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The Quipper language offers a unified  
general-purpose programming framework  
for quantum computation. 

BY BENOÎT VALIRON, NEIL J. ROSS, PETER SELINGER,  
D. SCOTT ALEXANDER, AND JONATHAN M. SMITH 

THE EARLIEST COMPUTERS,  like the ENIAC, were rare 
and heroically difficult to program. That difficulty 
stemmed from the requirement that algorithms be 
expressed in a “vocabulary” suited to the particular 
hardware available, ranging from function tables 
for the ENIAC to more conventional arithmetic and 
movement operations on later machines. Introduction 
of symbolic programming languages, exemplified 
by FORTRAN, solved a major difficulty for the 
next generation of computing devices by enabling 
specification of an algorithm in a form more suitable 
for human understanding, then translating this 
specification to a form executable by the machine. The 
“programming language” used for such specification 
bridged a semantic gap between the human and the 
computing device. It provided two important features: 
high-level abstractions, taking care of automated 
bookkeeping, and modularity, making it easier to 
reason about sub-parts of programs. 

Quantum computation is a comput-
ing paradigm where data is encoded 
in the state of objects governed by the 
laws of quantum physics. Using quan-
tum techniques, it is possible to de-
sign algorithms that outperform their 
best-known conventional, or classical, 
counterparts. 

While quantum computers were en-
visioned in the 20th century, it is likely 
they will become real in the 21st cen-
tury, moving from laboratories to com-
mercial availability. This provides an 
opportunity to apply the many lessons 
learned from programming classical 
computing devices to emerging quan-
tum computing capabilities. 

Quantum Coprocessor Model 
How would programmers interact with 
a device capable of performing quan-
tum operations? Our purpose here is 
not to provide engineering blueprints 
for building an actual quantum com-
puter; see Meter and Horsman13 for a 
discussion of that agenda. What we de-
scribe is a hypothetical quantum archi-
tecture in enough detail to cover how 
one would go about programming it. 

Viewed from the outside, quantum 
computers perform a set of specialized 
operations, somewhat analogous to 
a floating-point unit or a graphics co-
processor. We therefore envision the 
quantum computer as a kind of copro-
cessor that is controlled by a classical 
computer, as shown schematically in 
Figure 1. The classical computer per-
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 key insights
 ˽ Quantum computer science is a new 

discipline dealing with the practical 
integration of all aspects of quantum 
computing, from an abstract algorithm  
in a research paper all the way to  
physical operations. 

 ˽ The programs written in a quantum 
programming language should be as 
close as possible to informal high-level 
descriptions, with output suitable for the 
quantum coprocessor model. 

 ˽ Other important aspects of the quantum 
programming environment include 
automated offline resource estimates 
prior to deployment and facilities for 
testing, specification, and verification. 
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mately be the most likely realization of 
quantum computers.13 

Certain hardware-intensive low-lev-
el control operations (such as quantum 
error correction) may optionally be in-
tegrated directly into the quantum unit. 
We envision the quantum unit contain-
ing a high-speed, specialized firmware 
in charge of such a low-level “quantum 
runtime.” The quantum firmware is 
specific to each physical realization of 
a quantum coprocessor, programmed 
separately off site. Although tightly de-
pendent on the physical specifications 
of the particular hardware, the quan-
tum firmware is independent of the al-
gorithms to be run. 

The source code of any quantum 
programs resides on the classical 
unit. Through a conventional classi-
cal compilation, it produces execut-
able code to be run on the conven-
tional computer. We envision the 
quantum coprocessor will commu-
nicate with its classical controller 
through a message queue on which 
the classical computer is able to send 
elementary instructions (such as “al-
locate a new quantum bit,” “rotate 
quantum bit x,” and “measure quan-
tum bit y”). After an operation is per-
formed, the classical computer can 
read the results from the message 
queue. In this model, the control flow 
of an algorithm is classical; tests and 
loops are performed on the classical 
device. Both classical and quantum 
data are first-class objects. 

Via the message queue, the classi-
cal runtime receives feedback (such as 
the results of measurements) from the 
quantum unit. Depending on the algo-
rithm, this feedback may occur only at 
the end of the quantum computation 
(batch-mode operation) or interleaved 
with the generation of elementary in-
structions (online operation). The 
possibility of online operation raises 
additional engineering challenges, 
as it requires the classical controller 
to be fast enough to interact with the 
quantum runtime in real time. On the 
other hand, many common quantum 
algorithms require only batch-mode 
operation. We assume a quantum pro-
gramming model flexible enough to 
address either type of operation. 

As with a conventional program-
ming environment, we separate the log-
ical data structures from their physical 

forms operations (such as compila-
tion, conventional bookkeeping, cor-
rectness checking, and preparation of 
code and data) for the quantum unit. 
The quantum coprocessor performs 

only the quantum operations (such as 
initializations, unitary operations, and 
measurements). This model of quan-
tum computation is known as Knill’s 
QRAM model11 and is believed to ulti-

Figure 1. Mixed computation in the quantum coprocessor model. 
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representation on the hardware. In our 
proposed paradigm, the algorithms 
are implemented at the logical level, 
but the quantum bits are physically en-
coded at the hardware level. The tasks 
of mapping logical quantum bits and 
operations to stable physical represen-
tations, and of applying suitable error 
correction, are left to the compiler and 
to the quantum firmware. 

Describing Quantum Algorithms 
To motivate the need for an expres-
sive quantum programming lan-
guage (QPL), we briefly consider 
some of the ways quantum algo-
rithms are typically specified in the 
literature. A quantum algorithm gen-
erally consists of a mix of classical 
and quantum operations. The quan-
tum parts of an algorithm are usually 
aggregated into quantum circuits, 
in which quantum gates are repre-
sented by boxes and quantum bits 
by wires, as in Figure 2. Some restric-
tions apply to circuits. For example, 
they cannot contain loops, so wires 

must flow in only one direction. The 
gates can have multiple inputs and 
outputs. With the exception of gates 
corresponding to the creation and 
destruction (measurement) of quan-
tum bits, elementary operations are 
always unitary transformations, im-
plying they must have the same num-
ber of inputs and outputs. 

A typical description of a quantum 
algorithm consists of one or more of 
the following pieces, which may be 

specified at various levels of formality: 
Mathematical equations. These can 

be used to describe state preparations, 
unitary transformations, and measure-
ments. For example, Harrow et al.9 
described a quantum algorithm for 
solving linear systems of equations. A 
certain subcircuit of the algorithm is 
defined as follows: 

Figure 5. An initialize-run-measure loop. 
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ditioning a subroutine over the state of 
a quantum register; and 

Building quantum oracles. Enable 
the programmer to build a quantum 
oracle from the description of a classi-
cal function. 

Our experience implementinga 
quantum algorithms suggests some 
additional features that would be re-
quirements for a quantum program-
ming language: 

Quantum data types. In classical lan-
guages, data types are used to permit 
the programmer to think abstractly 
about data instead of managing indi-
vidual bits or words. For example, in 
most situations, a floating-point num-
ber is best viewed as a primitive data 
type supporting certain arithmetic op-
erations, rather than an array of 64 bits 
comprising an exponent, a mantissa, 
and a sign. Likewise, many quantum 
algorithms specify richer data types, 
so the language should also provide 
these abstractions. For example, the 
Quantum Linear System Algorithm9 
requires manipulation of quantum 
integers and quantum real and com-
plex numbers that can be represented 
through a floating-point or fixed-pre-
cision encoding. Another example is 
Hallgren’s algorithm8 for computing 
the class number of a real quadratic 
number field. One type of data that oc-
curs in this algorithm, and that must 
be put into quantum superposition, is 
the type of ideals in an algebraic num-
ber field; 

a By “implementing” an algorithm, we mean real-
izing it as a computer program; we do not mean 
we have actually run the programs on a quantum 
computer, although we have run parts of the 
algorithms on quantum simulators.

Invocation of known quantum subrou-
tines. Examples include the quantum 
Fourier transform, phase estimation, 
amplitude amplification, and random 
walks. For example, the algorithm in 
Harrrow et al.9 asks to “decompose |b〉 
in the eigenvector basis, using phase 
estimation”; 

Oracles. These are classical com-
putable functions that must be made 
reversible and encoded as quantum 
operations. They are often described at 
a very high level; for example, Burham 
et al.3 defined an oracle as “the truth 
value of the statement f (x) ≤ f (y)”; 

Circuit fragments. For example, the 
circuit in Figure 3 is from Childs et al.4 
Note, strictly speaking, the figure de-
scribes a family of quantum circuits, 
parameterized by a rotation angle t and 
a size parameter n, as indicated by el-
lipses “. . .” in the informal circuit. In 
a formal implementation, this parame-
ter dependency must be made explicit; 

High-level operations on circuits. 
Examples include “inversion,” where 
a circuit is reversed, and “iteration,” 
where a circuit is repeated, as in Figure 
4; and 

Classical control. Many algorithms 
involve interaction between the clas-
sical unit and the quantum unit. This 
interaction can take the form of simple 
iteration, running the same quantum 

circuit multiple times from scratch, as 
in Figure 5, or of feedback, where the 
quantum circuit is generated on the fly, 
possibly based on the outcome of pre-
vious measurements, as in Figure 6. 

Requirements for QPLs 
Ideally, a quantum programming lan-
guage should permit programmers to 
implement quantum algorithms at a 
level of abstraction that is close to how 
one naturally thinks about the algo-
rithm. If the algorithm is most natu-
rally described by a mathematical for-
mula, then the programming language 
should support such a description 
where possible. Similarly, if the algo-
rithm is most naturally described by 
a sequence of low-level gates, the pro-
gramming language should support 
this description as well. 

The standard methods used to pres-
ent many algorithms in the literature 
can therefore be taken as guidelines 
in the design of a language. Knill11 laid 
out requirements for quantum pro-
gramming, including: 

Allocation and measurement. Make 
it possible to allocate and measure 
quantum registers and apply unitary 
operations; 

Reasoning about subroutines. Permit 
reasoning about quantum subrou-
tines, reversing a subroutine, and con-

Figure 7. A procedural example. 

mycirc :: Qubit -> Qubit -> Circ (Qubit, Qubit)
mycirc a b = do
  a <- hadamard a
  b <- hadamard b
  (a,b) <- controlled_not a b
  return (a,b)

H

H

Figure 8. A block structure example. 
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Specification and verification. In 
classical programming, there is a vari-
ety of techniques for ascertaining the 
correctness of programs, including 
compile-time type checking, runtime 
type checking, formal verification, and 
debugging. Among them, formal verifi-
cation is arguably the most reliable but 
also the most costly. The availability 
of strong compile-time guarantees re-
quires very carefully designed program-
ming languages. Debugging is cheap 
and useful and therefore ubiquitous in 
classical-program development. 

In quantum computation, the cost 
of debugging is likely to be quite high. 
To begin with, observing a quantum 
system can change its state. A debugger 
for a quantum program would there-
fore necessarily give incomplete in-
formation about its state when run on 
actual quantum hardware. The alterna-
tive is to use a quantum simulator for 
debugging. But this is not practical due 
to the exponential cost of simulating 
quantum systems. Moreover, it can be 
expected that the initial quantum com-
puters will be rare and expensive to run 
and therefore that the cost of runtime 
errors in quantum code will initially be 
much higher than in classical comput-
ing. This shifts the cost-benefit analy-
sis for quantum programming toward 
strong compile-time correctness guar-
antees, as well as formal specification 
and verification. 

A quantum programming language 
should have a sound, well-defined 
semantics permitting mathematical 
specifications of program behavior 
and program correctness proofs. It 
is also beneficial for the language to 

Figure 9. A circuit operator example. 

timestep :: Qubit -> Qubit -> Qubit -> Circ (Qubit, Qubit, Qubit)
timestep a b c = do

mycirc a b
qnot c `controlled` (a,b) 
reverse_simple mycirc (a,b)
return (a,b,c)

H H

H H

mycirc mycirc

Figure 10. A circuit transformer example. 

timestep2 :: Qubit -> Qubit -> Qubit -> Circ (Qubit, Qubit, Qubit)
timestep2 = decompose_generic Binary timestep
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Figure 12. The circuit from Figure 11 made reversible. 

classical_to_reversible :: (Datable a, QCData b) => (a -> Circ b) -> (a,b) -> Circ (a,b)
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Figure 11. A functional-to-reversible translation example. 
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unpack template_f :: [Qubit] -> Circ Qubit



58    COMMUNICATIONS OF THE ACM    |   AUGUST 2015  |   VOL.  58  |   NO.  8

contributed articles

have a strong static type system that 
can guarantee the absence of most 
runtime errors (such as violations of 
the no-cloning property of quantum 
information);b and 

Resource sensitivity and resource es-
timation. At first, quantum computers 
will probably not have many qubits. 
The language should thus include 
tools to estimate the resources re-
quired for running a particular piece of 
code (such as number of qubits, num-
ber of elementary gates, or other rel-

b The absence of cloning is already guaranteed 
by the physics, regardless of what the pro-
gramming language does. However, one could 
similarly say the absence of an illegal memory 
access is guaranteed by a classical processor’s 
page-fault mechanism. It is nevertheless desir-
able to have a programming language that can 
guarantee prior to running the program that the 
compiled program will never attempt to access 
an illegal memory location or, in the case of a 
quantum programming language, will not at-
tempt to apply a controlled-not gate to qubits n 
and m, where n = m.

Figure 13. A procedural example. 

import Quipper

w :: (Qubit,Qubit) -> Circ (Qubit,Qubit)
w = named_gate “W”

toffoli :: Qubit -> (Qubit,Qubit) -> Circ Qubit
toffoli d (x,y) =
   qnot d ‘controlled‘ x .==. 1 .&&. y .==. 0

eiz_at :: Qubit -> Qubit -> Circ ()
eiz_at d r =
   named_gate_at “eiZ” d ‘controlled‘ r .==. 0

circ :: [(Qubit,Qubit)] -> Qubit -> Circ ()
circ ws r = do
   label (unzip ws,r) ((“a”,”b”),”r”)
   with_ancilla $ \d -> do
   mapM_ w ws
   mapM_ (toffoli d) ws
   eiz_at d r
   mapM_ (toffoli d) (reverse ws)
   mapM_ (reverse_generic w) (reverse ws)
   return ()

main = print_generic EPS circ (replicate 3 (qubit,qubit)) qubit

Figure 15. The circuit generated by the code in Figure 13, with 30 qubit pairs. 
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Figure 14. The circuit generated by the code in Figure 13, with three qubit pairs. 
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evant resources) prior to deployment. 
One particular issue for language de-
signers is how to handle quantum er-
ror correction. As the field advances, a 
decision must be made as to whether 
error correction should be exposed to 
the programmer (potentially allowing 
for optimization by hand) or whether 
it is more efficient to let the compiler 
or some other tool apply error correc-
tion automatically. Due to the potential 
for undesirable interactions between 
quantum error correction (which adds 
redundancy) and the optimization step 
of a compiler (which removes redun-
dancy), the design and implementa-
tion of any quantum programming 
language must be aware of the require-
ments of quantum error correction. 

Prior Work on QPLs 
Several quantum programming lan-
guages have been developed by re-
searchers around the world.5 Some, in-
cluding van Tonder’s quantum lambda 
calculus,18 are primarily intended as 
theoretical tools. The first quantum 
programming language intended for 
practical use was arguably Ömer’s 
QCL,14 a C-style imperative language 
supporting “structured quantum pro-
gramming.” QCL provides simple reg-
isters but no high-level quantum data 
types. It could also benefit from greater 
support for specification and verifica-

tion. Partly building on Ömer’s work, 
Bettelli et al.2 proposed a language that 
is an extension of C++. The guarded 
command language qGCL of Sanders 
and Zuliani16 hints at a language for 
program specification. 

The first quantum programming 
language in the style of functional pro-
gramming was the quantum lambda 
calculus of Selinger and Valiron,17 
providing a unified framework for ma-
nipulating classical and quantum data. 

The quantum lambda calculus has a 
well-defined mathematical semantics 
that guarantees the absence of runtime 
errors in a well-typed program. The 
language is easily extended with induc-
tive data types (such as lists) and recur-
sion. One shortcoming of the quantum 
lambda calculus, however, is that it 
does not separate circuit construction 
from circuit evaluation. It thus lacks 
the ability to manipulate quantum cir-
cuits as data, as well as the ability to au-

Figure 16. The calcRweights function. 

calcRweights y nx ny lx ly k theta phi =
     let (xc’,yc’) = edgetoxy y nx ny in
     let xc = (xc’-1.0)*lx - ((fromIntegral nx)-1.0)*lx/2.0 in
     let yc = (yc’-1.0)*ly - ((fromIntegral ny)-1.0)*ly/2.0 in
     let (xg,yg) = itoxy y nx ny in
     if (xg == nx) then
         let i = (mkPolar ly (k*xc*(cos phi)))*(mkPolar 1.0 (k*yc*(sin phi)))*
                 ((sinc (k*ly*(sin phi)/2.0)) :+ 0.0) in
         let r = ( cos(phi) :+ k*lx )*((cos (theta - phi))/lx :+ 0.0) in i * r
     else if (xg==2*nx-1) then
         let i = (mkPolar ly (k*xc*cos(phi)))*(mkPolar 1.0 (k*yc*sin(phi)))*
                 ((sinc (k*ly*sin(phi)/2.0)) :+ 0.0) in
         let r = ( cos(phi) :+ (- k*lx))*((cos (theta - phi))/lx :+ 0.0) in i * r
     else if ( (yg==1) && (xg<nx) ) then 
         let i = (mkPolar lx (k*yc*sin(phi)))*(mkPolar 1.0 (k*xc*cos(phi)))*
                 ((sinc (k*lx*(cos phi)/2.0)) :+ 0.0) in
         let r = ( (- sin phi) :+ k*ly )*((cos(theta - phi))/ly :+ 0.0) in i * r
     else if ( (yg==ny) && (xg<nx) ) then 
         let i = (mkPolar lx (k*yc*sin(phi)))*(mkPolar 1.0 (k*xc*cos(phi)))*
                 ((sinc (k*lx*(cos phi)/2.0)) :+ 0.0) in
         let r = ( (- sin phi) :+ (- k*ly) )*((cos(theta - phi)/ly) :+ 0.0) in i * r
     else 0.0 :+ 0.0

Figure 17. The calcRweights circuit. 

Oracle r: 

Qint (33 input qubit wires) 

Qdouble (65 output qubit wires) 

Qdouble (65 output qubit wires) 

Fanout of two Qdouble to the output wires 

calcRweights :: Int  
                -> Int -> Int -> Double -> Double -> Double -> Double -> Double 
                 -> Complex Double 
calcRweights y nx ny lx ly k theta phi = 
     let (xc',yc') = edgetoxy y nx ny in 
     let xc = (xc'-1.0)*lx - ((fromIntegral nx)-1.0)*lx/2.0 in 
     let yc = (yc'-1.0)*ly - ((fromIntegral ny)-1.0)*ly/2.0 in 
     let (xg,yg) = itoxy y nx ny in 
     if (xg == nx) then 
         let i = (mkPolar ly (k*xc*(cos phi)))* 
                 (mkPolar 1.0 (k*yc*(sin phi)))* 
                 ((sinc (k*ly*(sin phi)/2.0)) :+ 0.0) in 
         let r = ( cos(phi) :+ k*lx )*((cos (theta - phi))/lx :+ 0.0) in i * r 
     else if (xg==2*nx-1) then 
         let i = (mkPolar ly (k*xc*cos(phi)))* 
                 (mkPolar 1.0 (k*yc*sin(phi)))* 
                 ((sinc (k*ly*sin(phi)/2.0)) :+ 0.0) in 
         let r = ( cos(phi) :+ (- k*lx))*((cos (theta - phi))/lx :+ 0.0) in i * r 
     else if ( (yg==1) && (xg<nx) ) then  
         let i = (mkPolar lx (k*yc*sin(phi)))* 
                 (mkPolar 1.0 (k*xc*cos(phi)))* 
                 ((sinc (k*lx*(cos phi)/2.0)) :+ 0.0) in 
         let r = ( (- sin phi) :+ k*ly )*((cos(theta - phi))/ly :+ 0.0) in i * r 
     else if ( (yg==ny) && (xg<nx) ) then  
         let i = (mkPolar lx (k*yc*sin(phi)))* 
                 (mkPolar 1.0 (k*xc*cos(phi)))* 
                 ((sinc (k*lx*(cos phi)/2.0)) :+ 0.0) in 
         let r = ( (- sin phi) :+ (- k*ly) )*((cos(theta - phi)/ly) :+ 0.0) in i * r 
     else 0.0 :+ 0.0 
 

TEMPLATE HASKELL TEMPLATE HASKELL 

input 

Output 

Oracle r 

Input wires, Qint (32 qubits + 1 for the sign) 

Output wires, 2*Qdouble (2*32 qubits + 1 for the sign) 

Local definition of sine, for use with Template Haskell: 

build_circuit 
approx_sin :: FDouble -> FDouble 
approx_sin x =  
   let x2 = x * x in 
   let x3 = x2 * x in 
   let x4 = x2 * x2 in 
   let x5 = x4 * x in 
   let x7 = x2 * x5 in 
   let x9 = x2 * x7 in 
   let x11 = x2 * x9 in 
   x - (x3/6.0) + (x5/120.0) - (x7/5040.0) + (x9/362880.0) - (x11/39916800.0) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build_circuit 
local_sin :: FDouble -> FDouble 
local_sin x = let n = fromIntegral $ floor (x/(2.0*local_pi)) in 
              let y = x - 2.0*local_pi*n in  
              if (y < local_pi/2.0) then approx_sin y 
              else if (y > 3.0*local_pi/2.0) then approx_sin (y - 2.0*local_pi) 
              else approx_sin (local_pi - y) 
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erating a circuit; 
Block structure. Functions generat-

ing circuits can be reused as subrou-
tines to generate larger circuits. Op-
erators (such as with _ control) can 
take an entire block of code as an argu-
ment, as in Figure 8. Note “do” intro-
duces an indented block of code, and 
“$” is an idiosyncrasy of Haskell syntax 
that can be ignored by the reader here; 

Circuit operators. Quipper can treat 
circuits as data and provide high-level 
operators for manipulating whole cir-
cuits. For example, the operator re-
verse _ simple reverses a circuit, as 
in Figure 9; 

Circuit transformers. Quipper pro-
vides user-programmable “circuit 
transformers” as a mechanism for 
modifying a circuit on a gate-by-gate 
basis. For example, the timestep cir-
cuit in Figure 9 can be decomposed 
into binary gates using the Binary 
transformer, as in Figure 10; and 

Automated functional-to-reversible 
translation. Quipper provides a special 
keyword build _ circuit for auto-
matically synthesizing a circuit from an 
ordinary functional program, as in Figure 
11. The resulting circuit can be made re-
versible with the operator classical _
to _ reversible, as in Figure 12. 

Experience with Quipper 
We have used Quipper to implement 
seven nontrivial quantum algorithms 
from the literature, based on docu-
ments provided by the Quantum 
Computer Science program of the 
U.S. Intelligence Advanced Research 
Projects Activity (IARPA).10 All of these 
algorithms can be run, in the sense 
that we can print the corresponding 
circuits for small parameters and 
perform automated gate counts for 
circuits of less tractable sizes. Each 
of these algorithms (see the table 
here) solves some problem believed 
to be classically hard, and each algo-
rithm provides an asymptotic quan-
tum speedup, though not necessar-
ily an exponential one. These seven 
algorithms cover a broad spectrum 
of quantum techniques; for example, 
the table includes several algorithms 
that use the Quantum Fourier Trans-
form, phase estimation, Trotteriza-
tion, and amplitude amplification. 
IARPA selected the algorithms for 
being comparatively complex, which 

tomatically construct unitary circuits 
from a classical description. These 
problems were partly addressed by the 
Quantum IO Monad of Green and Al-
tenkirch,7 a functional language that is 
a direct predecessor of Quipper. 

The Quipper Language 
Building on this previous work, we 
introduce Quipper, a functional lan-
guage for quantum computation. 
We chose to implement Quipper as a 
deeply embedded domain-specific lan-
guage (EDSL) inside the host language 
Haskell; see Gill6 for an overview of ED-
SLs and their embedding in Haskell. 
Quipper is intended to offer a unified 
general-purpose programming frame-
work for quantum computation. Its 
main features are: 

Hardware independence. Quipper’s 
paradigm is to view quantum compu-
tation at the level of logical circuits. 
The addition of error-correcting codes 
and mapping to hardware are left to 
other components further down the 
chain of compilation; 

Extended circuit model. The initial-
ization and termination of qubits is 
explicitly tracked for the purpose of an-
cilla management; 

Hierarchical circuits. Quipper fea-
tures subroutines at the circuit level, 
or “boxed subcircuits,” permitting a 
compact representation of circuits in 
memory; 

Versatile circuit description language. 
Quipper permits multiple program-
ming styles and can handle both pro-
cedural and functional paradigms of 
computation. It also permits high-level 
manipulations of circuits with pro-
grammable operators; 

Two runtimes. A Quipper program 
typically describes a family of circuits 

that depends on some classical pa-
rameters. The first runtime is “circuit 
generation,” and the second runtime 
is “circuit execution.” In batch-mode 
operation, as discussed earlier, these 
two runtimes take place one after the 
other, whereas in online operation, 
they may be interleaved; 

Parameter/input distinction. Quipper  
has two notions of classical data: “pa-
rameters,” which must be known 
at circuit-generation time, and “in-
puts,” which may be known only at 
circuit-execution time. For example, 
the type Bool is used for Boolean pa-
rameters, and the type Bit is used for 
Boolean inputs; 

Extensible data types. Quipper offers 
an abstract, extensible view of quan-
tum data using Haskell’s powerful 
type-class mechanism; and 

Automatic generation of quantum 
oracles. Many quantum algorithms re-
quire some nontrivial classical compu-
tation to be made reversible and then 
lifted to quantum operation. Quipper 
has facilities for turning an ordinary 
Haskell program into a reversible cir-
cuit. This feature is implemented us-
ing a self-referential Haskell feature 
known as “Template Haskell” that en-
ables a Haskell program to inspect and 
manipulate its own source code. 

Quipper Feature Highlights 
We briefly highlight some of Quipper’s 
features with code examples:

Procedural paradigm. In Quipper, 
qubits are held in variables, and gates 
are applied one at a time. The type of 
a circuit-producing function is dis-
tinguished by the keyword Circ after 
the arrow, as in Figure 7. The function 
mycirc inputs a and b of type Qubit 
and outputs a pair of qubits while gen-

A selection of quantum algorithms. 

Algorithm Description

Binary Welded Tree4 Finds a labeled node in a graph by performing a quantum walk 

Boolean Formula1 Evaluates an exponentially large Boolean formula using 
quantum simulation; QCS version computes a winning 
strategy for the game of Hex

Class Number8 Approximates the class group of a real quadratic number field

Ground State Estimation19 Computes the ground state energy level of a molecule

Quantum Linear Systems9 Solves a very large but sparse system of linear equations

Unique Shortest Vector15 Finds the shortest vector in an n-dimensional lattice

Triangle Finding12 Finds the unique triangle inside a very large dense graph
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is why some better-known but tech-
nically simpler algorithms (such as 
Shor’s factorization algorithm) were 
not included. 

Using Quipper, we are able to per-
form semi- or completely automated 
logical-gate-count estimations for each 
of the algorithms, even for very large 
problem sizes. For example, in the case 
of the triangle-finding algorithm, the 
command 

./tf -f gatecount  

 -o orthodox  

 -n 15 -l 31 -r 6

produces the gate count for the com-
plete algorithm on a graph of 215 verti-
ces using an oracle with 31-bit integers 
and a Hamming graph of tuple size 
26. This command runs to completion 
in less than two minutes on a laptop 
computer and produces a count of 
30,189,977,982,990 gates and 4,676 qu-
bits for this instance of the algorithm. 

Examples. As a further illustration, 
here are two subroutines written in 
Quipper: 

Procedural example. First, we formal-
ize the circuit family in Figure 3. This 
circuit implements the time step for 
a quantum walk in the Binary Welded 
Tree algorithm.4 It inputs a list of pairs of 
qubits (ai, bi), and a single qubit r. It first 
generates an ancilla, or scratch-space, 
qubit in state |0〉. It then applies the two-
qubit gate W to each of the pairs (ai, bi), 
followed by a series of doubly controlled 
NOT-gates acting on the ancilla. After a 
middle gate eiZt, it applies all the gates in 
reverse order. The ancilla ends up in the 
state |0〉 and is no longer needed. The 
Quipper code is in Figure 13, yielding 
the circuit in Figure 14. If one replaces 
the “3” with a “30” in the main function, 
one obtains a larger instance of this cir-
cuit family, as in Figure 15; and 

A functional-to-reversible translation. 
This example is from the Quantum 
Linear Systems algorithm.9 Among 
other things, this algorithm contains 
an oracle calculating a vector r of com-
plex numbers; Figure 16 shows the 
core function of the oracle. Note it re-
lies heavily on algebraic and transcen-
dental operations on real and complex 
numbers (such as sin, cos, sinc, and 
mkPolar), as well as on subroutines 
(such as edgetoxy and itoxy) not 
shown in Figure 16. This function is 

readily processed using Quipper’s au-
tomated circuit-generation facilities. 
Algebraic and transcendental func-
tions are mapped automatically to 
quantum versions provided by an exist-
ing Quipper library for fixed-point real 
and complex arithmetic. The result is 
the rather large circuit in Figure 17. 

Conclusion 
Practical quantum computation re-
quires a tool chain extending from ab-
stract algorithm descriptions down to 
the level of physical particles. Quan-
tum programming languages are an 
important aspect of this tool chain. 
Ideally, such a language enables a 
quantum algorithm to be expressed 
at a high level of abstraction, similar 
to what may be found in a research paper, 
and translates it down to a logical circuit. 
We view this logical circuit as an inter-
mediate representation that can then be 
further processed by other tools, adding 
quantum control and error correction, 
and finally passed to a real-time sys-
tem controlling physical operations. 

Quipper is an example of a lan-
guage suited to a quantum coproces-
sor model. We demonstrated Quip-
per’s feasibility by implementing 
several large-scale algorithms. The 
design of Quipper solved some major 
programming-language challenges 
associated with quantum computa-
tion, but there is still much to do, par-
ticularly in the design of type systems 
for quantum computing. As an em-
bedded language, Quipper is confined 
to using Haskell’s type system, pro-
viding many important safety guaran-
tees. However, due to Haskell’s lack of 
support for linear types, some safety 
properties (such as the absence of at-
tempts to clone quantum informa-
tion) are not adequately supported. 
The design of ever better type systems 
for quantum computing is the subject 
of ongoing research. 
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