation results are presented for some applications,
including phase shift and depolarization errors.

Computations using n qubits can be simulated on a classical computer using an array of 2" complex values
representing the quantum state. This is only feasible for relatively small values of n due to the exponential amount of
memory required. And operations which may be done in parallel on a physical quantum computer are simulated
using iteration over the state array which requires an exponential amount of time. So a simulation is useful only for
evaluating and testing quantum algorithms, not for solving real applications.

In a physical quantum system the 2" states can not be observed directly. They collapse into a single value when
measured, based on the complex amplitude squared, which corresponds to the probability of the measured value. In a
simulation however we can manipulate and view the state amplitudes directly, providing insight into the internal
operation of quantum algorithms.

Quantum operations can be described mathematically using unitary matrices, but such 2"-by-2" matrices are not
practical to use directly in a simulation, so alternatives using sparse storage or decision diagram representations may
be employed. Here we follow the method described in [1] and use classical function evaluation where appropriate
instead of low-level quantum gate simulation, and no matrices are required.

For example, consider the quantum operation of addition mod M: (a,b)->(a, (a+b)%M), where a and b are m-qubit

pieces of an n-qubit register q, with n=2m, N=2", and M=2™. A low-level quantum implementation of addition is
described in [2] and is rather complicated. But a high-level simulation can be performed simply using classical
addition; in C pseudo-code:

t = copy(q); // temporary copy of q register

for( X = 0; X < N; ++X) // for each element of the state array

{
a=X>m; // top m bits
b = X & mask; // bottom m bits, mask = 2™-1 = 0111..1 (m 1's)
c=(a+b) %M // classical addition
Y = (a <<m) | ¢; // concatenate the bits
qlY] = t[X]; // perform the permutation
}
This type of reversible computation represents a permutation, e.g. addition with m=1 swaps states 2 and 3:
q a b -> a (a+b)%2
0 0 0 0 0
1 0 1 0 1
2 1 0 1 1
3 1 1 1 0

Quantum modular exponentiation and other periodic functions can also be simulated using permutations.

Functions which do not represent a permutation may also be simulated directly at a high-level. The quantum discrete
Fourier transform can be simulated by simply performing a classical DFT on the state array coefficients. The phase
flip and inversion about the average used in Grover's algorithm can be simulated at a high-level by simply
performing the computations; in C pseudo-code:
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glm] = -qlm]; // apply f, i.e. flip sign of state m
a=0; for( 1i=20; 1i<N; ++i) a += q[i];
a *= 2.0/N; for( i =0; i < N; ++i) g[i] = a - ql[il; // inversion about the average

Compared with a low-level quantum circuit for the Grover iteration (from [15]), the high-level simulation does not
require any Hadamard transformations or other gates, and also does not require use of auxiliary oracle workspace
qubits.

The resulting quantum state is the same regardless of whether it is simulated at a low-level or high-level.
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Grover's search - simulation results for searching a 16-bit space, i.e. 21 = 65536 possibilities, which would take

(216)/2 = 32768 iterations on average using a classical algorithm. The quantum algorithm takes only (n/4)216/ 2=201
iterations optimally to find a match with a probability of 0.999988 with no noise (top left plot); additional iterations
reduce the probability. In the plot on the top right, depolarizing noise level p = 0.25 reduces the probability of match
to 0.749995.

The bottom plots show the effect of errors caused by non-resonant pulses implementing the initial Hadamard
transformations (see notes on Magnetic Pulse Error Analysis). For relative error r;=0.05 the probability of match
after 201 iterations is 0.990014 and for ry=0.1 it is 0.960394.
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Shor's Algorithm, N=33, L=11, y=5
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Shor factoring - simulation factoring N=33 using L=11 work qubits and y=5 (order 10). DFT probability peaks
occur at (205, 410, 614, 819, ...), and dividing those into 211 produces period estimates (9.9902, 4.9951, 3.3355,
2.5006, ...). Using r = 10 = 9.9902 we have y" - 1 = 0 (mod N), s0 (y72 - 1)*(y"2 + 1) = (57 - 1)*(5° + 1) = 22%24;
gcd(22,N) = 11, gcd(24,N) = 3, both factors of N.

Deutsch-Jozsa problem, m=7
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Deutsch-Jozsa problem - simulation results for P(constant) vs. number of 1's in the output of a hidden Boolean
function. The hidden function is supposed to be either constant (always 0 or always 1) or balanced (0 for half of the
possible inputs and 1 for the other half). For a function with m input bits, a classical solution must call the function

up to 1+2™ ! times to determine if it is constant or balanced. But the quantum solution can do it with just one

function call, regardless of the size of m. Results shown are for randomly generated functions with 0 to 2™ 1's in their
output, so the two end points represent constant functions and only the middle point represents a balanced function.
The plot shows the probability varying smoothly between 1 and 0 for the non-constant/non-balanced functions
indicating that this algorithm may usefully detect functions which are almost constant or balanced.
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The plots above show P(constant) when there is a phase shift error implementing the Hadamard transformations
(see notes on Magnetic Pulse Error Analysis). The relative phase shift is ry=¢/ (11/2) so rp=1 represents no phase
shift error. For non-constant functions the phase shift error causes P(constant) to increase, so for balanced functions
it is greater than 0. In the left plot, for Number of 1's = 64 (i.e. balanced functions), P(constant) is 0.0244717,
0.0954915, 0.206107 for r, = 1.2, 1.4, 1.6 respectively. The plot on the right shows P(constant) for the
parity function, which is balanced, for a range of phase shift errors.

Also see notes on Deutsch-Jozsa Coin Analogy.
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Bernstein-Vazirani problem - determine parameter a in the hidden parity function f{x) =a - x @ b [7] in the
presence of depolarizing noise [12]. This problem is considered to be intractable classically. The probabilities of
measured values for noise levels p = 0.0, 0.5, 0.75, 1.0 are shown above for a = 7 corresponding to correct measured
value m = 2*a + [ = 15. With no noise (p = 0.0) the correct value is always measured. With 100% noise all possible
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measured values are equally likely with probability 1/2"*1 (0.03125 for n=4). The probability of measuring the
correct value is linearly related to the noise level: P(m) = (1-p)*1.0 + p/2"*1.

Bernstein-Vazirani problem, n=16, p=0.9 Bernstein-Vazirani problem, n=16, p=0.95
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In the simulations shown above, each trial represents a measurement, and the 16-bit parameter is estimated using a
bit-wise majority vote following [12]. In the examples shown, for noise level 0.9 all bits are correct after about 60
trials, and for noise level 0.95 all bits are correct after about 650 trials.

The Bernstein-Vazirani algorithm is performed just once, and then repeated measurements are simulated based on the
state probabilities (amplitudes squared). Unlike a physical quantum system, simulated measurements do not collapse
the state, so multiple measurements may be performed without redoing the algorithm.

Depolarization produces a mixed state which can not be represented using a state vector (see notes on Depolarization
and Mixed States). And according to [12], depolarization should be performed before the final Hadamard

transformation. But unitary transformations have no effect on a depolarized density matrix, since U*I*Ut = U*UT =
L

So depolarization is simulated after H, just before measuring, by creating a state which will lead to proper
measurements, changing each state amplitude 4 using a convex combination, so |4| becomes sgrt((1-p) *|A|Z + p*h2 )
and the phase becomes (I-p)*ZA + p*0, where h? = 1/2"*1.
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Bernstein-Vazirani problem, n=4, ra=0.4, a=7, m=15 Bernstein-Vazirani problem, n=4, ra=0.6, a=7, m=15
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The plots above show the probabilities of measured values with non-resonant pulses implementing the Hadamard
transformations for different relative error levels r,. (see notes on Magnetic Pulse Error Analysis). With no error (7,

= (.0) the correct value is always measured. For r, = 0.2, 0.4, 0.6 the probability of measuring the correct value is
0.828412,0.417071, 0.0647358 respectively.

References

[1] High Performance Emulation of Quantum Circuits, Thomas Héner, Damian S. Steiger, Mikhail Smelyanskiy,
Matthias Troyer, 2016. Uses classical function evaluation instead of low-level quantum gate simulation.

[2] A new quantum ripple-carry addition circuit, Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin, David
Petrie Moulton, 2004. An example of a low-level implementation. This is reference #12 from [1].

[3] An Introduction to Quantum Algorithms, Emma Strubell, 2011. Has detailed small example of Grover's
algorithm.

[4] Python Quantum Computing simulator, Juliana Pefia, 2011. Two qubits and superdense coding protocol example.
Errata.

[5] An Introduction to Quantum Computing, Without the Physics, Giacomo Nannicini, Nov 2018.

[6] The Deutsch-Jozsa Problem: De-quantisation and Entanglement, Alastair A. Abbott, 2010.

[7] Quantum algorithms revisited, R. Cleve, A. Ekert, C. Macchiavello, M. Mosca, Proc. R. Soc. Lond. A (1998)
454, 339-354. This is reference #6 from [6].

[8] A _pseudo-simulation of Shor's quantum factoring algorithm, J.F.Schneiderman, M.E.Stanley, P.K.Aravind, 2002.

[9] Pretending to factor large numbers on a quantum computer, John A. Smolin, Graeme Smith, Alex Vargo, 2013.
[lustrates that the correct measure of difficulty when implementing Shor's algorithm is not the size of number
factored, but the length of the period found. Full version: Oversimplifying quantum factoring, Nature 499:163-165,
July 2013. Example with period=2.

computing, how it might be used to attack classical cryptographic algorithms, and possibly how to predict when
large, specialized quantum computers will become feasible.

[11] Noise-tolerant parity learning with one quantum bit, Daniel K. Park, June-Koo K. Rhee, and Soonchil Lee, Phys.
Rev. A 97, 032327, March 2018. Also in arXiv.org.

[12] Quantum learning robust against noise, Andrew W. Cross, Graeme Smith, and John A. Smolin, Phys. Rev. A 92,
012327, July 2015. This is reference #11 from [11].



http://fog.misty.com/perry/qc/BVe-0.4.gif
http://fog.misty.com/perry/qc/BVe-0.6.gif
http://fog.misty.com/perry/qc/pulse/notes.html
https://arxiv.org/abs/1604.06460
https://arxiv.org/abs/quant-ph/0410184
https://people.cs.umass.edu/~strubell/doc/quantum_tutorial.pdf
https://gist.github.com/limitedmage/945473
http://fog.misty.com/perry/qc/Errata-Pena-2011.txt
https://arxiv.org/abs/1708.03684
https://arxiv.org/abs/0910.1990
http://rspa.royalsocietypublishing.org/content/454/1969/339
https://arxiv.org/abs/quant-ph/0206101
https://arxiv.org/abs/1301.7007
https://www.nature.com/articles/nature12290
http://fog.misty.com/perry/qc/Shor.33.23.gif
https://datatracker.ietf.org/doc/draft-hoffman-c2pq/
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.032327
https://arxiv.org/abs/1712.05952
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.92.012327

[13] Depolarizing channel parameter estimation using noisy initial states, David Collins, Jaimie Stephens, June 2015.
Third paragraph: The depolarizing channel is interesting for various reasons. First, depolarization is a standard
model of certain noise processes and is of general interest for quantum information processing [10,12-15]. Specific
examples appear in nuclear magnetic resonance (NMR) [16,17] and optical quantum information processing [18-
20]. Second, quantum parameter estimation reveals fundamental and quantifiable differences with classical
approaches when manifestly quantum resources such as entanglement are used.

[14] Experimental realization of a quantum algorithm, Isaac L. Chuang, Lieven M.K. Vandersypen, Xinlan Zhou,
Debbie W. Leung, and Seth Lloyd, 1998. Mentions that to determine whether a function is constant or balanced is
analogous to determining whether a coin is fair or fake.

Books

[15] Quantum Computation and Quantum Information, 10th Anniversary Edition, Michael A. Nielsen & Isaac L.
Chuang, Cambridge University Press, 2010. Page 15: most general state of a single qubit, ignoring global phase

factor, parameterized by two (bounded) real numbers: cos(6/2)|0> + e?sin(6/2)|1>, 0<0 <z, 0 <¢ <2x.

[16] Quantum Computing: A Gentle Introduction, Eleanor G. Rieffel and Wolfgang H. Polak, MIT Press, 2011.

[17] Quantum Computing: A Short Course from Theory to Experiment, Joachim Stolze and Dieter Suter, Wiley,
2004. Assumes background in physics and quantum mechanics. Page 64: gate which interpolates smoothly between

the identity and NOT gates: ¢/?X = I cos(p) + i X sin(p) = [cos(p), i sin(p); i sin(p), cos(p)]

[18] Introduction to Quantum Computers, Gennady P Berman, Gary D Doolen, Ronnie Mainieri, Vladimir I
Tsifrinovich, World Scientific, 1998.

[19] Quantum Computation and Quantum Communication: Theory and Experiments, Mladen Pavicic, Springer,
2006. Deutsch's algorithm is introduced on page 173 in terms of a coin being fair or fake.

[20] Quantum Bits and Quantum Secrets: How Quantum Physics is revolutionizing Codes and Computers, Oliver
Morsch, Wiley, 2008. High-school level.

[21] Baby Loves Quantum Physics!, Ruth Spiro, 2017. For the younger reader.

[22] Quantum Entanglement for Babies, Chris Ferrie, 2017. For the younger reader.

Videos

[23] Quantum Computing Expert Explains One Concept in 5 Levels of Difficulty, Talia Gershon, IBM, 25 June 2018.

Extra

Problems and Solutions in Quantum Computing and Quantum Information, 4th Edition, Willi-Hans Steeb and Yorick
Hardy, 2018. Boring, but could be useful.

Adventures in Computer Science, From Classical Bits to Quantum Bits, Vicente Moret-Bonillo, 2017. Incoherent.

Quantum Computer Science, An Introduction, N. David Mermin, 2007. Very readable; excellent discussion of the
Bernstein-Vazirani problem.

Quantum spring, The Economist, Business section, Aug. 18, 2018. The race is on to dominate quantum computing.
But the technology may face a winter before it enters its summer..

Quantum Computing Report. Business aspects, and more.


https://arxiv.org/abs/1506.06147
https://arxiv.org//abs/quant-ph/9801037
http://www.cambridge.org/us/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition
http://fog.misty.com/perry/qc/QC10th-Bloch-Fig1.3.png
https://mitpress.mit.edu/books/quantum-computing
https://www.wiley.com/en-us/Quantum+Computing%3A+A+Short+Course+from+Theory+to+Experiment-p-9783527617777
https://www.worldscientific.com/worldscibooks/10.1142/3808
https://www.springer.com/us/book/9780387244129
https://www.wiley.com/en-us/Quantum+Bits+and+Quantum+Secrets%3A+How+Quantum+Physics+is+revolutionizing+Codes+and+Computers-p-9783527407101
https://www.charlesbridge.com/products/baby-loves-quantum-physics
https://shop.sourcebooks.com/quantum-entanglement-for-babies.html
https://www.youtube.com/watch?v=OWJCfOvochA
https://www.worldscientific.com/worldscibooks/10.1142/10943
https://www.springer.com/us/book/9783319648064
https://www.cambridge.org/core/books/quantum-computer-science/66462590D10C8010017CF1D7C45708D7
https://www.economist.com/business/2018/08/18/the-race-is-on-to-dominate-quantum-computing
https://quantumcomputingreport.com/

The Quantum Magician, Derek Kiinsken, Solaris Books, Oct 2018. Science fiction, mostly far-fetched, but the use of
quantum entangled particles is interesting.

Massively parallel quantum computer simulator, eleven years later, Hans De Raedt, et. al., Dec. 2018. Page 14:
DEPOLARIZING CHANNEL: Insert X, Y, or Z gates with specified probabilities to mimic gate ervors. ... After each
gate operation, JUQCS performs an X gate on each qubit with probability px, a Y gate on each qubit with probability
py, and a Z gate on each qubit with probability pz.

Benjamin, Dec. 4, 2018. Open source C library using OpenMP and MPI. Home: quest.qtechtheory.org, source:
github.com/quest-kit/QuEST. Depolarizing noise: applyOneQubitDepolariseError(): Mixes a density matrix qureg to
induce single-qubit homogeneous depolarising noise. With probability prob, applies (uniformly) either Pauli X, Y, or
Z to targetQubit. This transforms qureg = p into the mixed state (1-prob) p + (prob/3) Xp X+ Yp Y+ Zp Z)

Quantum++: A modern C++ quantum computing library, Vlad Gheorghiu, Dec. 2018. Open source C++11,
composed solely of header files: github.com/vsoftco/qpp

ProjectQ: An Open Source Software Framework for Quantum Computing, Damian S. Steiger, Thomas Héner,
Matthias Troyer, Quantum, Jan. 2018. Python-embedded domain-specific language. Home: projectq.ch, source:
github.com/ProjectQ-Framework/ProjectQ.

Distributed Memory Techniques for Classical Simulation of Quantum Circuits, Ryan LaRose, June 21, 2018.
Excerpts.

gHiPSTER: The Quantum High Performance Software Testing Environment, Mikhail Smelyanskiy, Nicolas P. D.
Sawaya, Alan Aspuru-Guzik, May 12, 2016. This is [20] from LaRose 2018.

in-place bit-reversed shuffle on an array: 7o swap in place with a single pass, iterate once through all elements in
increasing index. Perform a swap only if the index is less-than the reversed index -- this will skip the double swap
problem and also palindrome cases (elements 00000000b, 10000001b, 10100101b) which inverse to the same value
and no swap is required. for( 1 = 0; i < N; ++i) /* Let data[N] be your element array */ { j =

bit reverse(i); if( i < j) swap( data+i, data+j); }

Open source software in quantum computing, Mark Fingerhuth, Tomas Babej, Peter Wittek, Dec 21, 2018. Reviews
focused more on quality of the software rather than functionality and performance. Home: qosf.org.



https://derekkunsken.com/my-fiction.html
https://arxiv.org/abs/1805.04708
https://arxiv.org/abs/1802.08032
https://quest.qtechtheory.org/
https://github.com/quest-kit/QuEST
https://arxiv.org/abs/1412.4704
https://github.com/vsoftco/qpp
https://arxiv.org/abs/1612.08091
https://projectq.ch/
https://github.com/ProjectQ-Framework/ProjectQ
https://arxiv.org/abs/1801.01037
http://fog.misty.com/perry/qc/Excerpts-LaRose-2018.html
https://arxiv.org/abs/1601.07195
https://stackoverflow.com/questions/932079/in-place-bit-reversed-shuffle-on-an-array
https://arxiv.org/abs/1812.09167
https://qosf.org/

