// creates noisy exponential data values y = 2*exp(0.5*x), // then finds minimum max-absolute-error approximation z = f1*exp(f2*x) srand 12345; // just to make the docs reproducable, // remove to use default srand(time()) #define M 11 // number of data points #define xCell(c,r) c ## r #define Cell(c,r) xCell(c,r) #define Range(c1,r1,c2,r2) xCell(c1,r1):xCell(c2,r2) #define X Range(a,1,a,M) // X,Y input data points #define Y Range(b,1,b,M) #define Z Range(c,1,c,M) // approximation Y values #define Err Range(d,1,d,M) // absolute error #define Coef f1:f2 // exponential coefficients fill X 0, 4/(M-1); a0:f0 = { "X", "Y", "Est", "Err", "maxErr", "Coef" }; Y = { 2*exp(0.5*a1) + 4*drand()-2 }; // y = 2*exp(0.5*x) + noise Z = { $f$1*exp($f$2*a1) }; Err = { fabs(R[]C[-2]-R[]C[-1]) }; e1 = max(Err); // e1 is the max-absolute-error to be minimized {Coef} = search(e1,3,0.3); // start search with f1=3, f2=0.3 // evaluate Y just once here, // otherwise search() will evaluate it multiple times // eval Y; // eval symbols will evaluate search() which will evaluate everything else // eval symbols; plot "exp.out" Range(a,1,c,M); format "%10.6f"; format A "%5.2f"; print all;