
Batch Spreadsheet for C Programmers

Richard Perry
Villanova University

Department of Electrical and Computer Engineering
Villanova, PA, USA 19085
richard.perry@villanova.edu

Abstract— A computing environment is proposed, based on
batch spreadsheet processing, which produces a spreadsheet
display from plain text input files of commands, similar to the
way documents are created using LaTeX. In this environment,
besides the usual spreadsheet rows and columns of cells,
variables can be defined and are stored in a separate symbol
table. Cell and symbol formulas may contain cycles, and
cycles which converge can be used to implement iterative
algorithms. Formulas are specified using the syntax of the
C programming language, and all of C’s numeric operators
are supported, with operators such as ++, +=, etc. being
implicitly cyclic. User–defined functions can be written in C
and are accessed using a dynamic link library. The environ-
ment can be combined with a GUI front-end processor to
enable easier interaction and graphics including plotting.

Keywords: Computational models, Software architectures for
scientific computing

1. Introduction
The idea for a batch spreadsheet processor was originally

proposed in [1] in the context of a course on parser design.
The evolution of that idea presented here, which goes far
beyond what was originally envisioned and implemented in
the course, is based on the premise of enabling anything that
seems reasonable, even if the usefulness is not immediately
apparent. So, for example, if formula syntax is based on the
C programming language, then it should support all of C’s
operators, including ++, +=, etc. This is discussed further in
Section 13 on cycles. Other examples, where the usefulness
is apparent and the behavior intuitively expected, are allow-
ing lists (such as function arguments) to be specified using
cell ranges, cell ranges to be specified using single cells (for
a single–cell range), and ranges to overlap and be specified
in reverse and by columns or rows as discussed in Section
5.

After a brief review of the history of spreadsheets, we will
present the specifications for the proposed batch processor,
together with some examples from a partial implementation.

2. Spreadsheet History
The history of electronic spreadsheets [2] starts with

Richard Mattessich [3] in 1964. The output of his batch

processor looked like a spreadsheet, but the input was purely
data and all functionality was encoded in the FORTRAN
program implementing the business budget model. In all
subsequent spreadsheet implementations, including the one
proposed here, the input specifies both the data and the
functional relationships among the cells.

The modern interactive spreadsheet era starts in 1979 with
Visicalc, by Dan Bricklin and Bob Frankston. In 1982 James
Gosling created the Unix SC spreadsheet calculator which
has evolved through the work of others and is still in use
today. In 1983 came Lotus 1-2-3, by Mitch Kapor, and in
1985 Excel for Macintosh, by Microsoft (Windows came
later). There was also Quattro Pro, by Borland, in 1987,
but in the battle for the commercial spreadsheet market
eventually Excel won. Other popular opensource spreadsheet
implementations include Oleo (1992) and Gnumeric, from
the GNU Project, 1998, and OpenOffice, from StarOffice
and Sun, 2000.

It is well-known that spreadsheet design and use can be
very error-prone [4], [5], and most of the problems stem from
the interactive nature of modern spreadsheet features such as
cut/paste, adding and removing rows and columns, etc. The
batch approach eliminates many of the traditional problems,
while enabling more powerful command-line types of op-
tions. For example, to copy the entries from one range of
cells to another, a copy command like copy a2:c6 d6:b2
allows overlapping and reverse ranges. A batch spreadsheet
processor can also be written using portable C code, with
no system-dependent GUI. For ease of discussion, we will
refer to the batch spreadsheet for C programmers as simply
“SS” for the rest of the paper.

3. Input and Output
SS first reads input from any files specified on the

command line, then it reads standard input for additional
commands such as may be supplied by a front-end GUI,
or by the user directly. The input may contain C or C++
style comments, and macros using #define. As in C, input
lines are joined together whenever one ends with a backslash
followed by a literal newline character.

Output goes to standard output by default, but can be
redirected globally using the output command, or redirected

on a per–command basis using the plot and print commands.
“stdout” and “-”, with or without quotes, can be used as
pseudo output file names to refer to standard output.

4. Cell References
Cell references may be specified in any one of three for-

mats: A0, RC, and CR. In A0 format, cells are specified by
their column (one or two letters, A-Z, case-insensitive) and
row (one-to-three digits 0-9), with an optional $ preceding
the column and/or row value to indicate that the cell is
fixed. The column value A...ZZ represents an integer column
number 0...701. In RC and CR formats, cell are specified by
their absolute row and column numbers, using the letters R
and C (or r, c), with brackets around relative offsets.

When copying formulas, relative cell references remain
relative to the destination cells, and fixed references remain
fixed. The format for displaying cells in formulas may be
selected using the format command.

5. Ranges
A range consists of two cells, the start and end cells of

the range, separated by a colon. For example, A0:B9 (or
A0:C1R9, or R0C0:R9C1, or C0R0:R9C1, etc.) specifies a
range including rows 0 to 9 of columns A and B. The range
start and end values do not have to be in increasing order;
B9:A0, B0:A9, and A9:B0 all refer to the same group of
cells as A0:B9, but correspond to different directions for
traversing the range. For example the command copy a0:a9
b9:b0 would copy column b to a in reverse order.

By default, ranges are traversed byrows to improve cache
performance, since elements in a row are adjacent in mem-
ory. That is, in pseudo-code:

for row = start_row to end_row
for col = start_col to end_col

use cell[row,col]

The bycols option can be used with the copy, eval, fill,
plot, and print commands to cause evaluation by columns.
That is, in pseudo-code:

for col = start_col to end_col
for row = start_row to end_row

use cell[row,col]

Note that the starting row may be less than, equal to,
or greater than the ending row. Same for columns. So a
range may consist of a single cell, row, or column (a0:a0,
a0:d0, a0:a4), cells in “forward” order (a0:b4), or cells in
“partial reverse” order (a4:b0, b0:a4), or cells in “reverse”
order (b4:a0).

A range basically represents a list of cells, and is explicitly
converted to a list when used in a range assignment or
numeric function argument. A range consisting of a single
cell may be specified using just that one cell, e.g. A0 as a
range is the same as A0:A0.

6. Primitive Data Types
The SS primitive data types are double precision floating

point, string, and constant. All numeric calculations are
performed and stored using double precision floating point.
A string is a sequence of characters enclosed in single
or double quotes. No escape sequences are recognized. If
a string appears in a numeric calculation it is treated as
having the value 0. The built-in constants are: HUGE_VAL
= Inf; RAND_MAX = 32767; pi = 3.14159 (computed from
4*atan(1)). The values of the constants shown are from a
Solaris/sparc system and may vary depending on the system.
Undefined cells are treated as having the value 0.

7. Symbols
User-defined variables are stored in a symbol table and

their formulas are evaluated each time the spreadsheet is
evaluated. Note that cell names can not be used as variables.
See Sections 12 and 13 for examples using symbols.

8. Operators
SS operators have the same precedence and associativity

as those in the C programming language. They mostly
have the same meaning too, except for some of the bit-
wise operators. The keywords NOT, AND, XOR, and OR,
case–insensitive, may also be used to represent the logical
operators. The bit shift operators <<, <<=, >>, and >>= are
implemented for floating-point using ldexp() to adjust the
binary exponent by the specified power of 2. Additionally,
C’s bitwise operators are treated as logical operators, so ~,
&, ^, | are the same as !, &&, ^^ (logical XOR), ||
respectively, and &=, ^=, |= are the same as &&=, ^^=,
||=.

9. Numeric Functions
SS includes all of the functions from the standard C math

library, and more. It includes the time function from time.h,
rand and srand from stdlib.h, and also irand, drand, and nrand
functions for integer, uniform(0,1), and normally distributed
pseudo–random values respectively.

Most of the numeric functions take one expression ar-
gument and return one value. A few of the functions take
no arguments (rand, irand, drand, nrand, time), and some
take two arguments (atan2, fmod, frexp, ldexp, modf, pow).
For frexp and modf, the second argument must be a cell or
symbol, since it will be assigned one of the result values.

10. Range Functions
Range functions take an argument list of expressions and

ranges and return one value computed from the defined cells.
The range functions include:

avg average
count number of cells defined
majority non-zero if majority are non-zero

max maximum
min minimum
prod product
stdev standard deviation
sum sum

User–defined numeric and range functions can be written
in C following a provided template to access SS internal data
structures. These are loaded at run–time from a dynamic link
library.

11. Commands
Commands have their own syntax, consisting of keywords

and options. For all commands which traverse a range the
byrows or bycols option may be used to set the direction.
SS commands include:

byrows|bycols - set default direction
copy dest_range src_range
debug [on|off]
eval [range|symbols] [number_of_iterations]
exit
fill range start_expr, increment_expr
format A0|RC|CR - formula printing format
format [cell|row|col|range] "fmt_string"
load "fname"...
output "fname"
plot|plot2d|plot3d ["fname"] [range]
print ["fname"] [range] [all|
macros|symbols|formulas|values|
formats|pointers|constants|functions]...

quit
srand expr - initialize rand()

If no range or symbols options are specified, eval evaluates
the spreadsheet for the number of iterations specified (default
is 2 iterations). Each iteration first evaluates the symbol
table, then evaluates the cells twice: first starting at the top-
left corner of the cells being used and traversing the range
to the bottom-right corner of the cells being used; then again
starting at the bottom-right corner and traversing to the top-
left corner. This catches most forward and reverse formula
dependencies. If the symbols option is specified, only the
symbol table is evaluated for the number of iterations spec-
ified. If a range is specified, only the symbol table and that
range are evaluated for the number of iterations specified.

The fill command fills a range with constant values,
starting with the start expression value, and increasing by
the increment expression value for subsequent cells. The start
and increment expressions are evaluated only once, before
filling starts.

The format A0, RC, and CR options specify the format
used for printing formulas. For printing values, the format
can be set globally or for a specific cell, row, column or
range. The default global format is “%.2f”. If a cell is not
assigned a format, printing will use the cell’s row format,
if set; otherwise it will use the cell’s column format, if set;
otherwise it will use the global format.

The plot commands do not actually plot anything, they
simply display output in a form suitable as input to another
program like a plot utility.

12. Example
The following example shows a set of student scores being

scaled by their average and standard deviation. Columns A
and B represent the “natural” use of a spreadsheet for lists of
values related to or computed from a parallel list of values.
Cells C1 and D1 represent an “unnatural” situation which
can occur frequently in spreadsheets where we need to store
values somewhere, but their exact position does not matter
relative to anything else. It would be more natural to store
these types of values in variables instead of a spreadsheet
cell. The example does that for the computation of the mean,
in variable mean, and the use of that variable in the formula
for column A is more “natural” and readable than the use
of d1 for the standard deviation.

% cat grades.ss
a0:d0 = { "grade", "score", "avg", "stdev"};
mean=avg(b1:b5); c1=mean; d1=stdev(b1:b5);
a1=80+15*(b1-mean)/d1; copy a2:a5 a1:a4;
b1:b5 = { 57, 67, 92, 87, 76 }; eval;
print symbols values formulas pointers;
% ss < grades.ss

mean = avg(B1:B5) = 75.8 (symbols)

A B C D
0 grade score avg stdev
1 60.29 57.00 75.80 14.31
2 70.77 67.00
3 96.98 92.00 (values)
4 91.74 87.00
5 80.21 76.00

A
0 "grade"
1 80+((15*(B1-mean))/D1)
2 80+((15*(B2-mean))/D1)
3 80+((15*(B3-mean))/D1)
4 80+((15*(B4-mean))/D1)
5 80+((15*(B5-mean))/D1)

B C D
0 "score" "avg" "stdev"
1 57 mean stdev(B1:B5)
2 67
3 92 (formulas)
4 87
5 76

A B C D
0 1058e28 1058e60 1058e98 1058ed0
1 1059288 0 1058fb0 1059058
2 1059288 0
3 1059288 0 (pointers)
4 1059288 0
5 1059288 0

From the “print pointers” output at the end we can see
that cells A1:A5 all refer to the same formula.

Figure 1: Spreadsheet GUI with 3D Plot

13. Cycles and Convergence
If a cell depends on itself, that forms a cycle and the

spreadsheet may not converge when evaluated. Cycles which
converge can be used to implement iterative algorithms. For
example, the following spreadsheet uses Newton’s method
to find the square root of x:

% cat sqrt.ss
x = 2; a0 = b0 ? b0 : x/2; b0 = (a0+x/a0)/2;
format "%20.18g";

Since a0 depends on b0, and b0 depends on a0, there is
a cycle. a0 will be set to b0 if b0 is non-zero, otherwise a0
will be set to x/2 to initialize the algorithm. So a0 represents
the previous value of b0, and b0 represents the next estimate
of the square root. Newton’s method converges quickly:

% echo "print all; eval a0:b0 10; \
print values;" | ss sqrt.ss

x = 2

A B
0 B0 ? B0 : ((x/2)) (A0+(x/A0))/2

A B
0 0 0

ss_eval:: converged after 7 iterations

A B
0 1.41421356237309492 1.41421356237309492

Finite element analysis is another application which re-
quires iteration and can be set up in a spreadsheet. In the
following small example, the value of each non-boundary
cell is computed as the average of the cell’s four nearest
neighbors.

% cat cycles.ss
// average of 4 nearest neighbors
R1C1=(R[]C[-1]+R[]C[+1]+R[-1]C[]+R[+1]C[])/4;
copy r1c2:r1c5 r1c1:r1c4;// set up one row
copy r2c1:r5c5 r1c1:r4c5;// copy to rows 2..5
fill r0c0:r0c6 1, 0;// boundary conditions,
fill r1c0:r6c0 1, 0;// 1’s top and left
fill r1c6:r6c6 0, 0;// 0’s right and bottom
fill r6c1:r6c5 0, 0;
format "%6.4f"; format RC; print values;
eval; eval 1000; print values;
% ss < cycles.ss

0 1 ... 5 6
0 1.0000 1.0000 ... 1.0000 1.0000
1 1.0000 0.0000 ... 0.0000 0.0000
2 1.0000 0.0000 ... 0.0000 0.0000
3 1.0000 0.0000 ... 0.0000 0.0000
4 1.0000 0.0000 ... 0.0000 0.0000
5 1.0000 0.0000 ... 0.0000 0.0000
6 1.0000 0.0000 ... 0.0000 0.0000
ss_eval: still changing after 2 iterations
ss_eval: converged after 74 iterations

0 1 ... 5 6
0 1.0000 1.0000 ... 1.0000 1.0000
1 1.0000 0.9374 ... 0.5000 0.0000
2 1.0000 0.8747 ... 0.2990 0.0000
3 1.0000 0.8040 ... 0.1960 0.0000
4 1.0000 0.7010 ... 0.1253 0.0000
5 1.0000 0.5000 ... 0.0626 0.0000
6 1.0000 0.0000 ... 0.0000 0.0000

A larger finite element analysis example is shown in
Figure 1 using a web–based GUI front-end with 3D plotting.

The spreadsheet may not converge when using opera-
tors ++, --, +=, *=, etc. and the pseudo-random number
generator functions, since they produce varying values on
each evaluation. However, these operators and functions are
still useful, in particular for Monte-Carlo simulations. The
following simple example generates pseudo-random values
for a0, with b0 representing the sum, c0 the evaluation count,
and d0 the average:

% cat rand.ss
a0 = drand(); b0 += a0; d0 = b0/++c0;
eval a0:d0 10; print values;
% ss < rand.ss
ss_eval:: still changing after 10 iterations

A B C D
0 0.37 4.90 10.00 0.49

The following example contains cycles in the formulas
for symbols sample and trials, and cells c1:c60. It tests the
distribution of nrand values using 60 counters over the range
-3 to 3 with 50000 samples (iterations).

sample = nrand(); trials += 1;
fill a1:a61 -3, 0.1;
c1 += (sample>=a1)&&(sample<a2) ? 1 : 0;
b1 = c1/trials; copy b2:c60 b1:c59;
eval c1:b60 50000; plot a1:b60;

The results, plotted in Figure 2, are consistent with the
normal distribution.

Figure 2: Testing the Normal Distribution

14. Omissions
SS intentionally omits certain features which are com-

monly found in spreadsheets and other computational envi-
ronments. It omits data types other than simple strings and
double precision floating point, targeting mainly numerical
applications involving floating point operations. Internally,
other data types may be used as appropriate when imple-
menting specific algorithms, but the cell and symbol values
are stored using floating point.

It also omits matrices and matrix operations, on the
basis that applications requiring matrix operations are best
implemented using one of the many existing high–quality
commercial or free software packages designed for those
kinds of applications.

15. Extensions
The current implementation of SS contains less than 40

numeric and range functions, which represent the most basic
framework necessary for proof–of–concept. Most spread-
sheets and programming environments contain hundreds of
functions; for example, Gnumeric [6] contains 520, so any
practical implementation must allow for easy extension by
adding new functions.

The implementation of new internal functions should
follow the same templates as user–defined functions,

the main difference being that internal functions are
compiled–in whereas user–define functions are dynamically
linked in at run–time. For example, the complete implemen-
tation of the irand function is:

/* 1 pseudo-random integer, 0<=irand(i)<=i-1
*/
double nf_irand(const Node *n, const Cell *c)
{

int i = eval_tree(n->u.t.right, c);

return (int) (i*(rand()/(RAND_MAX+1.0)));
}

By simply placing that code in an irand.c file in the
numeric function sub–directory of the source code, it will
be compiled–in. The first–line comment is used to specify
how many arguments the function takes and a description
that will be included in both the run–time help command and
the documentation. The template for all functions consists of
parse tree node and reference cell arguments, and a double
return value.

16. Conclusion
The technical literature on spreadsheet implementation is

relatively sparse [4], as opposed to publications covering use
of spreadsheets. Innovation is hampered by requiring Excel
compatibility and designing for non–programmer users. The
computing environment proposed here brings together the
spreadsheet and workspace (variables and symbol table)
paradigms, with powerful batch input commands and C–
compatible formula syntax. It provides flexibility in formula
evaluation and range traversal, and allows cycles, so it can be
used to implement iterative as well as traditional spreadsheet
applications.

References
[1] R. Perry, “Work in progress: Spreadsheet implementation programming

project course,” in Frontiers in Education Conference, pp. T2H 13–418,
Oct. 22–25, 2008.

[2] B. Jelen, The Spreadsheet at 25. Holy Macro! Books, 2005.
[3] R. Mattessich, Simulation of the Firm through a Budget Computer

Program. Richard D. Irwin, Inc., 1964.
[4] P. Sestoft, “A spreadsheet core implementation in C#.” www.itu.dk/

people/sestoft/corecalc/.
[5] J. C. Bals, F. Christ, G. Engels, and M. Erwig, “Classsheets – model–

based, object–oriented design of spreadsheet applications,” Journal of
Object Technology, vol. 6, pp. 383–398, October 2007.

[6] The Gnome Project, “Gnumeric spreadsheet.” projects.gnome.org/
gnumeric/.

