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Abstract. The Micro Edition is of the Java 2 platform (J2ME) provides
an application environment specifically designed to address the demands
of embedded devices like cell phones, PDAs or set-top boxes. Since the
J2ME platform does not include a crypto package, developers are forced
to use third-party classes or to implement all cryptographic primitives
from scratch. However, most existing implementations of elliptic curve
(EC) cryptography for J2ME do not perform well on resource-restricted
devices, in most cases due to poor efficiency of the underlying arithmetic
operations. In this paper we present an optimized Java implementation
of EC scalar multiplication that combines efficient finite-field arithmetic
with efficient group arithmetic. More precisely, our implementation uses
a pseudo-Mersenne (PM) prime field for fast modular reduction and a
Gallant-Lambert-Vanstone (GLV) curve with an efficiently computable
endomorphism to speed up the scalar multiplication with random base
points. Our experimental results show that a conventional mobile phone
without Java acceleration, such as the Nokia 6610, is capable to execute
a 174-bit scalar multiplication in about 400 msec.

1 Introduction

The Java programming language, introduced by Sun Microsystems in 1995, was
originally designed to simplify the software engineering for consumer electronics
[12, 2]. Many characteristics of the Java language stem from the focus towards
the consumer marketplace with its vast number of different hardware platforms
and (largely incompatible) operating systems. Unlike C or C++, Java is generic
and platform-independent because it is an interpreted rather than a compiled
language. That is, when Java source code is compiled, it is not compiled into
architecture-dependent “machine” instructions, but into an architecture-neutral
intermediate representation consisting of generic instructions (called bytecode)
to be executed by a Java Virtual Machine (JVM) [7]. The JVM can be seen as
a program running on the host processor that interprets generic Java bytecodes
and translates them to the processor’s native machine instructions as they are
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executed. A program written in Java and compiled to generic bytecode will, in
principle, run unchanged on any platform for which a JVM exists, regardless
of what operating system or processor lies underneath. This “Write Once, Run
Everywhere” capability has made Java the de-facto standard language for the
development of cross-platform applications in the embedded domain.

The Java 2 platform is available in three different editions, each aimed at a
specific area of application: J2EE (Java 2 Enterprise Edition) for developing and
deploying large-scale server applications, J2SE (Java 2 Standard Edition) for the
implementation of Java programs that can be executed on commodity comput-
ers, as well as J2ME (Java 2 Micro Edition) for creating Java applications to be
run on various kinds of mobile and embedded devices3. These platform editions
differ in terms of size (and complexity) of the class library and the capabilities
of the corresponding JVM. J2ME is, roughly speaking, a stripped-down version
of J2SE that contains only a small subset of the standard Java class library, in
addition to J2ME-specific classes [22]. Java applications for mobile phones are
called midlets and can be run on devices on which at least 192 kB of memory is
available to the J2ME platform. Since the “conventional” interpretation of Java
bytecode on such resource-restricted devices is rather slow, different techniques
for speeding up the execution of midlets have emerged. For example, some JVMs
feature a Just-In-Time (JIT) compiler that translates frequently-executed code
segments (“hot spots”) into native machine code at run-time (i.e. during execu-
tion of the midlet) [8]. Another approach is the provision of dedicated hardware
support for the JVM through architectural extensions that allow the underlying
processor to directly execute Java bytecode (e.g. ARM’s Jazelle [1]).

Since J2ME is, roughly speaking, a stripped-down version of J2SE for mobile
devices with restricted resources, it lacks many of the classes found in the class
library of the larger editions. While the Java Cryptography Architecture (JCA)
and Java Cryptography Extension (JCE) are included in J2SE/J2EE, they are
absent in J2ME for both technical and legal reasons [22]. Therefore, developers
of J2ME applications are forced to use third-party classes or to implement the
required cryptographic operations from scratch. The latter is a tedious task, es-
pecially for Elliptic Curve (EC) cryptography, since the J2ME class library does
not even contain the J2SE BigInteger class for multi-precision arithmetic. On
the other hand, most existing EC implementations for J2ME (e.g. the Bouncy
Castle Lightweight API [21] or the SIC JCE-ME [20]) do not perform very well
since they aim to provide high flexibility (i.e. support of many implementation
options) rather than high speed. There exist only a few performance-optimized
Java implementations of EC cryptography, which is surprising given that more
than three billion J2ME-enabled mobile phones have shipped to date4. Also the
scientific literature on optimizing EC cryptosystems for the J2ME platform is

3 In June 2005, Sun Microsystems renamed J2EE to Java EE, J2SE to Java SE, and
J2ME to Java ME. However, since the old names are still very common and widely
used today, we decided to stick with the term “J2ME” in this paper.

4 http://www.java.com/en/about, http://java.sun.com/products/javadevice
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sparse compared to the vast number of papers presenting EC implementations
written in C and/or Assembly language.

In the following sections, we describe our efforts to develop a performance-
optimized Java implementation of EC scalar multiplication for J2ME-enabled
devices. The focus of our work was to achieve fast execution time, low memory
(i.e. RAM) requirements, and small bytecode size. After a thorough evaluation
of different implementation options, we decided to use a pseudo-Mersenne (PM)
prime field [9] over which a Gallant-Lambert-Vanstone (GLV) curve with good
cryptographic properties can be defined [11, 14]. This particular choice of type
of field and type of curve allows for combining fast modular arithmetic (due to
the special form of the prime) with fast EC point arithmetic (thanks to an effi-
ciently computable endomorphism). To exemplify our approach, we present an
optimized Java implementation of EC scalar multiplication on the GLV curve
y2 = x3 − 7 over the PM prime field Fp with p = 2174 − 3. The group of points
on this curve has prime cardinality and offers a security level of 87 bits5. When
using mixed Jacobian-affine coordinates, a point addition on this curve requires
eight multiplications (8M) and three squarings (3S) in the underlying field (see
[14] for the exact formula). The double of a point given in Jacobian coordinates
can be computed using only 3M and 4S since the curve parameter a is 0. A full
scalar multiplication of an arbitrary point P by an n-bit integer k represented
in Non-Adjacent Form (NAF) [14] takes 5.6̇n multiplications and 5n squarings
on average, i.e. 5.6̇M+ 5S per bit. However, the cost of a scalar multiplication
on our GLV curve can be significantly reduced by exploiting the efficiently-com-
putable endomorphism described in [11, Ex. 4]. This endomorphism allows one
to accomplish an n-bit scalar multiplication k · P through a computation of the
form k1 · P + k2 ·Q, whereby k1, k2 have only half the bit-length of k. The two
half-length scalar multiplications can be performed simultaneously and require
n/2 point doublings and roughly n/4 additions when k1, k2 are represented in
Joint Sparse Form (JSF) [19]. Thus, the total cost of computing k · P amounts
to 3.5n multiplications and 2.75n squarings in Fp, i.e. 3.5M+ 2.75S per bit.

2 Prime-Field Arithmetic in Java

Our optimized Java software for EC scalar multiplication uses the prime field
Fp of order p = 2174 − 3 as underlying algebraic structure. In the following, we
explain the rationale behind choosing this particular field and elaborate on the
efficient implementation of multiple-precision arithmetic in Java. Most previous
software implementations of EC cryptography were written in C (or C++) and
contain hand-optimized Assembly code for the performance-critical arithmetic
operations. However, even though C/C++ and Java have a similar syntax, there

5 More precisely, the cardinality of the group of Fp-rational points on said curve is
a 174-bit prime. A well-implemented EC cryptosystem using this group provides a
security level similar to that of a 87-bit secret-key cryptosystem. Consequently, the
security level of our EC implementation is well above the “smallest general-purpose
level” of 80 bits as recommended by ECRYPT [18, Table 7.4].
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exist also some differences which impact the implementation and optimization
of multiple-precision arithmetic.

2.1 Selection of Prime Field

A major aspect when implementing EC cryptography is to find an appropriate
trade-off between performance and security; this is particularly important for a
Java implementation to be run on J2ME-enabled mobile phones or PDAs since
(1) such devices are constrained in processing power and (2) the interpretation
of platform-independent byte code is much slower than the execution of native
machine code. The ECRYPT II report on algorithms and keysizes considers 80
bits as the smallest level of security that “protects against the most reasonable
and threatening attack (key search) scenarios” [18, p. 32]. An 80-bit symmetric
key can, under certain assumptions, be seen “equivalent” to an EC key of size
160 bits [18, Table 7.2]. In order to support 160-bit keys, an EC cryptosystem
must be designed on basis of an EC group of order roughly 2160, which, due to
the Hasse-Weil theorem [5, page 278], requires an underlying field of (at least)
160 bits. However, GLV curves have a special structure that could reduce the
time required to compute EC discrete logarithms by “a small factor” [11, Sec-
tion 5], similar to Koblitz curves [23]. To account for this structure, we have to
slightly increase the order of the EC group and, consequently, the order of the
underlying prime field, e.g. to around 170 bits.

A second criterion to consider when choosing a prime field Fp for EC cryp-
tography is the is the efficiency of the arithmetic operations in this field, i.e. the
execution time of the reduction modulo p. Mersenne primes are primes of the
form p = 2k − 1 and allow for particularly fast implementation of the reduction
operation. A 2k-bit number x can be reduced modulo p = 2k − 1 by adding the
higher half of x (i.e. the k most significant bits of x) to the lower half, followed
by conditional subtraction(s) of p to obtain the least non-negative residue. Con-
sequently, the reduction costs merely an addition of two k-bit numbers modulo
p. Unfortunately, primes of the form 2k − 1 are very rare; none of the Mersenne
numbers between 2127 − 1 and 2521 − 1 is prime [5]. The second-best option in
terms of efficiency of the modular reduction are pseudo-Mersenne (PM) primes
[9], i.e. primes that can be written as p = 2k − c where c is “small” compared
to 2k. In the ideal case c = 3, which allows a reduction operation to be carried
out through three k-bit additions modulo p. A prime of the form 2k − 3 with a
length of roughly 170 bits exists, namely p = 2174 − 3.

A third requirement on the prime p is the suitability to define a GLV curve
with “good” cryptographic properties over the field Fp. GLV curves of the form
y2 = x3 + ax require the underlying prime field Fp to contain an element of or-
der 4 (which is the case if p ≡ 1 mod 4), whereas GLV curves defined via the
equation y2 = x3 + b need a field Fp with p ≡ 1 mod 3 [11]. Furthermore, the
curve itself (or, more precisely, the group of points on the curve) has to satisfy
certain properties, e.g. it has to contain a large subgroup of prime order. The
GLV curve y2 = x3 − 7 over the 174-bit prime field specified above fulfills this
property and also meets a number of other security criteria as we will show in
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more detail in Subsection 3.1. Taking all these considerations into account, we
decided to use the prime field Fp with p = 2174 − 3 for our Java implementation
of EC scalar multiplication.

Representation of Field Elements. State-of-the-art cryptographic libraries
represent the elements of a large prime field (i.e. long integers) as arrays of sin-
gle-precision words, e.g. arrays of type unsigned int. Most high-performance
implementations written in C or Assembly language match the number of bits
per single-precision word to the word-size of the target processor so as to take
advantage of the full length of the datapath. Also the J2SE BigInteger class
follows a similar idea; it uses an int-array as internal data structure and stores
32 bits in each element of the array. However, this approach yields sub-optimal
results when the size (i.e. bitlength) of the prime field is constant and known in
advance. These inefficiencies, which will be discussed in more detail below, are
due to the fact that Java is a platform-independent programming language and
that it does not support unsigned data types.

We conducted experiments with different representations of the Fp-elements
and found that splitting the 174-bit integers into six 29-bit words allows one to
achieve the best performance. Our implementation does not store these words
in an array but in six independent variables of type int, which are declared as
private within the Java class that performs the Fp-arithmetic so that they are
not visible (and accessible) from “outside” [2]. Avoiding the use of an array is
possible and viable in our case since the length of the operands is fixed and we
implemented all arithmetic operations (except inversion) in an unrolled fashion
without executing any conditional statements to achieve a maximum of perfor-
mance and resistance against side-channel attacks. Formally, our implementation
of Fp-arithmetic uses a number representation radix of 229, which means that
any integer a ∈ Fp can be written as

a =
5∑

i=0

ai · 229i with 0 ≤ ai ≤ 229 − 1. (1)

However, similar to the work of Bernstein [4], we allow (i.e. tolerate) individual
words ai slightly larger than the radix of 229 for reasons of both efficiency and
security. Furthermore, our implementation allows incompletely reduced results
in the sense that an arithmetic operation does not necessarily return the least
non-negative residue modulo p, but the result is always in the range [0, 2p].

2.2 Efficient Arithmetic Modulo p = 2174 − 3

In the following, we describe our Java implementation of fast arithmetic in the
prime field Fp, i.e. addition and multiplication modulo p = 2174 − 3. We will
in particular explain the efficiency of our 29-bit-per-word representation of field
elements versus a straightforward representation using 32-bit words.
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Algorithm 1. Addition in Fp

Input: Two 174-bit integers, A = (a5, a4, a3, a2, a1, a0) and B = (b5, b4, b3, b2, b1, b0),
represented by six 29-bit words.

Output: Modular sum Z = A + B mod (2174 − 3) = (z5, z4, z3, z2, z1, z0).
1: s← 0
2: for i from 0 by 1 to 5 do
3: s← ai + bi + (s� 29)
4: zi ← s & 0x1fffffff
5: end for
6: z0 ← z0 + 3 · (s� 29)
7: return Z = (z5, z4, z3, z2, z1, z0)

Addition and Subtraction. Most high-speed cryptographic libraries written
in C (or C++) use small Assembly-code fragments to implement performance-
critical operations such as multiple-precision addition and multiplication. The
former operation can be realized in a (relatively) simple yet efficient way if the
underlying processor provides an add-with-carry instruction. Even though also
Java features a mechanism to include Assembly code, namely the Java Native
Interface (JNI), we did not follow this approach because it contradicts the idea
of platform-independence. Furthermore, one has to take into account that some
processors (e.g. MIPS, Alpha) do not possess an add-with-carry instruction. To
perform multi-precision addition on these processors, the add-with-carry has to
be emulated, e.g. by first executing the ordinary add instruction, followed by a
comparison of the result with one of the two operands. If the obtained sum is
smaller than either of the operands, then an overflow occurred, i.e. the addition
produced a carry, which must be processed properly when adding the two next-
higher words. Consequently, from the second word-pair onwards, the addition
becomes more complex and time-consuming since an “incoming” carry must be
considered.

High-level language implementations of multi-precision addition can follow a
very similar approach as described above if the long integers are represented in
such a way that the number of bits per single-precision word corresponds to the
word-size of the underlying processor (e.g. 32 bits per word on a 32-bit proces-
sor). However, the performance of multi-precision addition in C/C++ or Java
(or in Assembly language on processors without add-with-carry instruction) can
be greatly improved by reducing the number of bits per word, e.g. to 31 when
working on a 32-bit machine. In this case, the sum of two single-precision words
is at most 32 bits long and, hence, fits into a 32-bit word, i.e. an overflow can
not occur. The carry bit is stored in the MSB of the result-word and accessible
through a right-shift by 31 bit positions. This approach was originally proposed
roughly 30 years ago by Hennessy et al [15, Section 2.3.3] to demonstrate the
ability of the MIPS architecture (and other architectures lacking a carry flag) to
efficiently perform multi-precision addition.

Algorithm 1 shows our Java implementation of addition in Fp; we follow, in
principle, the approach of Hennessy et al [15] described above, except that we
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represent the long integers using 29-bit words. The variable s, which is of type
int in our implementation, holds the sum of two 29-bit operand-words plus the
carry bit. Even though the sum can have a length of up to 30 bits, only the 29
LSBs of s are actually assigned to the result-word zi. The three MSBs of s are
masked out via a logical AND operation using a mask value of 0x1fffffff (see
line 4 of Algorithm 1). Before adding the next pair of operand-words, the sum
s is shifted 29 bit positions to the right to ensure the correct alignment between
ai, bi, and the carry bit. In fact, the shift operation yields the carry bit from the
previous addition of operand words, i.e. the value of the expression (s � 29) in
line 3 of Algorithm 1 is either 0 or 1. Note, however, that our implementation
does not strictly adhere to the pseudo-code shown in Algorithm 1; we unrolled
the loop to maximize performance.

The sum of two 174-bit integers can be up to 175 bits long, which means a
reduction modulo p = 2174 − 3 may be necessary to obtain a final result within
the range of [0, p− 1]. Reducing the sum with respect to the prime p calls for a
comparison between the sum and p, followed by a subtraction of p if the sum is
greater than or equal to p. The former operation, when realized in a straight-
forward way, requires comparing up to six single-precision words. However, an
exact comparison of the sum with the prime p can, in general, be avoided since
modular arithmetic also works with incompletely reduced operands and, conse-
quently, there is no need to fully reduce a result. Our implementation compares
the sum with 2174 instead of the “exact” prime p = 2174 − 3, i.e. the result of a
modular addition is not necessarily the least non-negative residue. The obvious
advantage of performing the comparison in this way is efficiency; we just have
to check whether the 174-bit addition produced a “carry-out,” as described in
[24, Section 3]. More precisely, after the final iteration of the loop in Algorithm
1, we simply right-shift the variable s by 29 bits to obtain the “carry out.” The
subtraction of the prime p is realized in our implementation by addition of the
174-bit two’s complement of p to the sum, i.e. by addition of 2174− p = 3 to the
least significant word z0. Line 6 of Algorithm 1 performs the modular reduction
operation, consisting of the extraction of the “carry out”, its multiplication by
3, and the addition of the product to z0. Note that, due to this addition, the
least significant word z0 can be up to 30 bits long. However, the extended size
of z0 does not require special consideration since all our arithmetic operations
also work correctly with 30-bit words.

We implemented the subtraction of two elements a, b ∈ Fp through the op-
eration 2p + a− b, which, in turn, is carried out via word-level operations of the
form 2pi + ai − bi, followed by a reduction of the result modulo p as described
before. Performing the subtraction in this way (instead of a direct computation
of the difference a − b) ensures that the results of all word-level operations, as
well as the final 174-bit result, are positive and can be calculated in a straight-
forward way without the need of any conditional statements. Such branch-less
execution of arithmetic operations can help to prevent implementation attacks
since always the same sequence of instructions is executed, independent of the
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Listing 1. Nested loop of multi-precision multiplication as implemented in the
function multiplyToLen of the BigInteger class (version 1.76)

1 for (int i = xstart-1; i >= 0; i--) {

2 carry = 0;

3 for (int j=ystart, k=ystart+1+i; j>=0; j--, k--) {

4 long product = (y[j] & LONG_MASK) *

5 (x[i] & LONG_MASK) +

6 (z[k] & LONG_MASK) + carry;

7 z[k] = (int)product;

8 carry = product >>> 32;

9 }

10 z[i] = (int)carry;

11 }

actual value of the operands. In fact, due to loop unrolling, our implementation
of subtraction in Fp does not execute any control-flow statements at all.

Multiplication and Squaring. A multiplication of two elements a, b ∈ Fp can
be accomplished by conventional integer multiplication of a and b, along with a
reduction of the obtained 384-bit product modulo the prime p. There exist two
principal techniques for implementing multiple-precision multiplication in soft-
ware, namely operand scanning (also called pencil-and-paper method [16]) and
product scanning (also known as Comba’s method [6]). Both methods execute
the same number of single-precision multiplications, but differ in loop structure
and inner-loop operation. The operand scanning technique uses a nested loop to
calculate the double-precision partial products in a row-by-row fashion [13]. In
each iteration of the inner loop, an operation of the form a · b + c + d is carried
out, i.e. two single-precision words are multiplied together and two other words
are added to the product. On the other hand, the product scanning algorithm is
characterized by a nested-loop structure consisting of two outer loops and two
inner loops; the first outer loop calculates the lower half of the product and the
second outer loop the upper half [13]. The partial products are added up in a
column-wise fashion using an inner-loop operation of the form s + a · b, i.e. two
words are multiplied and the product is added to a cumulative sum.

The relative performance of operand scanning vs. product scanning depends
on a range of factors such as the programming language and the representation
of the long integers. Most implementations of multiple-precision multiplication
written in C/C++ or Java use the operand-scanning method and represent the
operands as arrays of single-precision words whose bitlength matches the word-
size of the underlying processor (e.g. 32-bit words on a 32-bit processor). The
inner loop of the operand-scanning method is straightforward to implement in
a high-level programming language since the result of an operation of the form
a · b + c + d is at most 64 bits long (and, therefore, fits into a C/C++ variable
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Algorithm 2. Multiplication in Fp

Input: Two 174-bit integers, A = (a5, a4, a3, a2, a1, a0) and B = (b5, b4, b3, b2, b1, b0),
represented by six 29-bit words.

Output: Modular product Z = A ·B mod (2174 − 3) = (z5, z4, z3, z2, z1, z0).
1: s← 0
2: for i from 0 by 1 to 5 do
3: for j from 0 by 1 to i do
4: s← s + aj · bi−j

5: end for
6: zi ← s & 0x1fffffff
7: s← s� 29
8: end for
9: for i from 6 by 1 to 10 do

10: for j from i− 5 by 1 to 5 do
11: s← s + aj · bi−j

12: end for
13: zi ← s & 0x1fffffff
14: s← s� 29
15: end for
16: z11 ← s
17: s← 0
18: for i from 0 by 1 to 5 do
19: s← zi + 3 · zi+6 + (s� 29)
20: zi ← s & 0x1fffffff
21: end for
22: z0 ← z0 + 3 · (s� 29)
23: return Z = (z5, z4, z3, z2, z1, z0)

of type unsigned long long or a Java variable of type long) when a, b, c, and
d are 32-bit words. However, a peculiarity of Java, compared to C/C++, is the
lack of unsigned data types, which calls for an implementation of the inner loop
as shown in Listing 1. The variables carry and product are of type long and
can hold 64-bit signed integers, whereas x, y, and z are 32-bit int arrays. Java
requires a type conversion (or “widening”) of the operands from int to long in
order to get a 64-bit result when multiplying two 32-bit integers. An integral
part of this conversion process is sign extension, which means that the upper 32
bits of the 64-bit long representation are filled with the sign bit of the original
32-bit int value. These upper 32 bits have to be masked out to obtain the cor-
responding unsigned value; the implementation shown in Listing 1 achieves this
via a logical AND operation using LONG MASK, a final static variable of type
long, which is defined in the BigInteger class and initialized with the literal
0xffffffffL. Of course, performing three such maskings in the inner loop incurs
a significant performance degradation.

The product scanning method, on the other hand, performs a multiply-accu-
mulate operation of the form s + a · b in its inner loop, i.e. two single-precision
words are multiplied and the double-precision product is added to a cumulative
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sum [6]. However, the bitlength of the cumulative sum can grow beyond double
precision when several double-precision products are summed up, which makes
the product scanning method quite hard to implement in C/C++ or Java since
high-level languages do not provide a primitive integer type whose bitlength is
more than twice the length of a single-precision word. A straightforward way to
circumvent this problem is to reduce the number of bits per word to less than
the wordsize of the underlying processor, following the rationale discussed ear-
lier in this section for the addition of field elements. Since most J2ME-enabled
mobile devices are equipped with 32-bit processors, we can, for example, use a
29-bit-per-word representation and implement the product scanning method as
shown in Algorithm 2. Having single-precision words of 29 bits means that all
double-precision partial products aj · bi−j in Algorithm 2 consist of at most 58
bits. Consequently, we can use a 64-bit variable of type long to hold the cumu-
lative sum s; in this case, up to 264−58 = 26 = 64 partial products can be added
up without overflowing s. Such a reduction of the bitlength of operand words
(which was first suggested by Barrett [3, p. 317] roughly 25 years ago6) allows
for a very efficient implementation of the inner loop since masking operations as
in Listing 1 can be avoided.

The result of a multiplication performed according to the first part (i.e. line
1 – 16) of Algorithm 2 is a 348-bit product Z represented by an array of twelve
29-bit words, i.e. Z = (z11, . . . , z1, z0). This product has to be reduced modulo
p = 2174 − 3 to obtain a final result within the range of [0, p − 1]. Since p is a
PM prime [9] of the form 2k − c, we can exploit the relation 2k ≡ c mod p to
accomplish the modular reduction in an efficient way. The reduction operation
requires to split the product Z into a lower half ZL (comprising, in our case, the
six words z0, z1, . . . , z5) and an upper half ZH (consisting of z6, z7, . . . , z11) so
that Z = ZH · 2k + ZL. Now, Z can be reduced modulo p = 2k − c by simply
substituting 2k by c as shown in Equation (2).

Z mod p = ZH · 2k + ZL mod p = ZH · c + ZL mod p (2)

In essence, this boils down to multiplying ZH by c and adding the product to
ZL, which leads to a result that is at most (c + 1) times larger than p (i.e. the
result is just a few bits longer than p if c is small). To get a completely reduced
result, one can either perform the same procedure again, or simply subtract the
prime p until a final result within the range of [0, p− 1] is obtained. The second
part of Algorithm 2 (i.e. line 17 to 22) formally describes the reduction of the
348-bit product Z = (z11, . . . , z1, z0) modulo p = 2174 − 3. Note that, in our im-
plementation, the multiplication by 3 in line 19 is realized via three additions
of zi+6. Therefore, reducing Z modulo 2174 − 3 costs, in practice, no more than
adding three 174-bit integers. The for-loop in line 18 – 21 is very similar to the
loop of Algorithm 1 and, thus, can be implemented in Java in the same way as
detailed earlier in this subsection for the addition in Fp. Due to the 29-bit-per-
word representation, it is possible to use a 32-bit variable of type int for the
6 Note that several other implementations of the product-scanning method, e.g. the

one in Curve25519 [4], take advantage of Barrett’s idea to increase performance.
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sum s and efficiently perform the additions in line 19 without overflow or loss
of precision. The final result of Algorithm 2 may be not fully reduced and the
least significant word z0 may be up to 30 bits long instead of 29, similar to the
result of Algorithm 1. However, as already mentioned, these “peculiarities” do
not require special consideration since all arithmetic operations (bar inversion)
are implemented such that they tolerate incompletely-reduced input operands
and overlength (i.e. 30-bit) words. Note that Algorithm 2 is a simplified version
of our actual Java implementation of multiplication in Fp; we unrolled all loops
to maximize performance. Furthermore, as stated in Subsection 2.1, we repre-
sent the field elements (i.e. 174-bit integers) by six individual variables of type
int instead of arrays. These optimizations allow us to perform a multiplication
without executing data-dependent branches or load operations, which helps to
prevent certain forms of side-channel attack.

The square A2 of a long (i.e. multiple-precision) integer A can be calculated
considerably faster than the product of two distinct integers. When A = B, all
partial products of the form aj · bi−j with j 6= i− j in Algorithm 2 are identical
to the partial products ai−j · bj , i.e. they appear twice. However, an optimized
squaring algorithm calculates each of these partial products only once and then
shifts it left in order to double it. Due to our 29-bit-per-word representation, a
58-bit partial product held in a 64-bit long variable can be efficiently shifted to
the left by one bit position without overflow. Multiplying two 174-bit integers
represented by six 29-bit words requires a total of 36 word-level multiplications
(i.e. lmul instructions in Java), whereas the squaring of a 174-bit integer costs
only 21 word-level multiplications. In theory, squaring is nearly twice as fast as
multiplication, but the difference in execution time decreases when taking the
modular reduction into account. Modular squaring is generally only about 20%
faster than modular multiplication since the reduction operation always takes
the same time, regardless of whether a square or a product is reduced.

3 Point Arithmetic on GLV Curves

This section is devoted to the efficient implementation of scalar multiplication
on a GLV curve and structured in a similar way as Section 2. We first explain
the rationale behind choosing the curve y2 = x3 − 7 over Fp and then elaborate
on different algorithms for scalar multiplication. Finally, we present execution
times of different field and group operations including scalar multiplication.

3.1 Selection of Elliptic Curve

At CRYPTO 2001, Gallant et al [11] introduced special families of elliptic curves
over Fp that possess an endomorphism of small norm and showed how to exploit
this endomorphism to speed up scalar multiplication. These so-called GLV curves
can be seen as loosely related to Koblitz curves over F2m since both provide
a “shortcut” in the form of an endomorphism that allows one to perform a
scalar multiplication significantly faster compared to random curves. Gallant
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et al considered in their work curves defined by the Weierstraß equation y2 =
x3 + ax (i.e. b = 0) and y2 = x3 + b (i.e. a = 0) over a prime field Fp satisfying
p ≡ 1 mod 4 in the former case and p ≡ 1 mod 3 in the latter case. Both families
of curves feature an endomorphism φ whose characteristic polynomial has small
coefficients; in the former case the characteristic polynomial is λ2 +1 and in the
latter case it is λ2 +λ+1 (see [14] for further details). During the past 10 years,
the work of Gallant et al received considerable attention and the GLV method
has been extended to hyperelliptic curves and recently to curves over Fp2 that
are twists of curves defined over Fp (the so-called GLS curves). However, we
decided to use an elliptic curve of the form y2 = x3 + b over Fp for our Java
implementation since this choice of curve and field is more compliant with well-
established standards for EC cryptography (e.g. IEEE 1363, SECG, etc.) than
hyperelliptic curves or elliptic curves over Fp2 .

GLV curves are attractive to implementers for two reasons. First, when ex-
ploiting the endomorphism, scalar multiplication on GLV curves is considerably
faster than on random curves, even though the speed-up is not as dramatic as
for Koblitz curves. Second, the GLV method can be applied in settings where
arbitrary points are used as input for scalar multiplication (e.g. ECDH key ex-
change), i.e. the GLV method does not rely on a fixed base point that is known
a priori. In the following, we briefly describe the GLV algorithm for scalar mul-
tiplication on curves of the form y2 = x3 + b. As mentioned above, these curves
possess an efficiently computable endomorphism φ with characteristic polyno-
mial λ2 +λ+1. Thanks to this endomorphism, it is possible to calculate a scalar
multiplication k ·P as k1 ·P +k2 ·φ(P ), whereby k1 and k2 have only about half
the bitlength of k. These two half-length scalar multiplications can be carried
out in an interleaved fashion using “Shamir’s trick” [14, Section 3.3.3], which
essentially halves the number of point doublings and also reduces the number
of point additions compared to a straightforward calculation of k · P using the
double-and-add algorithm.

Finding a GLV curve with good cryptographic properties is a non-trivial
task since, as mentioned in [5, Section 15.2], “the class of elliptic curves with
an endomorphism of small norm is small.” This task becomes harder still when
one tries to find a combination of PM prime field and GLV curve such that both
the field arithmetic and the curve (resp. group) arithmetic can be implemented
efficiently. We used the computer algebra package Magma to enumerate all PM
primes of the form 2k − c for 160 ≤ k ≤ 176 and c < 16, and then search for
each of them a GLV curve containing a large cyclic subgroup. Among the pairs
of PM prime and GLV curve we found was p = 2174 − 3 and the curve defined
by the Weierstraß equation y2 = x3 − 7 (i.e. a = 0, b = p − 7) over Fp, which
we finally decided to use for our implementation. Since a detailed description of
our curve-finding methodology would go far beyond the scope of this paper, we
restrict ourselves to show that this specific GLV curve is suitable for use in EC
cryptography. Both the IEEE standard 1363 and Cohen et al’s book [5] serve as
a good reference for security criteria that an elliptic curve has to fulfill; the most
important ones are the following.
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– First and foremost, the group of points on the curve has to contain a large
subgroup of prime order n. In other words, the curve should have a small
co-factor; ideally, the co-factor is 1. Our GLV curve E : y2 = x3− 7 over the
field Fp with p = 2174 − 3 has the order

#E(Fp) = 23945242826029513411849172123055713727388153314904213,

which happens to be a 174-bit prime. Consequently, the co-factor h =
#E(Fp)/n of this curve is 1. Following the notation from Section 1, an EC
cryptosystem using the group E(Fp) provides a security level similar to that
of a 87-bit secret-key cryptosystem, which is well above the minimum secu-
rity level of 80 bits as recommended by the European Network of Excellence
in Cryptology (ECRYPT II) [18].

– In order to circumvent the Semaev-Smart-Satoh-Araki (SSSA) attack, the
curve must not be anomalous. This is obviously the case for our GLV curve
since #E(Fp) 6= p.

– The embedding degree of the curve must not be small (i.e. the group order
n must not divide pk − 1 for small values of k) to prevent the Menezes-
Okamoto-Vanstons (MOV) attack and similar attacks based on the Weil
and Tate pairing. Our GLV curve meets this condition since pk 6≡ 1 mod n
for any k ∈ [1, 100].

3.2 Efficient Implementation of Scalar Multiplication

A scalar multiplication is an operation of the form k · P where P is an EC
point of large prime order n and k is an integer in the range of [1, n− 1]. Scalar
multiplication in an EC group is nothing else than the repeated application of
the group operation (namely point addition) on an element of the group, similar
to exponentiation in a multiplicative group. It is common practice (at least when
using an EC over a prime field) to represent the points in projective coordinates
as they allow for performing a point addition without inversion in the underlying
field. Our implementation of the point addition (resp. point doubling) is based
on the mixed Jacobian-affine coordinates (resp. projective Jacobian coordinates)
described in [14, Section 3.2.2]. A point addition requires eight multiplications
(8M), three squarings (3S), as well as a number of less-costly operations (e.g.
addition, subtraction) in the underlying field Fp, whereas a point doubling takes
4M+ 4S. However, the cost of doubling a point on our GLV curve can be reduced
by one multiplication to 3M+ 4S since the parameter a is 0. Note that many
variants of Jacobian point addition/doubling formulae exist, some of which trade
multiplications in Fp for squarings at the expense of an increased number of low-
cost field operations7. Unfortunately, none of these variants is able to speed up
our implementation due to the fact that the less-costly field operations have

7 Most of these variants can be found in the Explicit Formulas Database (EDF), an
extensive repository of formulae for point arithmetic on various families of elliptic
curves. The EDF is available online at http://www.hyperelliptic.org/EFD.
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a non-negligible execution time of roughly 0.1M (see Section 4). Therefore, we
decided to stick with the original formulae from [14] optimized for a = 0.

The simplest technique for performing a scalar multiplication k · P is the
double-and-add method [14], which works in a similar way as the square-and-
multiply algorithm for exponentiation. Given a scalar k of a length of n bits,
the double-and-add method executes n point doublings and, on average, n/2
point additions (the exact number of point additions depends on the Hamming
weight of k). As mentioned before, a point addition on our GLV curve requires
8M+ 3S, whereas a point doubling takes only 3M+ 4S. Consequently, the overall
cost of the double-and-add method amounts to 3n + 8n/2 = 7n multiplications
and 4n + 3n/2 = 5.5n squarings in Fp (or, equivalently, 7M+ 5.5S per bit of
the scalar k). The average number of point additions can be reduced from n/2
to n/3 when the scalar k is represented in Non-Adjacent Form (NAF) [14]. In
this case, the double-and-add method performs only 5.6̇n multiplications and
5n squarings on average, i.e. 5.6̇M+ 5S per bit. However, a more significant
reduction of execution time can be achieved by exploiting the endomorphism φ
of our GLV curve as explained in [11]. This endomorphism makes it possible to
obtain the scalar product k · P by calculating k1 · P + k2 · φ(P ), which is more
efficient than a straightforward calculation of k ·P since k1 and k2 have typically
only half the bitlength of k and the two scalar multiplications k1 ·P and k2 ·φ(P )
can be performed simultaneously (i.e. in an interleaved fashion) using Shamir’s
trick [14, Section 3.3.3].

In the following, we summarize some basic facts about our GLV curve and
explain how to exploit its endomorphism for scalar multiplication, analogously
to [14, page 125]. Since the curve parameter a is 0 and the prime p satisfies
p ≡ 1 mod 3, our GLV curve is of the type described in Example 4 in [11]. The
underlying field Fp contains an element β of order 3 (since p ≡ 1 mod 3); our
implementation uses

β = 394094579125250648008654461421808193607170272365849

According to [11, Example 4], the map φ : E → E defined by

φ : (x, y) 7→ (βx, y) and φ : O 7→ O (3)

is an endomorphism of E defined over Fp. The characteristic polynomial of φ is
λ2 + λ + 1. In order to exploit this endomorphism for scalar multiplication, we
need a root modulo n of the characteristic polynomial, i.e. we need a solution to
the equation λ2 + λ + 1 ≡ 0 mod n; for our implementation we use

λ = 7591969537352440260196679277338091599843085579298264

The solution λ has the property that φ(P ) = λP for all P ∈ E(Fp) [11, 14]. Note
that computing φ(P ) for a point P = (x, y) requires only one multiplication in
Fp, namely β ·x. As mentioned before, the common strategy for computing k ·P
on a GLV curve is to decompose the scalar k into two “half-length” integers
k1 and k2 (referred to as balanced length-two representation of k) such that
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k = k1 + k2λ mod n. This decomposition of k into k1 and k2 is described in
detail in [11, 14] and requires merely a few multi-precision multiplications if the
field and curve are fixed. Because k ·P = k1 ·P +k2 ·λ ·P = k1 ·P +k2 ·φ(P ), the
result of k ·P can be obtained by first computing φ(P ) (which takes just a single
field multiplication) and then using simultaneous double-scalar multiplication
(“Shamir’s trick”) to perform these two half-length scalar multiplications in an
interleaved fashion. Consequently, the GLV requires only n/2 point doublings for
an n-bit scalar multiplication, which represents a reduction by 50% compared to
the double-and-add method. The number of point additions depends on the joint
Hamming density of k1 and k2; in the average case (i.e. joint Hamming density
of 0.75), a total of 0.75 · n/2 = 0.375n point additions has to be carried out.
In summary, the overall cost of the GLV method is 0.5n · 3 + 0.375n · 8 = 4.3n
multiplications and 0.5n·4+0.375n·3 = 3.125n squarings in Fp, i.e. 4.3M+ 3.125S
per bit. However, the joint Hamming density can be reduced to 0.5 (on average)
by representing k1, k2 in Joint Sparse Form (JSF) [19], which, in turn, reduces
the number of point additions to 0.5 · n/2 = 0.25n. In this case, the total cost
of computing k · P amounts to 0.5n · 3 + 0.25n · 8 = 3.5n multiplications and
0.5n · 4 + 0.25n · 3 = 2.75n squarings in Fp, i.e. 3.5M+ 2.75S per bit.

4 Implementation Results and Discussion

We used a Nokia 6610 mobile phone to evaluate the performance of our Java
implementation of the field arithmetic and different algorithms for scalar multi-
plication. The Nokia 6610 is equipped with an ARM 11 processor clocked at 104
MHz and features a conventional Java Virtual Machine (VM) without Just-in-
Time compilation or hardware support for direct execution of bytecodes. In order
to get accurate timings, we put each function into a loop and performed a large
number of iterations so that the overall execution time was in the range of several
seconds. We measured the execution time with help of the currentTimeMillis
function, which is provided by the System class. Table 1 summarizes the av-
erage execution time (i.e. the quotient of overall execution time and number
of iterations) of our Java functions for performing arithmetic operations in Fp.
Squaring is about 20% faster than multiplication, i.e. S= 0.8M, whereas addition
and subtraction (and similar operations such as halving or negation of a field
element) execute in roughly 0.1M. The inversion is relatively slow compared to
the multiplication (I = 116M), but this does not really fall into account since we
use projective coordinates for scalar multiplication.

Table 2 shows a comparison of the four algorithms for scalar multiplication
mentioned in Subsection 3.2. The actual execution times on the Nokia 6610
roughly match with the cost-per-bit figures given in the middle column when
taking into account that this theoretical cost model only considers multiplica-
tions and squarings in Fp. The fastest technique for scalar multiplication is the
GLV method with JSF representation of the two half-length scalars, which exe-
cutes in just 400 ms on the Nokia 6610.
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Table 1. Field arithmetic

Operation Time (in µs)

Addition 23.9

Subtraction 24.1

Multiplication 236.1

Squaring 189.7

Inversion 27,387.6

Table 2. Comparison of scalar multiplication methods

Algorithm Cost per bit Time (in ms)

Dbl-and-Add 7M+ 5.5S 647.2

Dbl-and-Add (NAF) 5.6̇M+ 5S 557.5

GLV method 4.3M+ 3.125S 441.6

GLV method (JSF) 3.5M+ 2.75S 400.2

The GLV method compares very well with other approaches for scalar mul-
tiplication and other forms of elliptic curve, e.g. Montgomery [17] or Edwards
curve [10]. A Montgomery curve over Fp is defined through an equation of the
form By2 = x3 +Ax2 +x with (A2−4)B 6= 0 and allows for fast computation of
the x-coordinate of the sum P +Q of two points P , Q whose difference P −Q is
known. More precisely, a point addition performed according to the formula in
[17, p. 261] requires four multiplications (4M) and two squarings (2S), whereas a
point doubling costs 3M and 2S. However, one of the three multiplications in the
point doubling formula is performed by the constant (A− 2)/4, which is small if
the curve parameter A is chosen properly. On our Nokia 6610, the actual cost of
multiplying a field element by a small constant of up to 29 bits is roughly 0.2M.
Furthermore, the point addition formula given in [17, p. 261] can be optimized
when using the Montgomery ladder (Alg. 13.35 in [5]) for scalar multiplication
and representing the base point in projective coordinates with Z = 1. In this
case, Zm−n in the addition formula is always 1, which reduces cost of point addi-
tion from 4M+ 2S to 3M +2S (see also Remark 13.36(ii) in [5]). When applying
these optimizations, a “ladder”-based implementation of scalar multiplication
takes only 5.2n multiplications and 4n squarings in Fp, i.e. 5.2M+ 4S per bit.

5 Conclusions

We presented an efficient Java implementation of scalar multiplication on a
Gallant-Lambert-Vanstone (GLV) curve using Joint Sparse Form (JSF). The re-
search contribution of this paper is twofold. First, we introduced a performance-
optimized Java implementation of arithmetic operations modulo the PM prime
p = 2174−3 based on a radix-229 representation of 174-bit integers. We explained
some differences between Java and C/C++ in this context and discussed in de-
tail how prime-field arithmetic can be performed without execution of input-
dependent conditional statements (i.e. branches), which not only allows one to



Efficient Java Implementation of Elliptic Curve Cryptography 17

achieve peak performance, but also helps to protect against certain side-channel
attacks. Our second contribution in this paper was to demonstrate through a
theoretical evaluation as well as experimental results that GLV curves are well
competitive to other parameterizations for EC cryptography, e.g. Montgomery
curves. In summary, our results show that GLV curves are an excellent implemen-
tation option for high-speed EC cryptography in mobile and embedded devices.
As part of out future work, we plan to harden the scalar multiplication against
Simple Power Analysis (SPA) and Differential Power Analysis (DPA) attacks.
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