
Remote Timing Attacks are Still Practical?

Billy Bob Brumley and Nicola Tuveri

Aalto University School of Science, Finland
{bbrumley,ntuveri}@tcs.hut.fi

Abstract. For over two decades, timing attacks have been an active
area of research within applied cryptography. These attacks exploit cryp-
tosystem or protocol implementations that do not run in constant time.
When implementing an elliptic curve cryptosystem with a goal to pro-
vide side-channel resistance, the scalar multiplication routine is a critical
component. In such instances, one attractive method often suggested in
the literature is Montgomery’s ladder that performs a fixed sequence of
curve and field operations. This paper describes a timing attack vulnera-
bility in OpenSSL’s ladder implementation for curves over binary fields.
We use this vulnerability to steal the private key of a TLS server where
the server authenticates with ECDSA signatures. Using the timing of
the exchanged messages, the messages themselves, and the signatures,
we mount a lattice attack that recovers the private key. Finally, we de-
scribe and implement an effective countermeasure.

Keywords: Side-channel attacks, timing attacks, elliptic curve cryptog-
raphy, lattice attacks.

1 Introduction

Side-channel attacks utilize information leaked during the execution of a pro-
tocol. These attacks differ from traditional cryptanalysis attacks since side-
channels are not part of the rigorous mathematical description of a cryptosystem:
they are introduced by implementation aspects and are not modeled as input
and/or output of the cryptosystem. A timing attack is a side-channel attack that
recovers key material by exploiting cryptosystem implementations that do not
run in constant time: their execution time measured by the attacker is somehow
state-dependent and hence key-dependent.

In light of these attacks, implementations of elliptic curve cryptosystems that
execute in environments where side-channels are a threat seek to fix the execution
time of various components in said implementation. Perhaps the most critical
is that of scalar multiplication that computes the k-fold sum of a point with
itself. Leaking any internal algorithm state during this computation can reveal
information about some of the inputs, some of which should critically remain
secret.

? Supported in part by the European Commission’s Seventh Framework Programme
(FP7) under contract number ICT-2007-216499 (CACE).

As a practical example of utilizing said key material, consider lattice attacks.
Lattices are mathematical objects that have many uses in cryptography from
cryptographic primitives to attacking schemes with partially known secret data.
They are generally useful for finding small solutions to underdetermined systems
of equations. Lattice methods are an effective endgame for many side-channel
attacks: combining public information with (private) partial key material derived
in the analysis phase, i.e., procured from the signal, to recover the complete
private key. Repeatedly leaking even a small amount of ephemeral key material
can allow these attacks to succeed at recovering long-term private keys.

Montgomery’s ladder is a scalar multiplication algorithm that has great po-
tential to resist side-channel analysis. The algorithm is very regular in the sense
that it always executes the same sequence of curve and field operations, regard-
less of the value that a key bit takes. Contrast this with, for example, a basic
right-to-left double-and-add scalar multiplication algorithm that only performs
point additions on non-zero key bits.

This paper describes a timing attack vulnerability in OpenSSL’s ladder im-
plementation for elliptic curves over binary fields. The timings are procured
by measuring the execution time of parts of the TLS handshake between an
attacker client and OpenSSL’s own TLS server where the server provides an
ECDSA signature on a number of exchanged messages. We utilize this timing
information to mount a lattice attack that exploits this vulnerability and recov-
ers the ECDSA private key given a small number of signatures along with said
timing data. We provide extensive experiment results that help characterize the
vulnerability. Lastly, we propose, implement, and evaluate a simple and efficient
countermeasure to the attack that proves effective.

The remainder of the paper is organized as follows. Section 2 reviews the
concept of timing attacks and selective related literature. Section 3 contains
background on elliptic curve cryptography and its implementation in OpenSSL.
Section 4 identifies said vulnerability and describes all stages of the proposed
attack. Section 5 contains the experiment and attack implementation results. We
close in Section 6 with a discussion on countermeasures and draw conclusions.

2 Timing Attacks

P. Kocher gives a number of remarkably simple timing attacks in his seminal
work [Koc96]. Consider a right-to-left square-and-multiply algorithm for expo-
nentiation. If the exponent bit is a 1, the algorithm performs the assignments
B := B · A then A := A2. Otherwise, a 0-bit and the algorithm performs only
the assignment A := A2. The attacker chooses operand A hence its value in each
iteration is known. To mount a timing attack, the attacker is tasked with finding
input A that distinguishes former cases from the latter. This could be done by
choosing A such that the former case incurs measurably increased execution time
over the entire exponentiation yet the latter case does not. Varying the number
of computer words in A could be one method to induce this behavior. Starting
with the least significant bit, the attacker repeats this process to recover the key

iteratively. In this manner, the attacker traces its way through the states of the
exponentiation algorithm using the timings as evidence. The author gives further
examples of software mechanisms that lead to timing vulnerabilities as well as
attack experiment results. The work mostly concerns public key cryptosystems
with a static key such as RSA and static Diffie-Hellman.

D. Brumley and D. Boneh [BB03,BB05] present ground breaking results,
demonstrating that timing attacks apply to general software systems, defying
contemporary common belief. They mount a timing attack against OpenSSL’s
implementation of RSA decryption based on (counteracting but exploitable) time
dependencies introduced by the Montgomery reduction and the multiplication
routines used by the OpenSSL implementation. The key relevant fact about the
Montgomery reduction is that an extra reduction step may be required depend-
ing on the input, while for the multi-precision integer multiplication routines
(heavily used in RSA computation) the relevant fact is that one of two algo-
rithms with different performances (Karatsuba and schoolbook) is used depend-
ing on the number of words used to represent the two operands. Exploiting these
two facts and adapting the attack to work even when using the sliding window
modular exponentiation algorithm, the authors devise an attack that is capable
of retrieving the complete factorization of the key pair modulus.

The authors mount a real-world attack through a client that measures the
time an OpenSSL server takes to respond to RSA decryption queries during the
SSL handshake. The attack is effective between two processes running on the
same machine and two virtual machines on the same computer, in local network
environments and in case of lightly loaded servers. The authors also analyze
experiments over a WAN and a wireless link to evaluate the effects of noise on the
attacks. Finally, they devise three possible defenses and as a consequence several
cryptography libraries including OpenSSL feature RSA blinding by default as a
countermeasure. As a tangible result of their work:

– OpenSSL issued1 a security advisory;
– CVE assigned2 the name CAN-2003-0147 to the issue;
– CERT issued3 vulnerability note VU#997481.

3 Elliptic Curve Cryptography

In the mid 1980s, Miller [Mil85] and Koblitz [Kob87] independently proposed
the use of elliptic curves in cryptography. Elliptic curves are a popular choice for
public key cryptography because no sub-exponential time algorithm to solve dis-
crete logarithms is known in this setting for well-chosen parameters. This affords
Elliptic Curve Cryptography (ECC) comparatively smaller keys and signatures.
For the purposes of this paper, it suffices to restrict to curves of the form

E(IF2m) : y2 + xy = x3 + a2x
2 + a6

1 http://www.openssl.org/news/secadv_20030317.txt
2 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0147
3 http://www.kb.cert.org/vuls/id/997481

where ai ∈ IF2m and a2 = 1 is common. NIST standardizes two types of curves
for each m ∈ {163, 233, 283, 409, 571}:

1. a6 is chosen pseudo-randomly: i.e., B-163.
2. a6 = 1 and a2 ∈ {0, 1}: Koblitz curves [Kob91], i.e., K-163.

With Intel’s recent pclmulqdq carry-less multiplication instruction facilitat-
ing multiplication in IF2[x], curves over binary fields are likely to become the
standard choice for high-speed ECC implementations in software.

3.1 Digital Signatures

We use the following notation for the ECDSA. The parameters include a hash
function h and point G ∈ E that generates a subgroup of prime order n. In fact
#E = cn where c ∈ {2, 4} for the standard curves considered in this paper. A
common current choice for these would be roughly a 160-bit n, i.e., computations
on B-163 or K-163. Parties select a private key d uniformly from 0 < d < n and
publish the corresponding public key D = [d]G. To sign a message m, parties
select nonce k uniformly from 0 < k < n then compute the signature (r, s) by

r = ([k]G)x mod n (1)

s = (h(m) + dr)k−1 mod n. (2)

This work omits the details of signature verification as they are not particularly
relevant here. The performance bottleneck for generating these signatures is
the scalar multiplication in (1). Extensive literature exists on speeding up said
operation: a description of one common method follows.

3.2 Scalar Multiplication

The speed of an ECC implementation is essentially governed by the scalar mul-
tiplication operation that, for an integer k and point P ∈ E, computes the point
[k]P . There are many methods to carry out this computation, but we focus
on the Montgomery power ladder, originally proposed for speeding up integer
factorization using the elliptic curve method [Mon87, Sect. 10.3.1].

López and Dahab improve the algorithm efficiency for curves over binary
fields [LD99]. Fig. 1 illustrates the main parts of the algorithm and is an excerpt
from the implementation in OpenSSL 0.9.8o. The nested for loop is where the
majority of the work takes place and performs one point doubling and one point
addition to process one bit of k in each iteration; assume ki = 1. The point
addition formula, i.e. implemented in the gf2m_Madd function called in Fig. 1, is

(Z0, X0) = ((X0 · Z1 +X1 · Z0)2, x · Z0 + (X0 · Z1) · (X1 · Z0))

and point doubling, i.e. implemented in the gf2m_Mdouble function called in
Fig. 1, is

(Z1, X1) = ((X1 · Z1)2, X4
1 + a6 · Z4

1).

An intriguing feature is that when ki = 0, the same steps are performed: only
the operands are transposed. That is, replacing Z1 with Z0 and X1 with X0

describes the above formulae for a zero bit. This means the cost per bit is fixed
at an impressive six field multiplications, one involving a constant. For curves
over binary fields, OpenSSL uses this algorithm as the default for any single
scalar multiplication, e.g., in signature generation, and in fact iterates it twice
for the sum of two scalar multiplications, e.g., in signature verification.

/* find top most bit and go one past it */
i = scalar ->top - 1; j = BN_BITS2 - 1;
mask = BN_TBIT;
while (!(scalar ->d[i] & mask)) { mask >>= 1; j--; }
mask >>= 1; j--;
/* if top most bit was at word break , go to next word */
if (!mask)

{
i--; j = BN_BITS2 - 1;
mask = BN_TBIT;
}

for (; i >= 0; i--)
{
for (; j >= 0; j--)

{
if (scalar ->d[i] & mask)

{
if (! gf2m_Madd(group , &point ->X, x1, z1, x2, z2, ctx)) goto err;
if (! gf2m_Mdouble(group , x2 , z2, ctx)) goto err;
}

else
{
if (! gf2m_Madd(group , &point ->X, x2, z2, x1, z1, ctx)) goto err;
if (! gf2m_Mdouble(group , x1 , z1, ctx)) goto err;
}

mask >>= 1;
}

j = BN_BITS2 - 1;
mask = BN_TBIT;
}

Fig. 1. Montgomery’s ladder scalar multiplication for curves over binary fields as im-
plemented in OpenSSL 0.9.8o at crypto/ec/ec2 mult.c.

The ladder applied to ECC has numerous advantages: fast computation, no
large memory overhead, and a fixed sequence of curve operations. This last
feature is particularly attractive as a side-channel countermeasure. The following
quote concisely captures this [HMV04, p. 103].

Another advantage is that the same operations are performed in every
iteration of the main loop, thereby potentially increasing resistance to
timing attacks and power analysis attacks.

While this feature cannot be denied, the quoted authors duly qualify the state-
ment with potentially : the side-channel properties are those of the algorithm

implementation, not the algorithm itself. It should be noted that the ladder was
originally proposed only for efficient computation. Its potential to resist side-
channel analysis seems to be an unintentional consequence.

4 A Timing Attack

The ladder implementation in Fig. 1 introduces a timing attack vulnerability.
Denote the time required to process one scalar bit and compute one ladder step
as t: that is, one iteration of the nested for loop that performs the double and
add steps. Said time is (reasonably) independent of, for example, any given bit ki
or the Hamming weight of k. On the other hand, consider the preceding while

loop: its purpose is to find the index of the most significant set bit of k and
optimize the number of iterations of the nested for loop. As a result, there are
exactly dlg(k)e−1 ladder step executions and the time required for the algorithm
to execute is precisely t(dlg(k)e−1). This shows that there is a direct correlation
between the time to compute a scalar multiplication and the logarithm of k.

This section describes an attack exploiting this vulnerability. The attack
consists of two phases.

1. The attacker collects a certain amount of signatures and exploits the de-
scribed time dependency to filter a smaller set of signatures. The signatures
in the filtered set will have an high probability of being generated using se-
cret nonces (k) having a leading zero bits sequence whose length is greater
or equal to a fixed threshold.

2. The attacker mounts a lattice attack using the set of signatures filtered in
the collection phase to recover the secret key used to generate the ECDSA
signatures.

For this attack to succeed, we assume to be able to collect a sufficient amount of
ECDSA signatures made under the same ECDSA key, and to be able to measure,
with reasonably good accuracy, the wall clock execution time of each collected
sign operation. For concreteness we focus on the NIST curve B-163, but the
concepts can be more generally applied for any curve over a binary field, and
furthermore to any scalar multiplication implementation with a main loop that
has a constant iteration time but not a constant number of iterations.

4.1 Overview of the collection phase

To verify and evaluate the actual exploitability of the described time dependency
for mounting a practical side-channel attack, we implemented two different ver-
sions of the collection phase that share the same basic structure and differ only
for the sequence of operations used to perform a signature:

– a “local” attack, where the collecting process directly uses the OpenSSL
ECDSA routines, accurately measuring the time required by each sign op-
eration; this version models the collection phase in ideal conditions, where
noise caused by external sources is reduced to the minimum;

– a “remote” attack, where the collecting process uses the OpenSSL library
to perform TLS handshakes using the ECDHE ECDSA suite; this version
models a real-world use case for this vulnerability and allows to evaluate
how practical the attack is over different network scenarios.

In general, regardless of the internal implementation, the sign routines of
both versions simply return a signature, a measure of the time that was required
to generate it, and the digest value fed to the sign algorithm. The collecting
process repeatedly invokes the sign routine and stores the results in memory
using a fixed-length binary tree heap data structure, where the weight of each
element is represented by the measured time and the root element contains the
maximum, using the following algorithm:

Heap h=Heap.new(s); //fixed size=s

from 1 to t:

Result res=sign_rtn(dgst, privk);

if (!h.is_full()):

h.insert(res); //O(log n) time

else if (res.t < h.root().t):

h.root()<-res; //O(1) time

h.percolate_down();//O(log n) time

else:

; //discard res

With this algorithm we are able to store the smallest (in terms of time) s
results using a fixed amount of memory and less than O(t(1+ lg(s))) time in the
worst case; the total number of signatures collected (t) and the size of the filtered
set (s) are the two parameters that characterize the collection process. As we
expect the fastest signatures to be related to nonces with a higher number of
leading zeros, we can use the ratio t/s to filter those signatures associated with
leading zero bits sequences longer than a certain threshold.

Statistically for a random 1 ≤ k < n with overwhelming probability the most
significant bit will be set to zero since n for B-163 (and indeed many curves over
binary fields) is only negligibly over a power of two. For the next leading bits the
probability of having a sequence of zero bits of length j is equal to 2−j . Hence if
the total amount of collected signatures t is large enough, the set composed of
the quickest s results should contain signatures related to nonces with leading
zero bits sequences of length longer than lg(t/s), that are then fed to the lattice
attack phase.

4.2 Collection phase in ideal conditions

This version of the collecting process was implemented to verify that the de-
scribed time dependency is actually exploitable for mounting a side-channel at-
tack. We directly invoked the OpenSSL ECDSA routines from within the collect-
ing process to generate ECDSA signatures of random data, accurately measuring
the time required by each sign operation.

The high resolution timings were taken using the rdtsc instruction provided
in recent Pentium-compatible processors. As the host CPU used for testing was
dual core and supported frequency scaling, to ensure accuracy of the measure-
ments we disabled frequency scaling and forced the execution of the collecting
process on just one core.

As the time needed to generate a signature does not depend on the value of
the message digest, for simplicity and to speed up the experiments we chose to
generate multiple signatures on the same message, precalculating the message
digest just once to avoid generating a new random message for each signature.

The implemented sign routine takes as input the digest of the message to be
signed and the private key, and returns the computed signature, the time required
to compute the ECDSA signature and the number of leading zero bits in the
nonce. The latter value is obviously not used to mount the actual attack, but
used only to verify the dependency between the execution time of the signature
computation and the number of leading zero bits in the nonce.

4.3 Collection phase over TLS

This implementation of the collecting process was developed to show a rele-
vant real-world use case for this vulnerability and to evaluate its practicality in
different network scenarios.

ClientHello

ServerHello

Certificate

ServerKeyExchange

ServerHelloDone

ClientKeyExchange
[ChangeCipherSpec]

Finished

[ChangeCipherSpec]

Finished

Client Server

time time

Fig. 2. TLS Handshake using the ECDHE ECDSA suite described in RFC 4492.

Here the signatures collected are those generated during the TLS handshake
using the ECDHE ECDSA cipher suite illustrated by Fig. 2. We briefly high-

light the relevant features of the messages exchanged during the portion of the
handshake targeted by this attack, referring to RFC 4492 [BWBG+06] for the
normative and detailed technical description of the full protocol handshake:

– The Client initiates the handshake sending a ClientHello message to the
Server; this is a regular TLS ClientHello message, proposing the ECDHE EC-
DSA cipher suite and intended to inform the Server about the supported
curves and point formats. This message contains a random nonce generated
by the Client.

– The Server replies with a ServerHello message, selecting the proposed EC-
DHE ECDSA cipher suite and using an extension to enumerate the point
formats it is able to parse. This message contains a random nonce generated
by the Server.

– The Server sends a Certificate message, conveying an ECDSA-signed certifi-
cate containing the ECDSA-capable public key of the Server, and possibly
a certificate chain.

– The Server sends a ServerKeyExchange message, conveying the ephemeral
ECDH public key of the Server (and the relative elliptic curve domain pa-
rameters) to the Client. This message is divided in two halves, the first
one containing the Server ECDH parameters (namely the EC domain pa-
rameters and the ephemeral ECDH public key, consisting of an EC point)
and the latter consisting of a digitally signed digest of the exchanged pa-
rameters. The digest is actually computed as SHA(ClientHello.random +
ServerHello.random + ServerKeyExchange.params), and the signature is an
ECDSA signature generated using the Server’s private key associated with
the certificate conveyed in the previous message.

– The handshake then continues, but other messages do not influence the im-
plemented attack.

This version of the collecting process uses the OpenSSL library to perform
an ECDHE ECDSA TLS handshake every time a signature is requested. The
sign routine creates a new TLS socket to the targeted IP address, configured to
negotiate only connections using ECDHE ECDSA and setting a message callback
function that is used to observe each TLS protocol message. After creating the
TLS socket the sign routine simply performs the TLS handshake and then closes
the TLS connection. During the handshake the message callback inspects each
TLS protocol message, starting a high resolution timer when the ClientHello
message is sent and then stopping it upon receiving the ServerKeyExchange
message, which is then parsed to compute the digest fed to the sign algorithm
and to retrieve the generated signature.

In designing this attack, we assumed to be unable to directly measure the
actual execution time of the server-side signature generation, hence we are forced
to use the time elapsed between the ClientHello message and the ServerKeyEx-
change message as an approximation. To assess the quality of this approximation,
the collecting process takes the private key as an optional argument. If provided,
the message callback will also extrapolate the nonce used internally by the server
to generate the signature and will report the number of leading zero bits in it.

Lastly, at first glance it seems possible that the Server’s computation of its
ECDHE key also influences the measured time. When creating an SSL context
within an application, the default behavior of OpenSSL is to generate a key
pair and buffer it for use before any handshake begins. This is done to improve
efficiency. OpenSSL’s internal s_server used in these experiments behaves ac-
cordingly, so in practice that step of the handshake does not affect the measured
time since only one scalar multiplication takes place server-side during these
handshake steps, namely that corresponding to the ECDSA signature. Appli-
cations can modify this behavior by passing options to the SSL context when
creating it.

4.4 The Lattice Attack

Using lattice methods, Howgrave-Graham and Smart show how to recover a DSA
key from a number of signatures under the same key where parts of the nonces
are known [HGS01]. For completeness, a discussion on implementing the lattice
attack follows. Observing j signatures, rearranging (2) yields j equations of the
form

mi − siki + dri ≡ 0 (mod n) (3)

for 1 ≤ i ≤ j where here mi are message digests to simplify notation. Using one
such (3) to eliminating the private key yields j − 1 equations of the form

ki +Aikj +Bi ≡ 0 (mod n) (4)

for 1 ≤ i < j and some 0 ≤ Ai, Bi < n. From here, the equations in [HGS01]
simplify greatly since all the known bits are in the most significant positions and
are in fact all zeros: (4) should be considered the same as Equation 3 of [HGS01].
That is, express the nonces as ki = z′i + 2λizi + 2µiz′′i in their notation but all
λi are zero setting all z′i to zero and from the timings deducing all µi = 156
(for example) setting all z′′i to zero, leaving zi as the only unknown on the
right where in fact ki = zi. This is nothing more than a rather laborious way
of expressing the simple fact that we know lg(ki) falls below a set threshold.
Consider a j-dimensional lattice with basis consisting of rows of the following
matrix. 

−1 A1 A2 . . . Aj−1
0 n 0 . . . 0
...

. . .
...

0 n


From here, the implementation uses the Sage software system to produce a
reduced basis for this lattice using the LLL algorithm [LLL82], orthogonalize
this basis by the Gram-Schmidt process, and approximate the closest vector
problem given input vector (0, B1, B2, . . . , Bj−1) using Babai rounding [Bab86].
This hopefully finds the desired solutions to the unknown portions of the ki.

Figure 3 contains experiment results of running the lattice attack with dif-
ferent parameters based on B-163, assuming upper bounds on dlg(ki)e of µi ∈

{156, 157}. The x-axis is the signature count (j) and the y-axis the observed
lattice attack success probability. It shows that as the amount of known key ma-
terial decreases (µi increases), this mandates an increase in the lattice dimension
j (the number of such required signatures j increases), and the approximations
are less likely to hold. To effectively apply this as part of the timing attack, on
one hand the lower we set µi the less likely it is that a ki will satisfy the bound
and more signatures must be collected. On the other hand, collecting more sig-
natures increases the probability of error in the measurements, i.e., incorrectly
inferring a given signature with a low timing has a ki that satisfies the bound
and the lattice attack is more likely to fail. An interesting property of this par-
ticular lattice attack is that in fact µi does not feature in the equations used to
populate the basis matrix. In practice, this means that even if some ki does not
satisfy the bound there is still a chance the attack will succeed.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 30 40 50 60 70 80

S
uc

ce
ss

 p
ro

ba
bi

lit
y

Signature count

bound: 156
bound: 157

Fig. 3. Selective lattice attack parameters and observed success probabilities.

5 Results

5.1 Collection phase parameters

Using the first implementation of the collecting process, we were able to empiri-
cally verify the dependency between the length of the leading zero bits sequence
in the nonce and the execution time of the signature operation. Figure 4 com-
pares the distributions of the execution time required by signatures generated

using nonces with different leading zero bit sequence lengths. In the lattice at-
tack notation, seven leading zero bits corresponds to µi = 156 and six leading
zero bits µi = 157.

 0

 500

 1000

 1500

 2000

 2500

F
re

q
u
e
n
c
y

Time

<= 3
4
5
6
7
8
9

10
>= 11

Fig. 4. Dependency between number of leading zero bits and wall clock execution time
of the signature operation.

We then evaluated the effectiveness of the method used for filtering the signa-
tures related to nonces with longer leading zero bit sequences by using different
values for the collection phase parameters. The lattice attack phase, which takes
as input the output of the collecting process, determines the size of the filtered
set and the minimum length of the leading zero bit sequence of the nonce associ-
ated with the signature. Fixing the filtered set size to 64 signatures and varying
the total number of signatures collected by the collecting process, we evaluated
the number of “false positives” over multiple iterations, i.e., those signatures in
the filtered set generated using nonces whose leading zero bit sequence length is
below the threshold determined by the tuning of the lattice attack phase. Table 1
summarizes the obtained results and shows that the effectiveness of the filtering
method may be adjusted by varying the t/s ratio.

The number of “false positives” in the filtered set is an important parameter
of the attack. The lattice attack phase has a higher success probability if all the
signatures used to populate the matrix satisfy the constraint on the number of
leading zero bits. But as mentioned in Sec. 4, even in the presence of limited
“false positives” the lattice attack still succeeds with a small probability.

Table 1. Observed results of the local attack.

Collected signatures count (t) 4096 8192 16384
Filtered set size (s) 64 64 64
Average “false positives” count 17.92 1.48 0.05

Consulting Fig. 3, setting the threshold on the minimum number of leading
zero bits to 7 we only needed 43 valid signatures to successfully perform the
lattice attack with high probability. Näıvely, this allows up to 21 “false positives”
in the filtered set obtained from the collecting process using the lattice attack
in a more fault-tolerant way:

Signatures[] filtered_set; // <-- collection_phase()

EC_point known_pubkey; // <-- server certificate

while(True)

{

tentative_privkey=lattice_attack(filtered_set[0:43]);

tentative_pubkey=generate_pub_key(tentative_priv_key);

if (tentative_pub_key == known_pubkey)

break; // successfully retrieved the priv key

randomly_shuffle(filtered_set);

}

What follows is a rough estimate for the number of required lattice attack
iterations in the presence of “false positives”. The number of iterations, and thus
the computation time, needed to correctly retrieve the private key is inversely
proportional to the probability of selecting a subset of the filtered set without
“false positives”:

Pr[subset without “false positives”] =

(
64−e
43

)(
64
43

)
where e is the number of “false positives” in the filtered set, 43 is the size of the
subsets, 64 is the size of the filtered set, the numerator is the number of possible
subsets without “false positives” in the filtered set, and the denominator is the
number of possible subsets in the filtered set. Figure 5 shows how this probability
varies with e.

5.2 Remote attack

We used the described “remote” implementation of the collecting process to
attack TLS servers over two different network scenarios. As a reference server
we used the OpenSSL s_server configured to emulate a TLS-aware web server
using an ECDSA-capable private key. In theory, any server using the OpenSSL
ECDSA implementation to support ECDHE ECDSA TLS can be vulnerable.

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

P
r

(s
u
b
s
e
t
w

it
h
o
u
t
’f
a
ls

e
 p

o
s
it
iv

e
s
’)

Number of ’false positives’ in the filtered set. (e)

Fig. 5. Probability of selecting a subset without “false positives” in a filtered set with
e “false positives”.

The first scenario we considered consists of a collecting process running on
the same host as the server process. The messages are exchanged over the OS
TCP/IP stack using the localhost address on the loopback interface. In this sce-
nario we successfully retrieved the server private key, even repeating the tests
using different private keys, randomly generated using OpenSSL itself, and tar-
geting both the OpenSSL 0.9.8o and 1.0.0a versions of the reference server.

Table 2 shows that, even if unable to directly measure the execution time
of the signature computation, using the measure of the time elapsed between
the ClientHello and the ServerKeyExchange messages as an approximation and
tuning the total number of collected signatures, the attacker is able to filter a
set of signatures with a low average of “false positives”.

We also note that in the “remote” attack, only the collection phase is per-
formed online, as the lattice attack phase does not require the attacker to ex-
change messages with the attacked server, and that even collecting a total of
16384 signatures is not particularly time consuming, requiring just a few min-
utes.

Table 2. Observed results of the remote attack over the loopback interface.

Collected signatures count (t) 4096 8192 16384
Filtered set size (s) 64 64 64
Average “false positives” count 17.06 4.01 0.90

Once verified that the attack is practical when run over the loopback interface
on the same host of the attacked server, we performed the same attack in a
slightly more complex network scenario: the attacker collects the signatures from
a host connected to the same network switch of the server. The tests were run
between two hosts residing in the same room in time frames with reasonably low
network loads, trying to minimize the noise introduced by external causes in the
time measures.

From Table 3 we see that the time dependency is still observable. The av-
erage rates of “false positives” in the filtered sets increases, but from Fig. 5
this is still easily within reach. The lattice attack can take hours to run in this
case, but again the work is offline and can be distributed. In some cases we
achieved success in only a few minutes. We also note that in this particular net-
work environment we cannot arbitrarily decrease the “false positives” rate by
increasing the parameter t, as already with t = 16384 the average number of
“false positives” starts to increase.

Table 3. Observed results of the remote attack over a switched network segment.

Collected signatures count (t) 4096 8192 16384
Filtered set size (s) 64 64 64
Average “false positives” count 19.40 8.96 11.81

This demonstrates the feasibility of the attack in a remote scenario. Natu-
rally, individual results will vary due to different network characteristics. The
attack success rate decreases dramatically with the increase of “false positives”.
Regardless, a vulnerability exploitable to perform a successful attack from the
same host where the targeted server is run poses a threat even for remote at-
tacks. For example, in virtual hosting or cloud computing scenarios an attacker
may be able to obtain access to run code on the same physical machine hosting
the target server, as suggested by [RTSS09].

6 Conclusion

This paper identifies a timing attack vulnerability in OpenSSL’s implementation
of Montgomery’s ladder for scalar multiplication of points on elliptic curves over
binary fields. This is used to mount a full key recovery attack against a TLS
server authenticating with ECDSA signatures. In response to this work, CERT
issued4 vulnerability note VU#536044. Ironically, in the end it is the regular
execution of the ladder that causes this side-channel vulnerability. For example,
a dependency on the weight of k (that might leak from, say, a simple binary
scalar multiplication method) seems much more difficult to exploit than that of
the length of k that led to full key recovery here.

4 http://www.kb.cert.org/vuls/id/536044

The work of D. Brumley and D. Boneh [BB03,BB05] and this work are related
in that both exploit implementation features that cause variable time execution,
and that both demonstrate full key recovery in both local and remote scenar-
ios. However, the fundamental difference with the former is that the attacker
can leverage well-established statistical techniques and repeat measurements to
compensate for noise because the secret inputs are not changing, i.e., the RSA
exponent. Contrasting with the latter, the secret inputs are always distinct, i.e.,
the nonces in ECDSA. The former is a stronger attack than the latter in this
respect.

Lastly, a brief discussion on countermeasures follows. One way to prevent
this attack is by computing [k]G using the equivalent value [k̂]G where

k̂ =

{
k + 2n if dlg(k + n)e = dlg ne,
k + n otherwise.

With #〈G〉 = n then [k]G = [k̂]G holds and the signature remains valid. This

essentially changes dlg(k̂)e to a fixed value. We implemented this approach as
a patch to OpenSSL and experiment results show that applying said padding
thwarts this particular attack and does not entail any performance overhead to
speak of. Note that the scope of this paper does not include microarchitecture
attacks for which additional specific countermeasures are needed.

This work further stresses the importance of constant time implementations
and rigorous code auditing, adding yet another entry to an already long list of
cautionary tales surrounding cryptography engineering.

References

[Bab86] L. Babai. On Lovász’ lattice reduction and the nearest lattice point prob-
lem. Combinatorica, 6(1):1–13, 1986.

[BB03] David Brumley and Dan Boneh. Remote timing attacks are practical. In
Proceedings of the 12th USENIX Security Symposium, 2003.

[BB05] David Brumley and Dan Boneh. Remote timing attacks are practical.
Computer Networks, 48(5):701–716, 2005.

[BWBG+06] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller. Elliptic
Curve Cryptography (ECC) Cipher Suites for Transport Layer Security
(TLS). RFC 4492 (Informational), May 2006. Updated by RFC 5246.

[HGS01] Nick Howgrave-Graham and Nigel P. Smart. Lattice attacks on digital
signature schemes. Des. Codes Cryptography, 23(3):283–290, 2001.

[HMV04] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve
Cryptography. Springer, 2004.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177):203–
209, 1987.

[Kob91] Neal Koblitz. CM-curves with good cryptographic properties. In Joan
Feigenbaum, editor, CRYPTO, volume 576 of Lecture Notes in Computer
Science, pages 279–287. Springer, 1991.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Neal Koblitz, editor, CRYPTO, volume
1109 of Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[LD99] Julio López and Ricardo Dahab. Fast multiplication on elliptic curves
over GF (2m) without precomputation. In Çetin Kaya Koç and Christof
Paar, editors, CHES, volume 1717 of Lecture Notes in Computer Science,
pages 316–327. Springer, 1999.

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials
with rational coefficients. Math. Ann., 261(4):515–534, 1982.

[Mil85] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C.
Williams, editor, CRYPTO, volume 218 of Lecture Notes in Computer
Science, pages 417–426. Springer, 1985.

[Mon87] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods
of factorization. Math. Comp., 48(177):243–264, 1987.

[RTSS09] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds. In Proceedings of the 16th ACM conference on Computer and
communications security, pages 199–212. ACM, 2009.

A Countermeasure as OpenSSL Source Code Patch

--- openssl-0.9.8o-orig/crypto/ecdsa/ecs_ossl.c 2009-12-01 19:32:16.000000000 +0200
+++ openssl-0.9.8o-patch/crypto/ecdsa/ecs_ossl.c 2011-06-08 11:23:41.188104470 +0300
@@ -144,6 +144,13 @@

}
while (BN_is_zero(k));

+ /* We do not want timing information to leak the length of k,
+ * so we compute G*k using an equivalent scalar of fixed
+ * bit-length. */
+ if (!BN_add(k, k, order)) goto err;
+ if (BN_num_bits(k) <= BN_num_bits(order))
+ if (!BN_add(k, k, order)) goto err;
+

/* compute r the x-coordinate of generator * k */
if (!EC_POINT_mul(group, tmp_point, k, NULL, NULL, ctx))
{

