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Abstract

AMAC is a simple and fast candidate construction of a PRF from an MD-style hash function
which applies the keyed hash function and then a cheap, un-keyed output transform such as
truncation. Spurred by its use in the widely-deployed Ed25519 signature scheme, this paper
investigates the provable PRF security of AMAC to deliver the following three-fold message: (1)
First, we prove PRF security of AMAC (2) Second, we show that AMAC has a quite unique
and attractive feature, namely that its multi-user security is essentially as good as its single-
user security and in particular superior in some settings to that of competitors. (3) Third, it is
technically interesting, its security and analysis intrinsically linked to security of the compression
function in the presence of leakage.

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. URL: http://cseweb.ucsd.edu/~mihir/. Supported in part by NSF grants CNS-
1526801 and CNS-1228890. This work was done in part while the author was visiting the Simons Institute for
the Theory of Computing, supported by the Simons Foundation and by the DIMACS/Simons Collaboration in
Cryptography through NSF grant CNS-1523467.

2 University of Illinois at Chicago, USA, and Technische Universiteit Eindhoven, Netherlands., URL:
https://cr.yp.to/djb.html. Supported in part by NSF grants CNS-1018836 and CNS-1314919.

3 Department of Computer Science, University of California Santa Barbara, Santa Barbara, California 93106,
USA. URL: http://www.cs.ucsb.edu/~tessaro/. Supported in part by NSF grant CNS-1423566. This work was
done in part while the author was visiting the Simons Institute for the Theory of Computing, supported by the
Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography through NSF grant CNS-1523467.

1



Contents

1 Introduction 3

2 Related work 7

3 Notation and standard definitions 8

4 Function-family distance framework 9

5 The augmented cascade and its analysis 11

6 Framework for ideal-model cryptography 17

7 Security of the compression function under leakage 19

8 Quantitive bounds for augmented cascades 25

9 Comparisons 28

10 Security of the Davies-Meyer construction 30

Bibliography 32

A Derandomizing Schnorr signatures 34

B Comparing speed of different hash-based MACs 36

2



1 Introduction

This paper revisits a classical question, namely how can we turn a hash function into a PRF?
The canonical answer is HMAC [4], which (1) first applies the keyed hash function to the message
and then (2) re-applies, to the result, the hash function keyed with another key. We consider
another, even simpler, candidate way, namely to change step (2) to apply a simple un-keyed output
transform such as truncation. We call this AMAC, for augmented MAC. This paper investigates
and establishes provable-security of AMAC, with good bounds, when the hash function is a classical
MD-style one like SHA-512.

Why? We were motivated to determine the security of AMAC by the following. Usage. AMAC
with SHA-512 is used as a PRF in the Ed25519 signature scheme [8]. (AMAC under a key that is
part of the signing key is applied to the hashed message to get coins for a Schnorr-like signature.
See Appendix A.) Ed25519 is widely deployed, including in SSH, Tor, OpenBSD and dozens of
other places [11]. The security of AMAC for this usage was questioned in cfrg forum debates on
Ed25519 as a proposed standard. Analysis of AMAC is important to assess security of this usage
and allow informed choices. Speed. AMAC is faster than HMAC, particularly on short messages.
See Appendix B. Context. Sponge-based PRFs, where truncation is the final step due to its already
being so for the hash function, have been proven secure [20, 25, 1, 9, 13]. Our work can be seen as
stepping back to ask if truncation works in a similar way for classical MD-style hash functions.

Findings in a nutshell. Briefly, the message of this paper is the following: (1) First, we are
able to prove PRF security of AMAC. (2) Second, AMAC has a quite unique and attractive feature,
namely that its multi-user security is essentially as good as its single-user security and in particular
superior in some settings to that of competitors. (3) Third, it is technically interesting, its security
and analysis intrinsically linked to security of the compression function in the presence of leakage,
so that leakage becomes of interest for reasons entirely divorced from side-channel attacks. We now
step back to provide some background and discuss our approach and results.

The basic cascade. Let h: {0, 1}c × {0, 1}b → {0, 1}c represent a compression function taking a
c-bit chaining variable and b-bit message block to return a c-bit output. The basic cascade of h is
the function h∗: {0, 1}c × ({0, 1}b)+ → {0, 1}c defined by

Basic Cascade h∗(K,X)

Y ← K ; For i = 1, . . . , n do Y ← h(Y,X[i]) ; Return Y

where X is a vector over {0, 1}b whose length is denoted n and whose i-th component is denoted
X[i]. This construct is the heart of MD-style hash functions [15, 26] like MD5, SHA-1, SHA-256
and SHA-512, which are obtained by setting K to a fixed, public value and then applying h∗ to the
padded message.

Now we want to key h∗ to get PRFs. We regard h itself as a PRF on domain {0, 1}b, keyed
by its c-bit chaining variable. Then h∗ is the natural candidate for a PRF on the larger domain
({0, 1}b)+. Problem is, h∗ isn’t secure as a PRF. This is due to the well-known extension attack. If
I obtain Y1 = h∗(K,X1) for some X1 ∈ {0, 1}b of my choice, I can compute Y2 = h∗(K,X1X2) for
any X2 ∈ {0, 1}b of my choice without knowing K, via Y2 ← h(Y1, X2). This clearly violates PRF
security of h∗.

Although h∗ is not a PRF, BCK2 [5] show that it is a prefix-free PRF. (A PRF as long as no
input on which it is evaluated is a prefix of another. The two inputs X1, X1X2 of the above attack
violate this property.) When b = 1 and all inputs on which h∗ is evaluated are of the same fixed
length, the cascade h∗ is the GGM construction of a PRF from a PRG [22].
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To get a full-fledged PRF, NMAC applies h, under another key, to h∗. The augmented cascade
ACSC = Out ◦ h∗ that we discuss next replaces NMAC’s outer application of a keyed function with
a simple un-keyed one.

Augmented cascade. The augmented cascade is parameterized by some (keyless) function
Out: {0, 1}c → Out.R that we call the output transform, and is obtained by simply applying this
function to the output of the basic cascade:

Augmented Cascade (Out ◦ h∗)(K,X)

Y ← h∗(K,X) ; Z ← Out(Y ) ; Return Z

AMAC is obtained from ACSC just as HMAC is obtained from NMAC, namely by putting the
key in the input to the hash function rather than directly keying the cascade: AMAC(K,M) =
Out(H(K‖M)). Just as NMAC is the technical core of HMAC, the augmented cascade is the
technical core of AMAC, and our analysis will focus in it. We will be able to bridge to AMAC quite
simply with the tools we develop.

The ACSC construction was suggested by cryptanalysts with the intuition that “good” choices
of Out appear to allow Out ◦ h∗ to evade the extension attack and thus possibly be a PRF. To
understand this, first note that not all choices of Out are good. For example if Out is the identity
function then the augmented cascade is the same as the basic one and the attack applies, or if
Out is a constant function returning 0r then Out ◦ h∗ is obviously not a PRF over range {0, 1}r.
Cryptanalysts have suggested some specific choices of Out, the most important being (1) truncation,
where Out: {0, 1}c → {0, 1}r returns, say, the first r < c bits of its input, or (2) the mod function, as
in Ed25519, where Out treats its input as an integer and returns the result modulo, say, a public r-bit
prime number. Suppose r is sufficiently smaller than c (think c = 512 and r = 256). An adversary
querying X1 in the PRF game no longer gets back Y1 = h∗(K,X1) but rather Z1 = Out(Y1), and
this does not allow the extension attack to proceed. On this basis, and for the choices of Out just
named, the augmented cascade is already seeing extensive usage and is suggested for further usage
and standardization.

This raises several questions. First, that Out ◦ h∗ seems to evade the extension attack does not
mean it is a PRF. There may be other attacks. The goal is to get a PRF, not to evade some specific
attacks. Moreover we would like a proof that this goal is reached. Second, for which choices of Out
does the construction work? We could try to analyze the PRF security of Out ◦ h∗ in an ad hoc
way for the specific choices of Out named above, but it would be more illuminating and useful to
be able to establish security in a broad way, for all Out satisfying some conditions. These are the
questions our work considers and resolves.

Connection to leakage. If we want to prove PRF security of Out ◦ h∗, a basic question to ask
is, under what assumption on the compression function h? The natural one is that h is itself a PRF,
the same assumption as for the proof of NMAC [3, 19]. We observe that this is not enough. Consider
an adversary who queries the one-block message X1 to get back Z1 = Out(Y1) and then queries the
two-block message X1X2 to get back Z2 = Out(Y2) where by definition Y1 = h∗(K,X1) = h(K,X1)
and Y2 = h∗(K,X1X2) = h(Y1, X2). Note that Y1 is being used as a key in applying h to X2. But
this key is not entirely unknown to the adversary because the latter knows Z1 = Out(Y1). If the
application of h with key Y1 is to provide security, it must be in the face of the fact that some
information about this key, namely Out(Y1), has been “leaked” to the adversary. As a PRF, h must
thus be resilient to some leakage on its key, namely that represented by Out viewed as a leakage
function.

Approach and qualitative results. We first discuss our results at the qualitative level and
then later at the (in our view, even more interesting) quantitative level. Theorems 5.2 and 5.3
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show that if h is a PRF under Out-leakage then Out ◦ h∗ is indistinguishable from the result of
applying Out to a random function. (The compression function h being a PRF under Out-leakage
means it retains PRF security under key K even if the adversary is given Out(K). The formal
definition is in Section 4.) This result makes no assumptions about Out beyond that implicit in
the assumption on h, meaning the result is true for all Out, and is in the standard model. As a
corollary we establish PRF security of Out ◦ h∗ for a large class of output functions Out, namely
those that are close to regular. (This means that the distribution of Out(Y ) for random Y is close
to the uniform distribution on the range of Out.) In summary we have succeeded in providing
conditions on Out, h under which Out ◦ h∗ is proven to be PRF. Our conditions are effectively both
necessary and sufficient and cover cases proposed for usage and standardization.

The above is a security proof for the augmented cascade Out ◦ h∗ under the assumption that
the compression function h is resistant to Out leakage. To assess the validity of this assumption,
we analyze the security under leakage of an ideal compression function. Theorem 7.2 shows that
an ideal compression function is resistant to Out-leakage as long as no range point of Out has too
few pre-images. This property is in particular true if Out is close to regular. As a result, in the
ideal model, we have a validation of our Out-leakage resilience assumption. Putting this together
with the above we have a proof-based validation of the augmented cascade.

Multi-user security. The standard definition of PRF security of a function family F [22] is
single user (su), represented by there being a single key K such that the adversary has access to
an oracle Fn that given x returns either F(K,x) or the result of a random function F on x. But
in “real life” there are many users, each with their own key. If we look across the different entities
and Internet connections active at any time, the number of users / keys is very large. The more
appropriate model is thus a multi-user (mu) one, where, for a parameter u representing the number
of users, there are u keys K1, . . . ,Ku. Oracle Fn now takes i, x with 1 ≤ i ≤ u and returns either
F(Ki, x) or the result of a random function Fi on x. It is in this setting that we should address
security.

Multi-user security is typically neglected because it makes no qualitative difference: BCK2 [5],
who first formalized the notion, also showed by a hybrid argument that the advantage of an ad-
versary relative to u users is not more than u times the advantage of an adversary of comparable
resources relative to a single user. Our Lemma 4.1 is a generalization of this result. But this
degradation in advantage is quite significant in practice, since u is large, and raises the important
question of whether one can do quantitatively better. Clearly one cannot in general, but perhaps
one can for specific, special function families F. If so, these function families are preferable in
practice. This perspective is reflected in recent work like [27, 34].

These special function families seem quite rare. But we show that the augmented cascade is
one of them. In fact we show that mu security gives us a double benefit in this setting, one part
coming from the cascade itself and the other from the security of the compression function under
leakage, the end result being very good bounds for the mu security of the augmented cascade.

Theorem 5.2 establishes su security of the augmented cascade based not on the su, but on the mu
security of the compression function under Out-leakage. The bound is very good, the advantage
dropping only by a factor equal to the maximum length of a query. The interesting result is
Theorem 5.3, establishing mu security of the augmented cascade under the same assumptions and
with essentially the same bounds as Theorem 5.2 establishing its su security. In particular we do
not lose a factor of the number of users u in the advantage. This is the first advance.

Now note that the assumption in both of the above-mentioned results is the mu (not su) security
of the compression function under Out-leakage. Our final bound will thus depend on this. The
second advance is that Theorem 7.2 shows mu security of the compression function under Out-
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leakage with bounds almost as good as for su security. This represents an interesting result of
independent interest, namely that, under leakage, the mu security of an ideal compression function
is almost as good as its su security. This is not true in the absence of leakage. The results are
summarized via Fig. 4.

Quantitative results. We obtain good quantitative bounds on the mu prf security of the
augmented cascade in the ideal compression function model by combining our aforementioned
results on the mu prf security under leakage of an ideal compression function with our also afore-
mentioned reduction of the security of the cascade to the security of the compression function
under leakage. We illustrate these results for the case where the compression function is of form
h: {0, 1}c × {0, 1}b → {0, 1}c and the output transform Out simply outputs the first r bits of its
c-bit input, for r ≤ c. We consider an attacker making at most q queries to a challenge oracle (that
is either the augmented cascade or a random function), each query consisting of at most ` b-bit
blocks, and qf queries to the ideal compression function oracle. We show that such an attacker
achieves distinguishing advantage at most

`2q2 + `qqf
2c

+
cr · (`2q + `qf)

2c−r
, (1)

where we have intentionally omitted constant factors and lower order terms. Note that this bound
holds regardless of the number of users u. Here c is large, like c = 512, so the first term is small.
But c − r is smaller, for example c − r = 256 with r = 256. The crucial merit of the bound of
Equation (1) is that the numerator in the second term does not contain quadratic terms like q2

or q · qf. In practice, qf and q are the terms we should allow to be large, so this is significant.
To illustrate, say for example ` = 210 (meaning messages are about 128 KBytes if b = 1024) and
qf = 2100 and q = 290. The bound from Equation (1) is about 2−128, which is very good. But,
had the second term been of the form `2(q2f + q2)/2c−r then the bound would be only 2−36. See
Section 8 for more information.

2-tier cascade. We introduce and use an extension of the basic cascade h∗. Our 2-tier cascade
is associated to two function families g, h. Under key K, it applies g(K, ·) to the first message
block to get a sub-key K∗ and the applies h∗(K∗, ·) to the rest of the message. The corresponding
augmented cascade applies Out to the result. Our results about the augmented cascade above
are in fact shown for the augmented 2-tier cascade. This generalization has both conceptual and
analytical value. We briefly mention two instances. (1) First, we can visualize mu security of
Out ◦ h∗ as pre-pending the user identity to the message and then applying the 2-tier cascade with
first tier a random function. This effectively reduces mu security to su security. With this strategy
we prove Theorem 5.3 as a corollary of Theorem 5.2 and avoid a direct analysis of mu security.
Beyond providing a modular proof this gives some insight into why the mu security is almost as
good as the su security. (2) Second, just as NMAC is the technical core and HMAC the function used
(because the latter makes blackbox use of the hash function), in our case the augmented cascade
is the technical core but what will be used is AMAC, defined by AMAC(K,M) = Out(H(K,M))
where H is the hash function derived from compression function h: {0, 1}c × {0, 1}b → {0, 1}c and
K is a k-bit key. For the analysis we note (assuming k = b) that this is simply an augmented 2-tier
cascade with the first tier being the dual of h, meaning the key and input roles are swapped. We
thus directly get an analysis and proof for this case from our above-mentioned results. Obtaining
HMAC from NMAC was more work [4, 3] and required assumptions about PRF security of the dual
function under related keys.

Davies-Meyer. Above we have assessed the PRF security under Out-leakage of the compression
function by modeling the latter as ideal (random). But, following CDMP [14], one might say
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that the compression functions underlying MD-style hash functions are not un-structured enough
to be treated as random because they are built from blockciphers via the Davies-Meyer (DM)
construction. To address this we analyze the mu PRF security under Out-leakage of the DM
construction in the ideal-cipher model. One’s first thought may be that such an analysis would
follow from our analysis for a random compression function and the indifferentiability [24, 14] of
DM from a random oracle, but the catch is that DM is not indifferentiable from a RO so a direct
analysis is needed. The one we give in Section 10shows mu security with good bounds. Similar
analyses can be given for other PGV [31] compression functions.

2 Related work

Sponges. SHA-3 already internally incorporates a truncation output transform. The construction
itself is a sponge. The suggested way to obtain a PRF is to simply key the hash function via its IV,
so that the PRF is a keyed, truncated sponge. The security of this construct has been intensively
analyzed [20, 25, 1, 9, 13] with Gaži, Pietrzak and Tessaro (GPT) [20] establishing PRF security
with tight bounds. Our work can be seen as stepping back to ask whether the same truncation
method would work for MD-style hash functions like SHA-512. Right now these older hash functions
are much more widely deployed than SHA-3, and current standardization and deployment efforts
continue to use them, making the analysis of constructions based on them important with regard
to security in practice. The underlying construction in this case is the cascade, which is quite
different from the sponge. The results and techniques of GPT [20] do not directly apply but were
an important inspiration for our work.

We note that keyed sponges with truncation to an r-bit output from a c-bit state can easily
be distinguished from a random function with advantage roughly q2/2c−r or qqf/2

c−r, as shown
for example in [20]. The bound of Equation (1) is better, meaning the augmented cascade offers
greater security. See Section 9for more information.

Cascade. BCK2 [5] show su security of the basic cascade (for prefix-free queries) in two steps.
First, they show su security of the basic cascade (for prefix-free queries) assuming not su, but
mu security of the compression function. Second, they apply the trivial bound mentioned above
to conclude su security of the basic cascade for prefix-free queries assuming su security of the
compression function. We follow their approach to establish su security of the augmented cascade,
but there are differences as well: They have no output transform while we do, they assume prefix-
free queries and we do not, we have leakage and they do not. They neither target nor show mu
security of the basic cascade in any form, mu security arising in their work only as an intermediate
technical step and only for the compression function, not for the cascade.

Chop-MD. The chop-MD construction of CDMP [14] is the case of the augmented cascade in
which the output transform is truncation. They claim this is indifferentiable from a RO when the
compression function is ideal. This implies PRF security but their bound is O(`2(q + qf)

2/2c−r)
which as we have seen is significantly weaker than our bound of Equation (1). Also, they have
no standard-model proofs or analysis for this construction. In contrast our results in Section 5
establish standard-model security.

NMAC and HMAC. NMAC takes keys Kin,Kout and input X to return h(Kout, h
∗(Kin,X)‖pad)

where pad is some (b − c)-bit constant and b ≥ c. Through a series of intensive analyses, the
PRF security of NMAC has been established based only on the assumed PRF security of the
compression function h, and with tight bounds [4, 3, 19]. Note that NMAC is not a special case of
the augmented cascade because Out is not keyed but the outer application of h in NMAC is keyed.
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In the model where the compression function is ideal, one can show bounds for NMAC that are
somewhat better than for the augmented cascade. This is not surprising. Indeed, when attacking
the augmented cascade, the adversary can learn far more information about the internal states of
the hash computation. What is surprising (at least to us) is that the gap is actually quite small.
See Section 9for more information. We stress also that this is in the ideal model. In the standard
model, there is no proof that NMAC has the type of good mu prf security we establish for the
augmented cascade in Section 5.

AES and other MACs. Why consider new MACs? Why not just use an AES-based MAC
like CMAC? The 128 bit key and block size limits security compared to c = 512 for SHA-512.
In Ed25519 we must not only take the result of the PRF modulo a 256-bit prime but due the
Bleichenbacher attack discussed in Appendix A, we need a quantitative level of security from the
PRF that AES-based constructions cannot provide. Also in that context a hash function is already
being used to hash the message before signing so it is convenient to implement the PRF also with
the same hash function. HMAC-SHA-512 will provide the desired security but AMAC has speed
advantages, particularly on short messages, as discussed in Appendix B, and is simpler. Finally, the
question is in some sense moot since AMAC is already deployed and in widespread use via Ed25519
and we need to understand its security.

Leakage. Leakage-resilience of a PRF studies the PRF security of a function h when the attacker
can obtain the result of an arbitrary function, called the leakage function, applied to the key [17, 16].
This is motivated by side-channel attacks. We are considering a much more restricted form of
leakage where there is just one, very specific leakage function, namely Out. This arises naturally, as
we have seen, in the PRF security of the augmented cascade. We are not considering side-channel
attacks.

3 Notation and standard definitions

Notation. If x is a vector then |x| denotes its length and x[i] denotes its i-th coordinate. (For
example if x = (10, 00, 1) then |x| = 3 and x[2] = 00.) We let ε denote the empty vector, which
has length 0. If 0 ≤ i ≤ |x| then we let x[1..i] = (x[1], . . . ,x[i]), this being ε when i = 0. We let
Sn denote the set of all length n vectors over the set S. We let S+ denote the set of all vectors
of positive length over the set S and S∗ = S+ ∪ {ε} the set of all finite-length vectors over the
set S. As special cases, {0, 1}n and {0, 1}∗ denote vectors whose entries are bits, so that we are
identifying strings with binary vectors and the empty string with the empty vector.

For sets A1, A2 we let [[A1, A2]] denote the set of all vectors X of length |X| ≥ 1 such that
X[1] ∈ A1 and X[i] ∈ A2 for 2 ≤ i ≤ |X|.

We let x←$X denote picking an element uniformly at random from a set X and assigning
it to x. For infinite sets, it is assumed that a proper measure can be defined on X to make this
meaningful. Algorithms may be randomized unless otherwise indicated. Running time is worst
case. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A with random coins r on inputs
x1, . . . and assigning the output to y. We let y←$A(x1, . . .) be the result of picking r at random
and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all possible outputs of A when
invoked with inputs x1, . . ..

We use the code based game playing framework of [6]. (See Fig. 1 for an example.) By Pr[G]
we denote the probability that game G returns true.

For an integer n we let [1..n] = {1, . . . , n}.
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Game DISTF0,F1
(A)

v ← 0

c←$ {0, 1} ; c′←$ANew,Fn

Return (c = c′)

New()

v ← v + 1 ; Fv←$ Fc

Fn(i, x)

Return Fi(x)

Game DISTF0,F1,Out(A)

v ← 0

c←$ {0, 1} ; c′←$ANew,Fn

Return (c = c′)

New()

v ← v + 1 ; Kv←$ F1.K

If (c = 1) then Fv ← F1(Kv, ·) else Fv←$ F0

Return Out(Kv)

Fn(i, x)

Return Fi(x)

Figure 1: Games defining distance metric between function families F0,F1. In the basic
(left) case there is no leakage, while in the extended (right) case there is leakage represented by
Out.

4 Function-family distance framework

We will be considering various generalizations and extensions of standard prf security. This includes
measuring proximity not just to random functions but to some other family, multi-user security and
leakage on the key. We also want to allow an easy later extension to a setting with ideal primitives.
To enable all this in a unified way we introduce a general distance metric on function families and
then derive notions of interest as special cases.

Function families. A function family is a two-argument function F: F.K×F.D→ F.R that takes
a key K in the key space F.K and an input x in the domain F.D to return an output y ← F(K,x)
in the range F.R. We let f ←$ F be shorthand for K←$ F.K ; f ← F(K, ·), the operation of picking
a function at random from family F.

An example of a function family that is important for us is the compression function underlying
a hash function, in which case F.K = F.R = {0, 1}c and F.D = {0, 1}b for integers c, b called the
length of the chaining variable and the block length, respectively. Another example is a block cipher.
However, families of functions do not have to be efficiently computable or have short keys. For sets
D,R the family A: A.K×D → R of all functions from D to R is defined simply as follows: let A.K
be the set of all functions mapping D to R and let A(f, x) = f(x). (We can fix some representation
of f as a key, for example the vector whose i-th component is the value f takes on the i-th input
under some ordering of D. But this is not really necessary.) In this case f ←$ A denotes picking at
random a function mapping D to R.

Let F: F.K × F.D → F.R be a function family and let Out: F.R → Out.R be a function with
domain the range of F and range Out.R. Then the composition Out ◦ F: F.K× F.D→ Out.R is the
function family defined by (Out ◦ F)(K,x) = Out(F(K,x)). We will use composition in some of our
constructions.

Basic distance metric. We define a general metric of distance between function families that
will allow us to obtain other metrics of interest as special cases. Let F0,F1 be families of functions
such that F0.D = F1.D. Consider game DIST on the left of Fig. 1 associated to F0,F1 and an
adversary A. Via oracle New, the adversary can create a new instance Fv drawn from Fc where
c is the challenge bit. It can call this oracle multiple times, reflecting a multi-user setting. It can
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obtain Fi(x) for any i, x of its choice with the restriction that 1 ≤ i ≤ v (instance i has been
initialized) and x ∈ F1.D. It wins if it guesses the challenge bit c. The advantage of adversary A is

AdvdistF0,F1
(A) = 2 Pr[DISTF0,F1(A)]− 1 (2)

= Pr[ DISTF0,F1(A) | c = 1 ]− (1− Pr[ DISTF0,F1(A) | c = 0 ]) . (3)

Equation (2) is the definition, while Equation (3) is a standard alternative formulation that can be
shown equal via a conditioning argument. We often use the second in proofs.

Let F be a function family and let A be the family of all functions from F.D to F.R. Let
AdvprfF (A) = AdvdistF,A(A). This gives a metric of multi-user prf security. The standard (single user)
prf metric is obtained by restricting attention to adversaries that make exactly one New query.

Distance under leakage. We extend the framework to allow leakage on the key. Let Out: F1.K→
Out.R be a function with domain F1.K and range a set we denote Out.R. Consider game DIST on
the right of Fig. 1, now associated not only to F0,F1 and an adversary A but also to Out. Oracle
New picks a key Kv for F1 and will return as leakage the result of Out on this key. The instance Fv

is either F1(Kv, ·) or a random function from F0. Note that the leakage is on a key for a function
from F1 regardless of the challenge bit, meaning even if c = 0, we leak on the key Kv drawn from
F1.K. The second oracle is as before. The advantage of adversary A is

AdvdistF0,F1,Out(A) = 2 Pr[DISTF0,F1,Out(A)]− 1 (4)

= Pr[ DISTF0,F1,Out(A) | c = 1 ]− (1− Pr[ DISTF0,F1,Out(A) | c = 0 ]) . (5)

This generalizes the basic metric because AdvdistF0,F1
(A) = AdvdistF0,F1,Out(A) where Out is the function

that returns ε on all inputs.
As a special case we get a metric of multi-user prf security under leakage. Let F be a function

family and let A be the family of all functions from F.D to F.R. Let Out: F.K → Out.R. Let
AdvprfF,Out(A) = AdvdistF,A,Out(A).

Naive mu to su reduction. Multi-user security for PRFs was first explicitly considered in [5].
They used a hybrid argument to show that the prf advantage of an adversary A against u users is
at most u times the prf advantage of an adversary of comparable resources against a single user.
The argument extends to the case where instead of prf advantage we consider distance and where
leakage is present. This is summarized in Lemma 4.1 below.

We state this lemma to emphasize that mu security is not qualitatively different from su security,
at least in this setting. The question is what is the quantitative difference. The lemma represents
the naive bound, which always holds. The interesting element is that for the 2-tier augmented
cascade, Theorem 5.3 shows that one can do better: the mu advantage is not a factor u less than
the single-user advantage, but about the same. In the proof of the lemma below we specify the
adversary for the sake of making the reduction concrete but we omit the standard hybrid argument
that establishes that this works.

Lemma 4.1 Let F0,F1 be function families with F0.D = F1.D and let Out: F1.K → Out.R be an
output transform. Let A be an adversary making at most u queries to its New oracle and at most
q queries to its Fn oracle. The proof specifies an adversary A1 making one query to its New oracle
and at most q queries to its Fn oracle such that

AdvdistF0,F1,Out(A) ≤ u · AdvdistF0,F1,Out(A1) . (6)

The running time of A1 is that of A plus the time for u computations of F0 or F1.

Proof of Lemma 4.1: Adversary A1 runs A, simulating the latter’s New,Fn oracles via sub-
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routines New∗,Fn∗, as follows:

Adversary ANew,Fn
1

v ← 0
g←$ [1..u]

c′←$ANew∗,Fn∗

Return c′

New∗()

v ← v + 1 ; Kv←$ F1.K
L← Out(Kv)
If (v < g) then Fv ← F1(Kv, ·)
If (v = g) then L← New()
If (v > g) then Fv←$ F0
Return L

Fn∗(i, x)

If (v = g) then
y ← Fn(1, x)

Else y ← Fi(x)
Return y

We omit the standard analysis establishing Equation (6).

5 The augmented cascade and its analysis

We first present a generalization of the basic cascade construction that we call the 2-tier cascade.
We then present the augmented (2-tier) cascade construction and analyze its security.

2-tier cascade construction. Let K be a set. Let g, h be function families such that g: g.K×
g.D→ K and h: K×h.D→ K. Thus, outputs of both g and h can be used as keys for h. This is the
basis of our 2-tier version of the cascade. This is a function family CSC[g, h]: g.K× [[g.D, h.D]]→ K.
That is, a key is one for g. An input —as per the notation [[·, ·]] defined in Section 3— is a vector
X of length at least one whose first component is in g.D and the rest of whose components are in
h.D. Outputs are in K. The function itself is defined as follows:

Function CSC[g, h](K,X)

n← |X| ; Y ← g(K,X[1])
For j = 2, . . . , n do Y ← h(Y,X[j])
Return Y

We say that a function family G is a 2-tier cascade if G = CSC[g, h] for some g, h. If f: K× f.D→ K
then its basic cascade is recovered as CSC[f, f]: K × f.D+ → K. We will also denote this function
family by f∗.

Recall that even if f: {0, 1}c ×{0, 1}b → {0, 1}c is a PRF, f∗ is not a PRF due to the extension
attack. It is shown by BCK2 [5] to be a PRF when the adversary is restricted to prefix-free queries.
When b = 1 and the adversary is restricted to queries of some fixed length `, the cascade f∗ is the
GGM construction of a PRF from a PRG [22]. Bernstein [7] considers a generalization of the basic
cascade in which the function applied depends on the block index and proves PRF security for any
fixed number ` of blocks.

Our generalization to the 2-tier cascade has two motivations and corresponding payoffs. First,
it will allow us to reduce mu security to su security in a simple, modular and tight way, the idea
being that mu security of the basic cascade is su security of the 2-tier one for a certain choice of
the 1st tier family. Second, it will allow us to analyze the blackbox AMAC construction in which
the cascade is not keyed directly but rather the key is put in the input to the hash function.

The augmented cascade. With K, g, h as above let Out: K → Out.R be a function we call the
output transform. The augmented (2-tier) cascade ACSC[g, h,Out]: g.K × [[g.D, h.D]] → Out.R
is the composition of Out with CSC[g, h], namely ACSC[g, h,Out] = Out ◦ CSC[g, h], where
composition was defined above. In code:
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Function ACSC[g, h,Out](K,X)

Y ← CSC[g, h](K,X) ; Z ← Out(Y )
Return Z

We say that a function family G+ is an augmented (2-tier) cascade if G+ = ACSC[g, h,Out] for
some g, h,Out.

The natural goal is that an augmented cascade G+ be a PRF. This however is clearly not true
for all Out. For example Out may be a constant function, or a highly irregular one. Rather than
restrict Out at this point we target a general result that would hold for any Out. Namely we aim
to show that ACSC[g, h,Out] is close under our distance metric to the result of applying Out to a
random function. Next we formalize and prove this.

Single-user security of 2-tier augmented cascade. Given g, h,Out defining the 2-tier
augmented cascade Out ◦ CSC[g, h], we want to upper bound AdvdistOut ◦A,Out ◦CSC[g,h](A) for an
adversary A making one New query, where A is the family of all functions with the same domain
as CSC[g, h]. We will do this in two steps. First, in Lemma 5.1, we will consider the case that
the first tier is a random function, meaning g = r is the family of all functions with the same
domain and range as g. Then, in Theorem 5.2, we will use Lemma 5.1 to analyze the general case
where g is a PRF. Most interestingly we will later use these single-user results to easily obtain, in
Theorem 5.3, bounds for multi-user security that are essentially as good as for single-user security.
This showcases a feature of the 2-tier cascade that is rare amongst PRFs. We now proceed to the
above-mentioned lemma.

Lemma 5.1 Let K,D be non-empty sets. Let h: K × h.D → K be a function family. Let r be the
family of all functions with domain D and range K. Let Out: K → Out.R be an output transform.
Let A be the family of all functions with domain [[D, h.D]] and range K. Let A be an adversary
making exactly one query to its New oracle followed by at most q queries to its Fn oracle, the second
argument of each of the queries in the latter case being a vector X ∈ [[D, h.D]] with 2 ≤ |X| ≤ `+ 1.
Let adversary Ah be as in Fig. 2. Then

AdvdistOut ◦A,Out ◦CSC[r,h](A) ≤ ` · Advprfh,Out(Ah) . (7)

Adversary Ah makes at most q queries to its New oracle and at most q queries to its Fn oracle.
Its running time is that of A plus the time for q` computations of h.

With the first tier being a random function, Lemma 5.1 is bounding the single-user (A makes one
New query) distance of the augmented 2-tier cascade to the result of applying Out to a random
function under our distance metric. The bound of Equation (7) is in terms of the multi-user security
of h as a PRF and grows linearly with one less than the maximum number of blocks in a query.

We note that we could apply Lemma 4.1 to obtain a bound in terms of the single-user PRF
security of h, but this is not productive. Instead we will go the other way, later bounding the
multi-user security of the 2-tier augmented cascade in terms of the multi-user PRF security of its
component functions.

The proof below follows the basic paradigm of the proof of BCK2 [5], which is itself an extension
of the classic proof of GGM [22]. However there are several differences: (1) The cascade in BCK2
is single-tier and non-augmented, meaning both the r component and Out are missing (2) BCK2
assume the adversary queries are prefix-free, meaning no query is a prefix of another, an assumption
we do not make (3) BCK2 bounds prf security, while we bound the distance.

Proof of Lemma 5.1: Consider the hybrid games and adversaries in Fig. 2. The following chain
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Game Hs (0 ≤ s ≤ `)
b′←$ANew∗,Fn∗

Return (b′ = 1)

New∗()

f ←$ A

Fn∗(i,X)

n← |X|
If (n ≤ s) then Y ← f(X)

Else

Y ← f(X[1..s+ 1])

For j = s+ 2, . . . , n do Y ← h(Y,X[j])

T1[X]← Y ; T2[X]← Out(T1[X])

Return T2[X]

Adversary ANew,Fn
h

g←$ {1, . . . , `} ; b′←$ANew,Fn
g

Return b′

Adversary ANew,Fn
g (1 ≤ g ≤ `)

v ← 0 ; b′←$ANew∗,Fn∗
; Return b′

New∗()

Fn∗(i,X)

n← |X|
If (n ≤ g − 1) then

If (not T1[X]) then

T1[X]←$K ; T2[X]← Out(T1[X])

If (n ≥ g) then

If (not U [X[1..g]]) then

v ← v + 1 ; U [X[1..g]]← v

T2[X[1..g]]← New()

If (n ≥ g + 1) then

T1[X[1..g + 1]]← Fn(U [X[1..g]],X[g + 1])

For j = g + 2, . . . , n do

T1[X[1..j]]← h(T1[X[1..j − 1]],X[j])

T2[X]← Out(T1[X])

Return T2[X]

Figure 2: Games and adversaries for proof of Theorem 5.1.

of equalities establishes Equation (7) and will be justified below:

` · Advprfh,Out(Ah) =
∑`

g=1Adv
prf
h,Out(Ag) (8)

=
∑`

g=1 Pr[Hg−1]− Pr[Hg] (9)

= Pr[H0]− Pr[H`] (10)

= AdvdistOut ◦A,Out ◦CSC[r,h](A) (11)

Adversary Ah (bottom left of Fig. 2) picks g at random in the range 1, . . . , ` and runs adversary

Ag (right of Fig. 2) so Advprfh,Out(Ah) = (1/`) ·
∑`

g=1 Adv
prf
h,Out(Ag), which explains Equation (8). For

the rest we begin by trying to picture what is going on.

We imagine a tree of depth `+1, meaning it has `+2 levels. The levels are numbered 0, 1, . . . , `+1,
with 0 being the root. The root has |D| children while nodes at levels 1, . . . , ` have |h.D| children
each. A query X of A in game DISTOut ◦A,Out ◦CSC[r,h],Out(A) specifies a path in this tree starting
at the root and terminating at a node at level n = |X|. Both the path and the final node are
viewed as named by X. To a queried node X we associate two labels, an internal label T1[X] ∈ K
and an external label T2[X] = Out(T1[X]) ∈ Out.R. The external label is the response to query
X. Since the first component of our 2-tier cascade is the family r of all functions from D to K,
we can view DISTOut ◦A,Out ◦CSC[r,h],Out(A) as picking T1[X[1]] at random from K and then setting
T1[X] = h∗(T1[X[1]],X[2..n]) for all queries X of A.

Now we consider the hybrid games H0, . . . ,H` of Fig. 2. They simulate A’s New,Fn oracles via
procedures New∗,Fn∗, respectively. By assumption Amakes exactly one New∗ query, and this will
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have to be its first. In response Hs picks at random a function f : [[D,K]]→ K. A query Fn∗ has the
form (i,X) but here i can only equal 1 and is ignored in responding. By assumption 2 ≤ |X| ≤ `.
The game populates nodes at levels 2, . . . , s of the tree with T1[·] values that are obtained via f
and thus are random elements of K. For a node X at level n ≥ s + 1, the T1[X[1..s + 1]] value is
obtained at random and then further values (if needed, meaning if n ≥ s + 2) are computed by
applying the cascade h∗ with key T1[X[1..s+ 1]] to input X[s+ 2..n].

Consider game H0, where s = 0. By assumption n ≥ 2 so we will always be in the case n ≥ s+ 1.
In the Else statement, Y ← f(X[1]) is initialized as a random element of K. With this Y as the
key, h∗ is then applied to X[2..n] to get T1[X]. This means H0 exactly mimics the c = 1 case of
game DISTOut ◦A,Out ◦CSC[r,h],Out(A), so that

Pr[H0] = Pr[ DISTOut ◦A,Out ◦CSC[r,h](A) | c = 1 ] . (12)

At the other extreme, consider game H`, where s = `. By assumption n ≤ ` + 1, yielding two
cases. If n ≤ ` we are in the n ≤ s case and the game, via f , the assigns T1[X] a random value. If
n = ` + 1 we are in the n ≥ s + 1 case, but the For loop does nothing so T1[X] is again random.
This means H` mimics the c = 0 case of game DISTOut ◦A,Out ◦CSC[r,h],Out(A), except returning true
exactly when the latter returns false. Thus

Pr[H`] = 1− Pr[ DISTOut ◦A,Out ◦CSC[r,h](A) | c = 0 ] . (13)

We will justify Equation (9) in a bit but we can now dispense with the rest of the chain. Equa-
tion (10) is obvious because the sum “telescopes.” Equation (11) follows from Equations (12)
and (13) and the formulation of dist advantage of Equation (5).

It remains to justify Equation (9), for which we consider the adversaries A1, . . . ,A` on the right
side of Fig. 2. Adversary Ag is playing the PRF, formally game DISTB,h on the left of Fig. 1 in
our notation, with B the family of all functions from h.D to K. It thus has oracles New,Fn. It will
make crucial use of the assumed multi-user security of h, meaning its ability to query New many
times, keeping track in variable u of the number of instances it creates. It simulates the oracles of
A of the same names via procedures New∗,Fn∗, sampling functions lazily rather than directly as
in the games. Arrays T1, T2, U are assumed initially to be everywhere ⊥ and get populated as the
adversary assigns values to entries. A test of the form “If (not T1[X]) ... ” returns true if T1[X] = ⊥,
meaning has not yet been initialized. In response to the (single) New∗ query of A, adversary Ag

does nothing. Following that, its strategy is to have the T1[·] values of level g nodes populated,
not explicitly, but implicitly by the keys in game DISTB,h created by the adversary’s own New
queries, using array U to keep track of the user index associated to a node. T1[·] values for nodes
at levels 1, . . . , g − 1 are random. At level g + 1, the T1[·] values are obtained via the adversary’s
Fn oracle, and from then on via direct application of the cascade h∗. One crucial point is that, if
Ag does not know the T1[·] values at level g, how does it respond to a length g query X with the
right T2[·] value? This is where the leakage enters, the response being the leakage provided by the
New oracle. The result is that for every g ∈ {1, . . . , `} we have

Pr[ DISTB,h(Ag) | c = 1 ] = Pr[Hg−1] (14)

1− Pr[ DISTB,h(Ag) | c = 0 ] = Pr[Hg] , (15)

where c is the challenge bit in game DISTB,h. Thus

Advprfh,Out(Ag) = Pr[ DISTB,h(Ag) | c = 1 ]− (1− Pr[ DISTB,h(Ag) | c = 0 ])

= Pr[Hg−1]− Pr[Hg] . (16)
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This justifies Equation (9).

We now extend the above to the case where the first tier g of the 2-tier cascade is a PRF rather
than a random function. We will exploit PRF security of g to reduce this to the prior case.

Theorem 5.2 Let K be a non-empty set. Let g: g.K× g.D→ K and h: K × h.D→ K be function
families. Let Out: K → Out.R be an output transform. Let A be the family of all functions with
domain [[g.D, h.D]] and range K. Let A be an adversary making exactly one query to its New oracle
followed by at most q queries to its Fn oracle, the second argument of each of the queries in the
latter case being a vector X ∈ [[g.D, h.D]] with 2 ≤ |X| ≤ ` + 1. The proof shows how to construct
adversaries Ah,Ag such that

AdvdistOut ◦A,Out ◦CSC[g,h](A) ≤ ` · Advprfh,Out(Ah) + 2Advprfg (Ag) . (17)

Adversary Ah makes at most q queries to its New oracle and at most q queries to its Fn oracle.
Adversary Ag makes one query to its New oracle and at most q queries to its Fn oracle. The
running time of both constructed adversaries is about that of A plus the time for q` computations
of h.

Proof of Theorem 5.2: Let D = g.D. Let r be the family of all functions with domain D and
range K. As shorthand for the relevant games, let

G0 = DISTOut ◦A,Out ◦CSC[g,h](A) and G1 = DISTOut ◦A,Out ◦CSC[r,h](A) .

Then

AdvdistOut ◦A,Out ◦CSC[g,h](A) = 2 Pr[G0]− 1

= 2 (Pr[G0]− Pr[G1] + Pr[G1])− 1

= 2 (Pr[G0]− Pr[G1]) + 2 Pr[G1]− 1 . (18)

Lemma 5.1 provides adversary Ah such that

2 Pr[G1]− 1 ≤ ` · Advprfh,Out(Ah) . (19)

Let adversary Ag be as follows:

Adversary ANew,Fn
g

c←$ {0, 1} ; c′←$ANew,Fn∗

If (c = c′) then return 1 else return 0

Fn∗(i,X)

Y ← Fn(1,X[1])
For j = 2, . . . , |X| do Y ← h(Y,X[j])
Z ← Out(Y ) ; Return Z

Adversary Ag responds to the single New query that A makes directly via its own New oracle. It
responds to Fn queries of A via procedure Fn∗. The latter applies Ag’s own Fn oracle to the first
component of X to get a key Y , and then applies h∗ with key Y to the rest of X, finally applying
the output function to get the value returned. Then we have

Advprfg (Ag) = Pr[ DISTr,g(Ag) | c = 1 ]− (1− Pr[ DISTr,g(Ag) | c = 0 ])

= Pr[G0]− Pr[G1] (20)

Putting together Equations (18), (19) and (20) yields Equation (17).

Multi-user security of 2-tier augmented cascade. We now want to assess the multi-user
security of a 2-tier augmented cascade. This means we want to bound AdvdistOut ◦A,Out ◦CSC[g,h](A)
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with everything as in Theorem 5.2 above except that A can now make any number u of New
queries rather than just one. We could do this easily by applying Lemma 4.1 to Theorem 5.2,
resulting in a bound that is u times the bound of Equation (17). We consider Theorem 5.3 below
the most interesting result of this section. It says one can do much better, and in fact the bound
for the multi-user case is not much different from that for the single-user case.

Theorem 5.3 Let K be a non-empty set. Let g: g.K× g.D→ K and h: K × h.D→ K be function
families. Let Out: K → Out.R be an output transform. Let A be the family of all functions with
domain [[g.D, h.D]] and range K. Let A be an adversary making at most u queries to its New oracle
and at most q queries to its Fn oracle, the second argument of each of the queries in the latter case
being a vector X ∈ [[g.D, h.D]] with 2 ≤ |X| ≤ `+ 1. The proof shows how to construct adversaries
Ah,Ag such that

AdvdistOut ◦A,Out ◦CSC[g,h](A) ≤ ` · Advprfh,Out(Ah) + 2Advprfg (Ag) . (21)

Adversary Ah makes at most q queries to its New oracle and at most q queries to its Fn oracle.
Adversary Ag makes u queries to its New oracle and at most q queries to its Fn oracle. The
running time of both constructed adversaries is about that of A plus the time for q` computations
of h.

A comparison of Theorems 5.2 and 5.3 shows that the bound of Equation (21) is the same as that
of Equation (17). So where are we paying for u now not being one? It is reflected only in the
resources of adversary Ag, the latter in Theorem 5.3 making u queries to its New oracle rather
than just one in Theorem 5.2.

The proof below showcases one of the advantages of the 2-tier cascade over the basic single-
tier one. Namely, by appropriate choice of instantiation of the first tier, we can reduce multi-user
security to single-user security in a modular way. In this way we avoid re-entering the proofs above.
Indeed, the ability to do this is one of the main reasons we introduced the 2-tier cascade.

Proof of Theorem 5.3: Let D = [1..u]. Let r be the family of all functions with domain D and
range g.K. Let function family g: r.K× (D×g.D)→ K be defined by g(f, (i, x)) = g(f(i), x). Let B
be the family of all functions with domain [[D× g.D, h.D]] and range K. The main observation is as
follows. Suppose i ∈ D and X ∈ [[g.D, h.D]]. Let Y ∈ [[D × g.D, h.D]] be defined by Y[1] = (i,X[1])
and Y[j] = X[j] for 2 ≤ j ≤ |X|. Let f : D → g.K be a key for g. Then f(i) ∈ g.K is a key for g,
and

CSC[g, h](f,Y) = CSC[g, h](f(i),X) . (22)

Think of f(i) as the key for instance i. Then Equation (22) allows us to obtain values of CSC[g, h]
for different instances i ∈ D via values of CSC[g, h] on a single instance with key f . This will
allow us to reduce the multi-user security of CSC[g, h] to the single-user security of CSC[g, h].
Theorem 5.2 will allow us to measure the latter in terms of the prf security of h under leakage and
the (plain) prf security of g. The final step will be to measure the prf security of g in terms of that
of g.

Proceeding to the details, let adversary B be as follows:

Adversary BNew,Fn

New()

b′←$ANew∗,Fn∗
; Return b′

New∗()

Fn∗(i,X)

Y[1]← (i,X[1])
For j = 2, . . . , |X| do Y[j]← X[j]
Z ← Fn(1,Y) ; Return Z
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Then we have

AdvdistOut ◦A,Out ◦CSC[g,h](A) = AdvdistOut ◦B,Out ◦CSC[g,h](B) (23)

≤ ` · Advprfh,Out(Ah) + 2Advprfg (Ag) (24)

Adversary B is allowed only one New query, and begins by making it so as to initialize instance
1 in its game. It answers queries of A to its New oracle via procedure New∗. Adversary A can
make up to u queries to New∗, but, as the absence of code for New∗ indicates, this procedure does
nothing, meaning no action is taken when A makes a New∗ query. When A queries its Fn oracle,
B answers via procedure Fn∗. The query consists of an instance index i with 1 ≤ i ≤ u and a vector
X. Adversary B creates Y from X as described above. Namely it modifies the first component of
X to pre-pend i, so that Y[1] ∈ D× g.D is in the domain of g. It leaves the rest of the components
unchanged, and then calls its own Fn oracle on vector Y ∈ [[D × g.D, h.D]]. The instance used
is 1, regardless of i, since B has only one instance active. The result Z of Fn is returned to A
as the answer to its query. Equation (23) is now justified by Equation (22), thinking of f(i) as
the key Ki chosen in game DISTOut ◦A,Out ◦CSC[g,h](A) where f is the (single) key chosen in game
DISTOut ◦B,Out ◦CSC[g,h](B). Theorem 5.2 applied to g, h and adversary B provides the adversaries
Ah,Ag of Equation (24).

Now consider adversary Ag defined as follows:

Adversary ANew,Fn
g

For i = 1, . . . , u do New()

b′←$ANew∗,Fn∗

g ; Return b′

New∗()

Fn∗(j,X)

(i, x)← X ; Y ← Fn(i, x)
Return Y

Adversary Ag begins by calling its New oracle u times to initialize u instances. It then runs Ag,
answering the latter’s oracle queries via procedures New∗,Fn∗. By Theorem 5.2 we know that
Ag makes only one New∗ query. In response the procedure New∗ above does nothing. When Ag

makes query j,X to Fn∗ we know that j = 1 and X ∈ D× g.D. Procedure Fn∗ parses X as (i, x).
It then invokes its own Fn oracle with instance i and input x and returns the result Y to Ag. We
have

Advprfg (Ag) = Advprfg (Ag) . (25)

Equations (24) and (25) imply Equation (21).

One might ask why prove Theorem 5.3 for a 2-tier augmented cascade Out ◦ CSC[g, h] instead of a
single tier one Out ◦ CSC[h, h]. Isn’t the latter the one of ultimate interest in usage? We establish
a more general result in Theorem 5.3 because it allows us to analyze AMAC itself by setting g to
the dual of h [3], and also for consistency with Theorem 5.2.

6 Framework for ideal-model cryptography

In Section 5 we reduced the (mu) security of the augmented cascade tightly to the assumed mu prf
security of the compression function under leakage. To complete the story, we will, in Section 7,
bound the mu prf security of an ideal compression function under leakage and thence obtain concrete
bounds for the mu security of the augmented cascade in the same model. Additionally, we will
consider the same questions when the compression function is not directly ideal but obtained via
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Game PRFF,P(A)

v ← 0

c←$ {0, 1} ; P←$ P ; c′←$ANew,Fn,Prim

Return (c = c′)

New()

v ← v + 1

If (c = 1) then Fv←$ FPrim

Else Fv←$ A

Fn(i, x)

Return Fi(x)

Prim(x)

y ← P(x) ; Return y

Game PRFF,Out,P(A)

v ← 0

c←$ {0, 1} ; P←$ P ; c′←$ANew,Fn,Prim

Return (c = c′)

New()

v ← v + 1 ; Kv←$ F.K

If (c = 1) then Fv ← FPrim(Kv, ·)
Else Fv←$ A

Return Out(Kv)

Fn(i, x)

Return Fi(x)

Prim(x)

y ← P(x) ; Return y

Figure 3: Games defining prf security of function family F in the presence of an ideal
primitive P. In the basic (left) case there is no leakage, while in the extended (right) case there
is leakage represented by Out.

the Davies-Meyer transform on an ideal blockcipher, reflecting the design in popular hash functions.
If we gave separate, ad hoc definitions for all these different constructions in different ideal models
for different goals, it would be a lot of definitions. Accordingly we introduce a general definition
of an ideal primitive (that may be of independent interest) and give a general definition of PRF
security of a function family with access to an instance of an ideal primitive, both for the basic
setting and the setting with leakage. A reader interested in our results on the mu prf security of
ideal primitives can jump ahead to Section 7 and refer back here as necessary.

Idealized cryptography. We define an ideal primitive to simply be a function family P: P.K×
P.D→ P.R. Below we will provide some examples but first let us show how to lift security notions
to idealized models using this definition by considering the cases of interest to us, namely PRFs
and PRFs under leakage.

An oracle function family F specifies for each function P in its oracle space F.O a function family
FP: F.K× F.D→ F.R. We say F and ideal primitive P are compatible if {P(KK, ·) : KK ∈ P.K } ⊆
F.O, meaning instances of P are legitimate oracles for F. These represent constructs whose security
we want to measure in an idealized model represented by P.

We associate to F,P and adversary A the game PRF in the left of Fig. 3. In this game, A is the
family of all functions with domain F.D and range F.R. The game begins by picking an instance
P: P.D→ P.R of P at random. The function P is provided as oracle to F and to A via procedure
Prim. The game is in the multi-user setting, and when c = 1 it selects a new instance Fv at random
from the function family FP. Otherwise it selects Fv to be a random function from F.D to F.R. As
usual a query i, x to Fn must satisfy 1 ≤ i ≤ v and x ∈ F.D. A query to Prim must be in the set
P.D. We let AdvprfF,P(A) = 2 Pr[PRFF,P(A)]− 1 be the advantage of A.

We now extend this to allow leakage on the key. Let Out: F.K → Out.R be a function with
domain F.K and range Out.R. Game PRF on the right of Fig. 3 is now associated not only to F,P
and an adversaryA but also to Out. The advantage ofA is AdvprfF,Out,P(A) = 2 Pr[PRFF,Out,P(A)]−1.
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Capturing particular ideal models. The above framework allows us to capture the random
oracle model, ideal cipher model and many others as different choices of the ideal primitive P. Not
all of these are relevant to our paper but we discuss them to illustrate how the framework captures
known settings.

Let Y be a non-empty set. Let P.K be the set of all functions P: {0, 1}∗ → Y. (Each function
is represented in some canonical way, in this case for example as a vector over Y of infinite length.)
Let P: P.K × {0, 1}∗ → Y be defined by P(P, x) = P(x). Then P←$ P is a random oracle with
domain {0, 1}∗ and range Y. In this case, an oracle function family compatible with P is simply
a function family in the random oracle model, and its prf security in the random oracle model is
measured by AdvprfF,P(A).

Similarly let P.K be the set of all functions P: {0, 1}∗ × N → {0, 1}∗ with the property that
|P(x, l)| = l for all (x, l) ∈ {0, 1}∗ × N. Let P: P.K × ({0, 1}∗ × N) → {0, 1}∗ be defined by
P(P, (x, l)) = P(x, l). Then P←$ P is a variable output length random oracle with domain {0, 1}∗
and range {0, 1}∗.

Let D be a non-empty set. To capture the single random permutation model, let P.K be the set
of all permutations π: D → D. Let P.D = D × {+,−}. Let P.R = D. Define P(π, (x,+)) = π(x)
and P(π, (y,−)) = π−1(y) for all π ∈ P.K and all x, y ∈ D. An oracle for an instance P = P(π, ·)
of P thus allows evaluation of both π and π−1 on inputs of the caller’s choice.

Finally we show how to capture the ideal cipher model. If K,D are non-empty sets, a function
family E: K × D → D is a blockcipher if E(K, ·) is a permutation on D for every K ∈ K, in
which case E−1: K × D → D denotes the blockcipher in which E−1(K, ·) is the inverse of the
permutation E(K, ·) for all K ∈ K. Let P.K be the set of all block ciphers E: K × D → D. Let
P.D = K × D × {+,−}. Let P.R = D. Define P(E, (K,X,+)) = E(K,X) and P(E, (K,Y,−)) =
E−1(K,Y ) for all E ∈ P.K and all X,Y ∈ D. An oracle for an instance P = P(E, ·) of P thus
allows evaluation of both E and E−1 on inputs of the caller’s choice.

7 Security of the compression function under leakage

In Section 5 we reduced the (multi-user) security of the augmented cascade tightly to the assumed
multi-user prf security of the compression function under leakage. To complete the story, we now
study (bound) the multi-user prf security of the compression function under leakage. This will be
done assuming the compression function is ideal. Combining these results with those of Section 5 we
will get concrete bounds for the security of the augmented cascade for use in applications, discussed
in Section 8.

In the (leak-free) multi-user setting, it is well known that prf security of a compression function
decreases linearly in the number of users. We will show that this is an extreme case, and as the
amount of leakage increases, the multi-user prf security degrades far more gracefully in the number
of users (Theorem 7.2). This (perhaps counterintuitive) phenomenon will turn out to be essential
to obtain good bounds on augmented cascades. We begin below with an informal overview of the
bounds and why this phenomenon occurs.

Overview of bounds. The setting of an ideal compression function mapping K × X → D is
formally captured, in the framework of Section 6, by the ideal primitive F: F.K × (K × X ) → K
defined as follows. Let F.K be the set of all functions mapping K×X → K and let F(f, (K,X)) =
f(K,X). Now, the construction we are interested in is the simplest possible, namely the compression
function itself. Formally, again as per Section 6, this means we consider the oracle function family
CF whose oracle space CF.O consists of all functions f: K ×X → K, and with CFf = f.

For this overview we let K = {0, 1}c. We contrast the prf security of an ideal compression
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AdvprfCF,F(B) AdvprfCF,Out,F(B)

su
qf
2c

qf
2c−r

mu, trivial
u(q + qf)

2c
u(q + qf)

2c−r

mu, dedicated
u2 + 2uqf

2c+1

u2 + 2uqf + 1

2c
+

3crqf
2c−r

Figure 4: Upper bounds on prf advantage of an adversary B attacking an ideal com-
pression function mapping {0, 1}c × X to {0, 1}c. Left: Basic case, without leakage. Right:
With leakage Out being the truncation function that returns the first r ≤ c bits of its output. First
row: Single user security, qf is the number of queries to the ideal compression function. Second
row: Multi-user security as obtained trivially by applying Lemma 4.1 to the su bound, u is the
number of users. Third row: Multi-user security as obtained by a dedicated analysis, with the
bound in the leakage case being from Theorem 7.2.

function along two dimensions: (1) Number of users, meaning su or mu, and (2) basic (no leakage)
or with leakage. The bounds are summarized in Fig. 4 and discussed below. When we say the (i, j)
table entry we mean the row i, column j entry of the table of Fig. 4.

First consider the basic (no leakage) case. We want to upper bound AdvprfCF,F(B) for an adversary
B making qf queries to the ideal compression function (oracle Prim) and q queries to oracle Fn.
In the su setting (one New query) it is easy to see that the bound is the (1, 1) table entry. This
is because a fairly standard argument bounds the advantage by the probability that B makes a
Prim query containing the actual secret key K used to answer Fn queries. We refer to issuing
such a query as guessing the secret key K. Note that this probability is actually independent of
the number q of Fn queries and q does not figure in the bound. Now move to the mu setting, and
let B make u queries to its New oracle. Entry (2,1) of the table is the trivial bound obtained via
Lemma 4.1 applied with F1 being our ideal compression function and F0 a family of all functions,
but one has to be careful in applying the lemma. The subtle point is that adversary A1 built
in Lemma 4.1 runs B but makes an additional q queries to Prim to compute the function F1, so
its advantage is the (1, 1) table entry with qf replaced by qf + q. This term gets multiplied by u
according to Equation (6), resulting in our (1, 2) table entry. A closer look shows one can do a
tad better: the bound of the (1, 1) table entry extends with the caveat that a collisions between
two different keys also allows the adversary to distinguish. In other words, the advantage is now
bounded by the probability that B guesses any of the u keys K1, . . . ,Ku, or that any two of these
keys collide. This yields the (1, 3) entry of the table. Either way, the (well known) salient point
here is that the advantage in the mu case is effectively u times the one in the su case.

We show that the growth of the advantage as a function of the number of users becomes far more
favorable when the adversary obtains some leakage about the secret key under some function Out.
For concreteness we take the leakage function to be truncation to r bits, meaning Out = TRUNCr is
the function that returns the first r ≤ c bits of its input. (Theorem 7.2 will consider a general Out.)

Now we seek to bound AdvprfCF,Out,F(B). Now, given only TRUNCr(K) for a secret key K, then there

are only 2c−r candidate secret keys consistent with this leakage, thus increasing the probability that
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the adversary can guess the secret key. Consequently, the leakage-free bound from of the (1,1) entry
generalizes to the bound of the (2,1) entry. Moving to multiple users, the (2,2) entry represents
the naive bound obtained by applying Lemma 4.1. It is perhaps natural to expect that this is best
possible as in the no-leakage case. We however observe that this is overly pessimistic. To this end,
we exploit the following simple fact: Every Prim query (K,X) made by B to the ideal compression
function can only help in guessing a key Ki such that Out(K) = Out(Ki). In particular, every
Prim query (K,X) has only roughly m · 2−(c−r) chance of guessing one of the u keys, where m is
the number of generated keys Ki such that Out(Ki) = K. A standard balls-into-bins arguments
(Lemma 7.1) can be used to infer that except with small probability (e.g., 2−c), we always have
m ≤ 2u/2r + 3cr for any K. Combining these two facts yields our bound, which is the (3,2) entry
of the table. Theorem 7.2 gives a more general result and the full proof. Note that if r = 0, i.e.,
nothing is leaked, this is close to the bound of the (1,3) entry and the bound does grow linearly
with the number of users, but as r grows, the 3crqf · 2−(c−r) term becomes the leading one, and
does not grow with u. We now proceed to the detailed proof of the (3,2) entry.

Combinatorial preliminaries. Our statements below will depend on an appropriate multi-
collision probability of the output function Out: Out.D→ Out.R. In particular, for anyX1, . . . , Xu ∈
Out.R, we first define

µ(X1, . . . , Xu) = max
Y ∈Out.R

|{ i : Xi = Y }| ,

i.e., the number of occurrences of the most frequent value amongst X1, . . . , Xu. In particular,
this is an integer between 1 and u, and µ(X1, . . . , Xu) = 1 if all elements are distinct, whereas
µ(X1, . . . , Xu) = u if they are all equal. (Note when u = 1 the function has value 1.) Then, the
m-collision probability of Out for u users is defined as

Pcoll
Out(u,m) = PrK1,...,Ku←$ Out.D [µ(Out(K1), . . . ,Out(Ku)) ≥ m ] . (26)

We provide a bound on Pcoll
Out(u,m) for the case where Out(K), for a random K, is close enough to

uniform. (We stress that a combinatorial restriction on Out is necessary for this probability to be
small – it would be one if Out is the contant function, for example.) To this end, denote

δ(Out) = SD(Out(K),R) =
1

2

∑
y∈Out.R

∣∣∣∣Pr [Out(K) = y ]− 1

|Out.R|

∣∣∣∣ , (27)

i.e., the statistical distance between Out(K), where K is uniform on Out.D, and a random variable
R uniform on Out.R.

We will use the following lemma, which we prove using standard balls-into-bins techniques.

Lemma 7.1 (Multi-collision probability) Let Out : Out.D→ Out.R, u ≥ 1, and λ ≥ 0. Then,
for any m ≤ u such that

m ≥ 2u

|Out.R|
+ λ ln |Out.R| , (28)

we have

Pcoll
Out(u,m) ≤ u · δ(Out) + exp(−λ/3) .

We stress that the factor 2 in Equation (28) can be omitted (one can use an additive Chernoff
bound when u is sufficiently large in the proof given below, rather than a multiplicative one) at the
cost of a less compact statement. As this factor will not be crucial in the following, we keep this
simpler variant.
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Proof of Lemma 7.1: To start with, note that the probability of having at least m values
colliding increases only by at most u · δ(Out) if in the definition of Pcoll, we replace the u outputs of
Out under random inputs K1, . . . ,Ku by uniform elements of Out.R. Thus, we are going to consider
the uniform case only, at the cost of the additive factor u · δ(Out). Throughout this proof, denote
R = |Out.R| for notational convenience.

To this end, let R1, . . . ,Ru be each uniform over Out.R, and let us fix Y ∈ Out.R. Let Ti ∈ {0, 1}
be 1 if and only if Ri = Y , and 0 otherwise. We are interested in bounding T =

∑u
i=1 Ti, i.e.,

showing that the probability it is at least m is at most 1
R · exp(−λ/3). Note that µ = E [ T ] = u

R ,
and recall that by the Chernoff bound,

Pr [ T ≥ (1 + ε) · µ ] ≤ exp

(
− ε2

2 + ε
µ

)
.

Note that m ≥ 2µ+ λ lnR, and thus Pr [ T ≥ m ] ≤ Pr [ T ≥ 2µ+ λ lnR ]. To bound the latter, we
consider two cases here: First, assume that u ≥ λR lnR. Then,

Pr [ T ≥ 2µ+ λ lnR ] ≤ Pr [ T ≥ 2µ ] ≤ exp(−µ/3) ≤ 1

R
exp(−λ/3) .

Second, assume instead that u ≤ λR lnR. Then, let ε = λR lnR/u. We have in particular,

ε2

2 + ε
µ =

λ2R(lnR)2

2u+ λR lnR
≥ 1

3
λ lnR .

Therefore, again by the above Chernoff bound,

Pr [ T ≥ 2µ+ λ lnR ] ≤ Pr [ T ≥ µ(1 + ε) ] ≤ 1

R
exp(−λ/3) .

So far, we have computed the probability for a specific and arbitrary Y ∈ Out.R. The final bound
follows by the union bound over all R elements of Out.R.

For the analysis below, we also need to use a lower bound the number of potential preimages
of a given output. To this end, given Out: Out.D→ Out.R, we define

ρ(Out) = min
y∈Out.R

∣∣Out−1(y)
∣∣ .

Security of ideal compression functions. The following theorem establishes the multi-user
security under key-leakage of a random compression function. We stress that the bound here does
not depend on the number of queries the adversary B makes to oracle Fn. Also, the parameter m
can be set arbitrarily in the theorem statement for better flexibility, even though our applications
below will mostly use the parameters from Lemma 7.1.

Theorem 7.2 Let Out: K → Out.R. Then, for all m ≥ 1, and all adversaries B making u queries
to New, and qf queries to Prim,

AdvprfCF,Out,F(B) ≤ u2

2 |K|
+ Pcoll

Out(u,m) +
(m− 1) · qf
ρ(Out)

.

The statement could be rendered useless whenever ρ(Out) = 1 because a single point has a
single pre-image. We note here that Theorem 7.2 can easily be generalized to use a “soft” version
of ρ(Out) guaranteeing that the number of preimages of a point is bounded from below by ρ(Out),
except with some small probability ε, at the cost of an extra additive term u · ε. This more general
version will not be necessary for our applications. We also note that it is unclear how to use the
average number of preimages of Out(K) in our proof.
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Game G0, G1

v ← 0

c′←$ BNew,Fn,Prim

Return (c′ = 1)

New()

v ← v + 1 ; Kv←$K
Return Out(Kv)

Prim(k, x)

if Tf[k, x] = ⊥ then

Tf[k, x]←$K
If ∃j : k = Kj and TFn[j, x] 6= ⊥ then

bad1 ← true

Tf[k, x]← TFn[j, x]

Return Tf[k, x]

Fn(i, x)

If TFn[i, x] = ⊥ then

TFn[i, x]←$K
If Tf[Ki, x] 6= ⊥ then

bad1 ← true

TFn[i, x]← Tf[Ki, x]

else if ∃j 6= i: Kj = Ki

and TFn[j, x] 6= ⊥ then

bad2 ← true

TFn[i, x]← TFn[j, x]

Return TFn[i, x]

Figure 5: Games G0 and G1 in the proof of Theorem 7.2. The boxed assignment statements
are only executed in Game G1, but not in Game G0.

Proof of Theorem 7.2: The first step of the proof involves two games, G0 and G1, given in
Fig. 5. Game G1 is semantically equivalent to PRFCF,Out,F with challenge bit c = 1, except that
we have modified the concrete syntax of the oracles. In particular, the randomly sampled function
f←$ F is now implemented via lazy sampling, and the table entry Tf[k, x] contains the value of
f(k, x) if it has been queried. Otherwise, Tf is ⊥ on all entries which have not been set. Also,
the game keeps another table TFn such that TFn[i, x] contains the value returned upon a query
Fn(i, x). Note that the game enforces that any point in time, if TFn[i, x] and Tf[Ki, x] are both set
(i.e., they are not equal ⊥), then we also have TFn[i, x] = Tf[Ki, x] and that, moreover, if Ki = Kj ,
then TFn[i, x] = TFn[j, x] whenever both are not ⊥. Finally, whenever any of these entries is set for
the first time, then it is set to a fresh random value from K. This guarantees that the combined
behavior of the Fn and the Prim oracles are the same as in PRFCF,Out,F for the case c = 1. Thus,

Pr [G1 ] = Pr[ PRFCF,Out,F | c = 1 ] .

It is easier to see that in game G0, in contrast, the Prim and Fn oracles always return random
values, and thus, since we are checking whether c′ equals 1, rather than c, we get Pr [G0 ] =
1− Pr[ PRFCF,Out,F | c = 0 ], and consequently,

AdvprfCF,Out,F(B) = Pr [ G1 ]− Pr [ G0 ] .

Both games G0 and G1 also include two flags bad1 and bad2, initially false, which can be set to
true when specific events occur. In particular, bad1 is set whenever one of the following two events
happens: Either B queries Fn(i, x) after querying Prim(Ki, x), or B queries Prim(Ki, x) after
querying Fn(i, x). Moreover, bad2 is set whenever B queries Fn(i, x) after Fn(j, x), Ki = Kj ,
and Prim(Ki, x) = Prim(Kj , x) was not queried earlier. (Note that if the latter condition is not
true, then bad1 has been set already.) It is immediate to see that G0 and G1 are identical until
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Game H0

v ← 0

c′←$ BNew,Fn,Prim

Return (∃j, x: Tf[Kj , x] 6= ⊥)

Game H1

v ← 0

c′←$ BNew,Fn,Prim

for i = 0 to v − 1 do

K ′i←$ { k′ : Out(k′) = Yi }
Return (∃j, x: Tf[K

′
j , x] 6= ⊥)

New()

v ← v + 1 ; Kv←$K ; Yv ← Out(Kv)

Return Yv

Prim(k, x)

if Tf[k, x] = ⊥ then Tf[k, x]←$K
Return Tf[k, x]

Fn(i, x)

If TFn[i, x] = ⊥ then TFn[i, x]←$K
Return TFn[i, x]

Figure 6: Games H0 and H1 in the proof of Theorem 7.2. Both games share the same New,
Prim, and Fn oracles, the only difference being the additional re-sampling of the secret keys K ′i in
the main procedure of H1.

bad1 ∨ bad2 is set. Therefore, by the fundamental lemma of game playing [6],

AdvprfCF,Out,F(B) = Pr [ G1 ]− Pr [ G0 ] ≤ Pr [ G0 sets bad1 ] + Pr [ G0 sets bad2 ] . (29)

We immediately note that in order for bad2 to be set in G0, we must have Ki = Kj for distinct
i 6= j, i.e., two keys must collide. Since we know that at most u calls are made to New, a simple
Birthday bound yields

Pr [ G0 sets bad2 ] ≤ u2

2 · |K|
. (30)

The rest of the proof thus deals with the more difficult problem of bounding Pr [ G0 sets bad1 ].
To simplify this task, we first introduce a new game, called H0 (cf. Fig. 6), which behaves as G0,
except that it only checks at the end of the game whether the bad event triggering bad1 has occurred
during the interaction, in which case the game outputs true. Note that we are relaxing this check
a bit further compared with G0, allowing it to succeed as long as a query to Prim of form (Kj , x)
for some j and some x was made, even if Fn(j, x) was never queried before. Therefore,

Pr [ G0 sets bad1 ] ≤ Pr [ H0 ] . (31)

Note that in H0, the replies to all oracle calls made by B do not depend on the keys K1,K2, . . .
anymore, except for the leaked values Out(K1),Out(K2), . . . returned by calls to New. We introduce
a new and final game H1 which modifies H0 by pushing the sampling of the actual key values as far
as possible in the game: That is, we first only gives values to B with the correct leakage distribution,
and in the final phase of H1, when computing the game output, we sample keys that are consistent
with this leakage. In other words, in the final check we replace the keys K1,K2, . . . with freshly
sampled key K ′1,K

′
2, . . ., which are uniform, under the condition that Out(Ki) = Out(K ′i) = Yi.

It is not hard to see that Pr [ H0 ] = Pr [ H1 ]. This follows from two observations: First, for every
i, the joint distribution of (Ki, Yi = Out(Ki)) is identical to that of (K ′i, Yi = Out(Ki)), since
given Yi, both Ki and K ′i are uniformly distributed over the set of pre-images of Yi. Second, the
behavior of both H0 and H1, before the final check to decide their outputs, only depends on values
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Yi = Out(Ki), and not on the Ki’s. The actual keys Ki are only used for the final check, and since
the probability distributions of Ki and K ′i conditioned on Out(Yi) are identical, then so are the
probabilities of outputting true in games H0 and H1.

Thus, combining Equation (29), Equation (30), and Equation (31), we have

AdvprfCF,Out,F(B) ≤ u2

2 · |K|
+ Pr [ H1 ] . (32)

We are left with computing an upper bound on Pr [ H1 ]. For this purpose, denote by S the set
of pairs (k, x) on which Tf[k, x] 6= ⊥ after B outputs its bit c′ in H1. Also, let Y be the multi-
set {Y0, Y1, . . . , Yu−1} of values output by New to B, and denote Y the resulting set obtained by
removing repetitions. Note that |S| ≤ qf and

∣∣Y∣∣ ≤ |Y| ≤ u, and the first inequality may be strict,
since some elements can be repeated due to collisions Out(Ki) = Out(Kj).

Asume that now S and Y are given and fixed. We proceed to compute the probability that H1

outputs true conditioned on the event that S and Y have been generated. For notational help, for
every y ∈ Y, also denote

Sy = { (k, x) ∈ S : Out(k) = y } ,
and let qy = |Sy|. Also, let ny be the number of occurrence of y ∈ Y in Y. Note that except with
probability Pcoll(u,m), we have ny ≤ m− 1 for all y ∈ Y, and thus

Pr [ H1 ] ≤ Pr
[
∃y ∈ Y : ny ≥ m

]
+ Pr[ H1 | ∀y ∈ Y : ny < m ]

= Pcoll
Out(u,m) + Pr[ H1 | ∀y ∈ Y : ny < m ] .

(33)

Therefore, let us assume we are given S and Y sich that ny ≤ m − 1 for all y ∈ Y. Denote by
Pr[ H1 | S,Y ] the probability that H1 outputs true conditioned on the fact that this S and Y has
been generated. Using the fact that the keys K ′0,K

′
1, . . .K

′
u−1 are sampled independently of S, we

compute

Pr[ H1 | S,Y ] = Pr
[
∃j, x : (K ′j , x) ∈ S

]
≤
∑
y∈Y

qy · ny∣∣Out−1(y)
∣∣

≤ (m− 1) ·
∑
y∈Y

qy∣∣Out−1(y)
∣∣ ≤ m− 1

ρ(Out)

∑
y∈Y

qy ≤
(m− 1)qf
ρ(Out)

.

Since the bound holds for all such S and Y, we also have

Pr[ H1 | ∀y ∈ Y : ny < m ] ≤ (m− 1)qf
ρ(Out)

. (34)

The final bound follows by combining Equation (32), Equation (33), and Equation (34).

8 Quantitive bounds for augmented cascades

We consider two instantiations of augmented cascades, one using bit truncation, the other using
modular reduction. We give concrete bounds on the mu prf security of these constructions in the
ideal compression function model, combining results from above. This will give us good guidelines
for a comparison with existing constructions – such as NMAC and sponges – in Section 9.

Bit truncation. Let K = {0, 1}c, and Out = TRUNCr : {0, 1}c → {0, 1}r, for r ≤ c, outputs the
first r bits of its inputs, i.e., TRUNCr(X) = X[1..r]. Note that δ(TRUNCr) = 0, since omitting
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c − r bits does not affect uniformity, and ρ(TRUNCr) = 2c−r, since every r-bit strings has 2c−r

preimages. Then, combining Lemma 7.1 with Theorem 7.2, using m = 2u/2r + 3cr, we obtain the
following corollary, denoting with Fc the ideal compression function for K = {0, 1}c. (We do not
specify X further, as it does not influence the statement.)

Corollary 8.1 For any c ≤ r, and all adversaries B making u queries to New and qf queries to
Prim,

AdvprfCF,TRUNCr,Fc
(B) ≤ u2

2c+1
+

2u · qf
2c

+
3cr · qf

2c−r
+ exp(−c) .

We can then use this result to obtain our bounds for the augmented cascade ACSC[CF,CF,TRUNCr]
when using an ideal compression function {0, 1}c ×X → {0, 1}c.

Theorem 8.2 (mu prf security for r-bit truncation) For any r ≤ n, and all adversaries A
making q queries to Fn consisting of vectors from X ∗ of length at most `, qf queries to Prim, and
u ≤ q queries to New,

AdvprfACSC[CF,CF,TRUNCr],Fc
(A) ≤ 5`2q2 + 3`qqf

2c
+

3cr` · (q`+ qf)

2c−r
+ ` exp(−c)

Proof of Theorem 8.2: Let Ac−r be the set of all functions with domain X ∗ and c − r-bit
outputs, and let Ac be set of all functions with domain X ∗ and c-bit outputs. First note that by
Theorem 5.3,

AdvdistTRUNCr ◦Ac,TRUNCr ◦CSC[CF,CF],Fc
(A)

≤ ` · AdvprfCF,TRUNCr,Fc
(Ah) + 2AdvprfCF,Fc

(Ag) . (35)

Note that TRUNCr ◦ Ac and Ac−r have the same distribution, and thus

AdvprfACSC[CF,CF,TRUNCr],Fc
(A) = AdvdistTRUNCr ◦Ac,TRUNCr ◦CSC[CF,CF],Fc

(A) . (36)

To upper bound the two advantages in Equation (35), recall that adversary Ah makes at most q
queries to its New oracle and at most q queries to its Fn oracle. Adversary Ag makes u queries
to its New oracle and at most q queries to its Fn oracle. The running time of both constructed
adversaries is about that of A plus the time for q` computations of CF, which in particular means
that both adversaries make qf + q · ` queries to Prim. Therefore, by Corollary 8.1,

AdvprfCF,TRUNCr,Fc
(Ah) ≤ q2

2c+1
+

2q · (q`+ qf)

2c
+

3cr · (q`+ qf)

2c−r
+ exp(−c) , (37)

as well as

AdvprfCF,TRUNCr,Fc
(Ag) ≤ u2

2c+1
+
u · (q`+ qf)

2c
. (38)

The theorem statement then follow by combining Equation (35), Equation (36), and Equation (37).

Modular reduction. Our second example becomes particularly important for the application
to the Ed25519 signature scheme.

Here, we let K = ZN , and consider the output function Out = MODM : ZN → ZM for M ≤ N
is such that MODM (X) = X mod M . (Note that as a special case, we think of K = {0, 1}c here
as Z2c .) We need the following two properties of MODM .
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Lemma 8.3 For all M ≤ N : (1) ρ(MODM ) ≥ N
M − 1, (2) δ(MODM ) ≤M/N .

Proof of Of Lemma 8.3: For every a ∈ ZM , we start by counting the number of x ∈ ZN with x
mod M = a. In particular, the bN/Mc integers ai = M · i+a for i ∈ [0 . . . bN/Mc−1] are all those
with this property if a ≥ N mod M . Otherwise, if a < N mod M , also abN/Mc = M · bN/Mc+ a
additionally has this property. Thus

ρ(MODM ) ≥
⌊
N

M

⌋
≥ N

M
− 1 .

Now, for the statistical distance, δ(MODM ), note that by the above, for all a ≥ N mod M , and
UN uniformly distributed on ZN ,

Pr [MODM (UN ) = a ] =
1

N

⌊
N

M

⌋
≤ 1

M
,

whereas for all a < N mod M (if they exist),

Pr [MODM (UN ) = a ] =
1

N

⌈
N

M

⌉
≥ 1

M
.

Thus,

δ(MODM ) =
∑

a:a<N mod M

(
Pr [MODM (UN ) = a ]− 1

M

)

≤M ·
(

1

N

⌈
N

M

⌉
− 1

M

)
≤M ·

(
1

N

N

M
+

1

N
− 1

M

)
≤ M

N
.

Then, combining Lemma 7.1 and Lemma 8.3 with Theorem 7.2, using m = 2u/M+3 lnN lnM ,
we obtain the following corollary, denoting with FN the ideal compression function with K = ZN .
(As above, we do not specify X further, as it does not influence the statement.)

Corollary 8.4 For any M ≤ N/2, and all adversaries B making u queries to New and qf queries
to Prim,

AdvprfCF,MODM ,FN
(B) ≤ u2

2N
+
uM

N
+

4u · qf
N

+
6M lnN lnM · qf

N
+

1

N
.

This can once again be used to obtain the final analysis of the augmented cascade using modular
reduction. The proof is similar to that of Theorem 8.2.

Theorem 8.5 (mu prf security for modular reduction) For any M ≤ N/2, and all adver-
saries A making q queries to Fn consisting of vectors from X ∗ of length at most `, qf queries to
Prim, and u ≤ q queries to New,

AdvprfACSC[CF,CF,MODM ],FN
(A) ≤ 5`2q2 + 3`qqf

N

+
7M lnN lnM(`2q + `qf)

N
+

`

N
.

Proof of Theorem 8.5: Let AM be the set of all functions with domain X ∗ and outputs in
ZM , and let AN be set of all functions with domain X ∗ and outputs in ZN . First note that by
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Theorem 5.3,

AdvdistMODM ◦AN ,MODM ◦CSC[CF,CF],FN
(A)

≤ ` · AdvprfCF,MODM ,FN
(Ah) + 2AdvprfCF,FN

(Ag) . (39)

Note that MODM ◦ AN and AM do not have the same distribution. Still, by the triangle inequality,

AdvprfACSC[CF,CF,MODM ],FN
(A)

≤ AdvdistAM ,MODM ◦AN ,FN
(A) + AdvdistMODM ◦AN ,MODM ◦CSC[CF,CF],FN

(A) , (40)

and Lemma 8.3 directly yields

AdvdistA,MODM ◦AN ,FN
(A) ≤ q · δ(MODM ) ≤ q · M

N
. (41)

To upper bound the two advantages in Equation (39), recall that adversary Ah makes at most q
queries to its New oracle and at most q queries to its Fn oracle. Adversary Ag makes u queries
to its New oracle and at most q queries to its Fn oracle. The running time of both constructed
adversaries is about that of A plus the time for q` computations of CF, which in particular means
that both adversaries make qf + q · ` queries to Prim. Therefore, by Corollary 8.4,

AdvprfCF,MODM ,FN
(Ah)

≤ q2

2N
+
qM

N
+

4q · (qf + q · `)
N

+
6Mc lnM · (qf + q · `)

N
+ exp(−c) . (42)

as well as

AdvprfCF,MODN ,FN
(Ag) ≤ u2

2N
+
u · (q`+ qf)

N
. (43)

The theorem statement then follow by combining all of the above equations.

9 Comparisons

We compare the quantitative bounds obtained for augmented cascades above with those from NMAC
and sponges. In particular, we show that the security of augmented cascades is comparable to that
of NMAC when its output is truncated, and superior to that of keyed sponges.

Comparison with NMAC. We start with concrete bounds for the ideal compression function
security of NMAC, for both cases where the output is processed by TRUNCr or MODm. In particular,
for a compression function f : K ×X → K, we consider the construction NMAC such that

NMAC[f]((K in,Kout),X) = f(Kout,CSC[f, f](K in,X) ‖ pad) .

We are interested in the concrete security of NMAC when f is replaced by CF using the ideal
compression function F as in Section 7. To the best of our knowledge, the following concrete
bounds for NMAC have not appeared anywhere, but the statement is somewhat folklore in the
single-user case. The proof follows by a fairly standard argument, as sketched below.

Theorem 9.1 (NMAC with r-bit truncation) For any r ≤ n, and all adversaries A making q
queries to Fn consisting of vectors from X ∗ of length at most `, qf queries to Prim, and u queries
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to New,

AdvprfTRUNCr◦NMAC[CF],Fc
(A) ≤ u2

2c+1
+

2`2q2

2c
+

2q`qf
2c

+
2uqf
2c

.

Theorem 9.2 (NMAC with modular truncation) For any M ≤ N , and all adversaries A
making q queries to Fn consisting of vectors from X ∗ of length at most `, qf queries to Prim, and
u queries to New,

AdvprfMODM◦NMAC[CF],FN
(A) ≤ q · M

N
+

u2

2N
+

2`2q2

N
+

2q`qf
N

+
2uqf
2c

.

Proof sketch. Let us look at Theorem 9.1 for the case r = n first.

Each of the at most q queries (ui,Xi) to Fn makes internally up to ` + 1 queries to Fc. A
pair (ui,Xi) and (uj ,Xj) of such Fn queries may be forced to invoke Fc on some common inputs
trivially, in particular when these two queries are for (1) the same user, and (2) the corresponding
messages share a common prefix (this includes the case that Xi is itself a prefix of Xj , or vice
versa).

A sufficient condition for the outputs of these Fn queries to be random looking is that every
internal query (K,X) to Fc is unique, i.e., no other Fn or Prim query results in invoking Fc on
the same input (K,X). The only exception are those unavoidable collisions as above, i.e., the same
query (K,X) to Fc is made when processing another query which needs to evaluate some common
queries. It is not hard to show that the probability that this condition is not true is at most

u2

2c+1
+

2`2q2

2c
+

2q`qf
2c

+
2uqf
2c

,

which is also an upper bound on the advantage. This also implies the general case for r ≤ n,
as truncation does not increase the adversary’s advantage. As for modular reduction, one needs
to additionally take into account the additional bias of the outputs, which results in an additive
q · δ(MODM ) = q · MN term.

As a side remark, we note that the bound is somewhat generous and not tight, yet improving
upon these bounds remains an open problem. A recent paper by Gaži, Pietrzak, and Tessaro [21]
improves this bound by considering a modification of NMAC using block whitening, but it is open
to verify whether their bound holds for NMAC, too. Still, we note that the main issue with respect
to tightness is the growth of the bound with respect to the message length. For short message
length, the above bound is essentially tight.

NMAC vs Augmented Cascades. We note that the bounds of Theorem 8.2 and Theorem 9.1
are similar in many respects, showing that the concrete security for both constructions is compa-
rable. The main difference between the two constructions is the presence of additional terms with
denominator 2c−r in Theorem 8.2 which are not present in Theorem 9.1. These have order q`2/2c−r

and qf`/2
c−r (ignoring small multiplicative factors), respectively. The crucial point here is that the

dependencies on q and qf are linear. For example, in the typical case that c = 2r (e.g., r = 256),
for small ` (which is common in many applications) these terms become large roughly when q and
qf approach 2c/2. In this regime, NMAC is similarly insecure.

Sponges vs Augmented Cascades. In contrast to NMAC, the situation is inverted with respect
to keyed sponges, which also use truncation as a mean to prevent extension attacks and achieve prf
security. Indeed, GPT [20] show that when keyed sponges use a c-bit state and output r bits of this
state as their output, then there exist attacks with advantage q2/2c−r and qqf/2

c−r, even in the
single-user case. For c = 2r = 512, for example, keyed sponges can be distinguished with q = 2128
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queries to Fn. In contrast, no terms of such order appear in Theorem 8.2, thus showing that the
security of augmented cascades is superior to that of sponges. Needless to say this is not a problem
for practical instantiations (like those based on SHA-3), where c − r is generally at least 512, but
it shows theoretical gains of augmented cascades over sponges when setting equal parameters.

10 Security of the Davies-Meyer construction

One might object that practical compression functions are not un-structured enough to be treated as
random because they are built from blockciphers via the Davies-Meyer construction. Accordingly,
we study the mu PRF security under leakage of the Davies-Meyer construction with an ideal
blockcipher and show that bounds of the quality we have seen for a random compression function
continue to hold. Of course, one could extend this and prove similar bounds for other compression
functions, like the PGV [31] ones.

Recall that given a block cipher E : K ×D → D, the Davies-Meyer (DM) construction outputs
EX(H) ⊕ H for chaining value H ∈ D and message block X ∈ K. Formally, we can model the
(keyed) Davies-Meyer construction as an oracle function family DM where DM.K = D, DM.D = K,
and DM.R = D. Its oracle space consist of all oracles allowing both forward and backward access
to a block cipher, which is the same as that of the ideal-cipher primitive (which we denote as IC)
defined above.

Theorem 10.1 (prf security of Davies-Meyer) Let Out: D → Out.R. Then, for all m ≥ 2,
and all adversaries B making u queries to New, qFn queries to Fn, and qf queries to Prim,

AdvprfDM,Out,IC(B) ≤ u(u+ 2qFn)

2 |D|
+ Pcoll

Out(u,m) +
(m− 1) · qf
ρ(Out)

.

Proof of Theorem 10.1: The proof is similar to that of Theorem 7.2, and we assume that the
reader is familiar with its proof, as this will allow for somewhat more compact explanations here.
The first step of the proof involves two games, G0 and G1, given in Fig. 7.

Game G1 (where the boxed statements are executed) is semantically equivalent to PRFDM,Out,IC

with challenge bit c = 1, except that we have modified the concrete syntax of the oracles. In
particular, the underlying ideal cipher IC is implemented via lazy sampling, and the table entries
TPrim[K,X,+] and TPrim[K,Y,−] contain the values E(K,X) and E−1(K,Y ), respectively, for the
sampled block cipher E, if it has been queried via a Prim query. (Note that the game always set
TPrim[K,X,+] and TPrim[K,Y,−] jointly in a consistent way.) Otherwise, TPrim is ⊥ on all entries
which have not been set so far.

Also, the game keeps another table TFn such that TFn[i, x] ⊕ Ki is the value returned upon a
query Fn(i, x). Note that the game enforces that any point in time, if TFn[i, x] and TPrim[x,Ki,+]
are both set (i.e., they are not equal ⊥), then we also have TFn[i, x] = TPrim[x,Ki,+] and that,
moreover, if Ki = Kj , then TFn[i, x] = TFn[j, x] whenever both are not ⊥. Finally, whenever any of
these entries is set for the first time, then it is set to a fresh random value from D constrained on
not violating the permutation constraint. This guarantees that the combined behavior of the Fn
and the Prim oracles are the same as in PRFDM,Out,IC for the case c = 1. Thus,

Pr [G1 ] = Pr[ PRFDM,Out,IC | c = 1 ] .

It is easier to see that in game G0, in contrast, the Fn oracles always return random values (the
fact that Ki is xored to the TFn[i, x] does not modify the distribution), and Prim behaves like an
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Game G0, G1

v ← 0

c′←$ BNew,Fn,f

Return (c′ = 1)

Prim(x, k,+)

if TPrim[x, k,+] = ⊥ then

TPrim[x, k,+]←$D \ TPrim[x, ·,+].R

If ∃j : k = Kj and TFn[j, x] 6= ⊥ then

bad1 ← true

TPrim[x, k,+]← Tf[j, x]

TPrim[x, TPrim[x, k,+],−]← k

Return TPrim[x, k,+]

Prim(x, z,−)

if TPrim[x, z,−] = ⊥ then

TPrim[x, z,−]←$D \ TPrim[x, ·,−].R

If ∃j : TFn[j, x] = z then

bad1 ← true

TPrim[x, k,+]← Kj

TPrim[x, TPrim[x, z,−],+]← z

Return TPrim[k, z,−]

New()

v ← v + 1 ; Kv←$K
Return Out(Kv)

Fn(i, x)

If TFn[i, x] = ⊥ then

TFn[i, x]←$D
If TPrim[x,Ki,+] 6= ⊥ then

bad1 ← true

TFn[i, x]← TPrim[x,Ki,+]

else if ∃j 6= i: Kj = Ki and TFn[j, x] 6= ⊥ then

bad2 ← true

TFn[i, x]← TFn[j, x]

else if ∃j 6= i: TFn[j, x] = TFn[i, x] then

bad3 ← true

TFn[i, x]←$D \ TFn[·, x].R

Return TFn[i, x]⊕Ki

Figure 7: Games G0 and G1 in the proof of Theorem 10.1. The boxed statements are only
executed in Game G1, but not in Game G0. Here, TPrim[x, ·,+].R is the set of all values z such
that there exists a k with TFn[x, k,+] = z. The notations TPrim[x, ·,−].R and TFn[·, x].R are defined
analogously.

independent ideal cipher. Thus, since we are checking whether c′ equals 1, rather than c, we have

Pr [G0 ] = 1− Pr[ PRFDM,Out,IC | c = 0 ] .

Consequently,

AdvprfDM,Out,IC(B) = Pr [ G1 ]− Pr [ G0 ] .

Both games G0 and G1 also include three flags bad1, bad2, and bad3, initially false, which can be
set to true when specific events occur. It is immediate to see that G0 and G1 are identical until
bad1 ∨ bad2 ∨ bad3 is true. Therefore, by the fundamental lemma of game playing [6],

AdvprfDM,Out,IC(B) = Pr [ G1 ]− Pr [ G0 ]

≤ Pr [ G0 sets bad1 ] + Pr [ G0 sets bad2 ] + Pr [ G0 sets bad3 ] .
(44)
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As in the proof of Theorem 7.2,

Pr [ G0 sets bad2 ] ≤ u2

2 · |D|
. (45)

As for bad3, note that for this to happens, one of the random values generated when answering an
Fn query for (i, x) must hit a previously generated value for (j, x), for which there are at most u
candidates. Thus, by the union bound,

Pr [ G0 sets bad3 ] ≤ qFn · u
|D|

. (46)

We are left with the problem of upper bounding Pr [ G0 sets bad1 ]. We note however that this part
of the proof can be carried out exactly as in the proof of Theorem 7.2, and results in the identical
bound. It is thus omitted.
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A Derandomizing Schnorr signatures

This appendix reviews how a variable-input-length MAC, intended to be a PRF, is used in modern
variants of the Schnorr signature system, such as Ed25519.

Schnorr signatures. The original Schnorr signature system [33] works as follows.

There is a standard group G of “large” prime order `; a standard generator B of G; and
a standard hash function H. We use additive notation for the group G: additive notation is
traditional for elliptic curves.

Key generation computes a←$ {0, 1, . . . , `− 1} and A = aB. It returns a as the secret key and
A as the public key.

Signing, given as input a message M , computes r←$ {0, 1, . . . , `− 1}; R = rB; h = H(R,M);
and S = r + ha. It returns the pair (h, S) as a signature.

Verification, given as input a public key A, a message M , and an alleged signature (h, S),
computes R = SB − hA and checks whether H(R,M) = h.

Randomness in signing. We emphasize two aspects of the original Schnorr signing process.
First, signing is nondeterministic. Second, the random number r used in signing is chosen from the
uniform distribution on {0, 1, . . . , `− 1}.

The uniformity of r here is important for security. For example, a modified signature scheme
that instead chooses r from {0, 1, . . . , d3`/4e − 1} allows an efficient attack (a polynomial-time
attack under suitable polynomial-time hypotheses regarding G etc.), while the original signature
scheme is believed to be secure for common choices of G,B,H.

It is not entirely clear that this requirement of uniformity can be credited to Schnorr. What
Schnorr’s paper actually said was that r is a “random number”; this could be interpreted as
“uniform random number”, but could also be interpreted as allowing some non-uniformity. The
attack mentioned above was not known at the time of Schnorr’s paper. ElGamal had mentioned,
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in the first paper [18] on discrete-log signature systems, that r must be kept secret and must not
be repeated, but this is not as strong as requiring r to be uniform.

The attack strategy was announced (but not published as a paper) by Bleichenbacher in 2000.
It has the same basic idea as the Blum–Kalai–Wasserman attack [10] against the “LPN” problem;
it was later extended to include “lattice” attack ideas, similar to extensions of BKW attacking
“LWE”. The details of Bleichenbacher’s attack, and the exact performance of the attack as a
function of the r range, are not easy to summarize concisely; we recommend the recent paper [29]
for readers interested in more information.

For comparison, a similarly mild deviation from uniformity for the long-term secret key a has
much less impact. The proof is easy: signature security has a random self-reduction across the
space of secret keys, so an attack with probability p against a key interval of length d3`/4e would
imply an attack with probability at least 3p/4 against the full key interval.

Critiques of randomness in signing. In theory, there is no problem with requiring a uniform
random element of {0, 1, . . . , `− 1} as part of signature generation. In practice, however, this
requirement has repeatedly drawn objections as something easy to implement insecurely, expensive
to implement securely, and hard to test. We give a few examples of these objections.

Rivest [32], commenting in 1992 on NIST’s ElGamal-based “DSA” proposal, emphasized the
importance of unpredictability of r, and wrote that the DSA proposal permits “totally insecure
choices by the user” regarding the generation of randomness in signing. “The poor user is given
enough rope with which to hang himself—something a standard should not do,” Rivest wrote.

DSA did not specify r as a uniform random element of {0, 1, . . . , `− 1}. Instead it specified r as a
uniform random element of

{
0, 1, . . . , 2b − 1

}
, assuming 2b−1 ≤ ` < 2b. Note that rB = (r mod `)B,

so r is equivalent to r mod `, a non-uniform random element of {0, 1, . . . , `− 1}. The Bleichenbacher
attack mentioned above exploited this non-uniformity to break most variants of ElGamal signatures,
including DSA, in polynomial time, except for a 1/polynomial fraction of choices of ` (namely,
values of ` very close to 2b). This prompted an emergency update of the DSA standard to instead
choose r as a uniform random element of

{
0, 1, . . . , 22b − 1

}
; then the distribution of r mod ` is

indistinguishable from uniform.

NIST suggested two specific constructions of “pseudorandom integer generators” producing
b-bit random numbers (for b = 160). These generators maintain a state, secretly and randomly
initialized, and then deterministically map the current state to an output and a new state. Vaudenay
[35, Section 6] wrote that “the system is vulnerable against many kinds of replay attacks”, such as
having a “different message” signed by a “clone” of a signer or by the same signer after a “restore
[of the state] from backup”. Vaudenay also pointed out a related-key attack against one of NIST’s
constructions, although this does not obviously break pseudorandomness.

“Bushing”, Cantero, Boessenkool, and Peter announced in 2010 [12] that Sony was repeating
a single r for signing PlayStation 3 code, rather than generating a new r for each signature. This
failure immediately revealed Sony’s secret key, a spectacular illustration of the implementation
pitfalls involved in generating r randomly.

Using a PRF to derandomize signing. The Ed25519 paper credits Barwood [2], Wigley [36],
Naccache–M’Räıhi–Levy-dit-Vehel [30], and M’Räıhi–Naccache–Pointcheval–Vaudenay [28] with
the “idea of generating random signatures in a secretly deterministic way, in particular obtain-
ing pseudorandomness by hashing a long-term secret key together with the input message”. We
divide this idea into three components, and review the impact of each component upon security.

First, it is obviously not secret that this idea caches signatures. What we mean by caching
is that the legitimate signer, having generated a signature on a message M , always returns the
same signature when subsequently asked to sign M . Any signing algorithm automatically caches
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signatures if the signature system has unique signatures; but Schnorr signatures are not unique.
Any signing algorithm for any signature system can be transformed into a stateful signing algo-
rithm that provides cached signatures: “simply” maintain as state an associative array mapping all
previously signed messages to their signatures, and use the array to generate signatures whenever
possible, falling back to the original signing algorithm only for previously unsigned messages. This
transformation gains security for some signature systems, as pointed out by Katz and Wang [23];
it cannot lose security. It is tantamount to prohibiting attacks that ask for multiple signatures on
the same message.

Second, this cached signer is indistinguishable from a secretly deterministic signer, under suit-
able PRF hypotheses. Specifically, assume that the original signing algorithm is stateless and uses
a standard number c of coin flips (e.g., c = b for the original broken version of DSA, or c = 2b for
the repaired version of DSA). Transform the signing algorithm (and the key-generation algorithm)
by replacing these c coin flips with a c-bit MAC of the message M to be signed, where the secret
MAC key is generated independently of a. (Ed25519 actually uses a key-derivation function here,
starting from one 256-bit key; we avoid discussing key-derivation security.) The attacker’s chance
of distinguishing this signature system from the original system is bounded by the attacker’s chance
of breaking the PRF security of the MAC; consequently, if the MAC is a PRF and the original
system is secure then the modified system is also secure.

Because the new signing algorithm is stateless and deterministic, cloning of signers is no longer a
problem, and testing alleged implementations of the algorithm becomes relatively easy. The desired
security properties of r are guaranteed by security of the MAC, rather than relying on proper use of
an external random-number generator. Of course, it is critical for the specified MAC to be secure,
but this security is now something subject to public review.

Third, because Schnorr signatures already use a hash function, it is convenient (for code size,
hardware size, etc.) to build this MAC from the same hash function. Ed25519-SHA-512 defines a
prime ` slightly larger than 2252, defines H as SHA-512, and defines r as H(k,M), where k is a
256-bit key; i.e., the MAC in Ed25519-SHA-512 maps a message M to H(k,M) mod `. This is an
example of AMAC; the PRF security of AMAC is analyzed in this paper.

B Comparing speed of different hash-based MACs

This appendix quantifies the speed advantage of AMAC over HMAC for short messages.

Context. We note at the outset that applications concerned purely with hashing speed should
use neither AMAC nor HMAC: non-hash-based MACs are faster. However, non-hash-based MACs
cost extra code size, while hash-based MACs have the advantage of reusing hash implementations.
Standards use HMAC rather than NMAC for a similar reason: an HMAC implementation can treat
the entire hash function as a black box.

SHA-512 speed for long messages. For concreteness we focus on the common Intel Haswell
line of CPUs, and we focus on SHA-512 as the underlying hash function. Despite its very high target
security level, SHA-512 is the fastest standard hash function on Haswell, running at 8 cycles/byte.
For comparison, SHA3-256 uses nearly 9 cycles/byte, SHA-256 uses more than 11 cycles/byte, and
SHA3-512 uses more than 16 cycles/byte.

The basic reason that SHA-512 outperforms SHA-256 here is that SHA-512 compression handles
128 message bytes, while SHA-256 compression handles only 64 message bytes. SHA-512 compres-
sion has only 25% more operations than SHA-256 compression; each operation inside SHA-512
compression handles 64 bits rather than 32 bits, and most of these 64-bit operations run as quickly
as 32-bit operations on these CPUs.
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SHA-512 speed for short messages. An “8 cycles/byte” statement for SHA-512 is obtained
from observing that, e.g., hashing a 2048-byte message takes 8 · 1024 cycles more than hashing
a 1024-byte message. This underestimates the cost of hashing short messages. Specifically, an
n-byte message actually produces d(n+ 17)/128e compression-function calls. Benchmarks show
a constant per-hash-call overhead of approximately 256 cycles, for a total cost of approximately
256 + 1024 d(n+ 17)/128e cycles.

Speed of SHA-512-based MACs. Both AMAC and HMAC take the same 8 cycles/byte for long
messages. We now extrapolate from the observed speed of SHA-512 to predict the AMAC overhead
and the HMAC overhead for short messages.

The definition of AMAC includes a computation of Out: e.g., the specific Out in Appendix A
maps a 512-bit integer h to h mod ` for a standard prime ` ≈ 2252. We have checked that existing
software for this (sc25519_barrett in ed25519/amd64-51) takes only 100 cycles. More to the
point, if HMAC-SHA-512 were used in Appendix A then one would also want to reduce its 512-bit
output modulo `. In other words, the Out overhead exists anyway; AMAC takes advantage of this
by integrating Out into the MAC definition. From now on we ignore the cost of Out.

The most obvious advantage of AMAC over HMAC is that it hashes fewer bytes of data. If the
key has 32 bytes and the message has n bytes then AMAC hashes n+32 bytes, taking approximately
256 + 1024 d(n+ 49)/128e cycles; e.g., approximately 1280 cycles for n ≤ 79, and approximately
9472 cycles for n = 1024. For HMAC there are two hashing layers:

• The first hashing layer expands the key to a 128-byte block and hashes this block together with
the message. If the first compression call is precomputed then this hashes n bytes, taking ap-
proximately 256+1024 d(n+ 17)/128e cycles. If the hash function is instead called as a black
box then this instead hashes n+ 128 bytes, taking approximately 1280 + 1024 d(n+ 17)/128e
cycles.

• The second hashing layer expands the key to another 128-byte block and hashes this block
together with the 64-byte output of the first hashing layer. With precomputation this hashes
64 bytes, taking approximately 1280 cycles. Without precomputation this hashes 192 bytes,
taking approximately 2304 cycles.

Overall HMAC takes approximately 2560 + 1024 d(n+ 17)/128e cycles if 128 bytes of compression
outputs are precomputed, and 4608 + 1024 d(n+ 17)/128e cycles if not; e.g., for n ≤ 111, approx-
imately 3584 cycles with precomputation, or 5632 cycles without; for n = 1024, approximately
11776 cycles with precomputation, or 13824 cycles without.

In other words: The time for AMAC is approximately the time for 0.25 + d(n+ 49)/128e
compression-function calls. The time for HMAC is approximately the time for 2.5 + d(n+ 17)/128e
compression-function calls with precomputation, or 4.5+d(n+ 17)/128e compression-function calls
without.
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