
Software Implementation of the NIST Elliptic

Curves Over Prime Fields

M. Brown1, D. Hankerson2,4, J. López3, and A. Menezes1,4

1 Dept. of C&O, University of Waterloo, Canada
mk3brown@uwaterloo.ca

2 Dept. of Discrete and Statistical Sciences, Auburn University, USA
hankedr@mail.auburn.edu

3 Dept. of Computer Science, University of Valle, Colombia
jlopez@borabora.univalle.edu.co

4 Certicom Research, Canada
amenezes@certicom.com

Abstract. This paper presents an extensive study of the software im-
plementation on workstations of the NIST-recommended elliptic curves
over prime fields. We present the results of our implementation in C
and assembler on a Pentium II 400 MHz workstation. We also provide a
comparison with the NIST-recommended curves over binary fields.

1 Introduction

Elliptic curve cryptography (ECC) was proposed independently in 1985 by Neal
Koblitz [17] and Victor Miller [21]. Since then a vast amount of research has
been done on its secure and efficient implementation. In recent years, ECC has
received increased commercial acceptance as evidenced by its inclusion in stan-
dards by accredited standards organizations such as ANSI (American National
Standards Institute) [1, 2], IEEE (Institute of Electrical and Electronics Engi-
neers) [12], ISO (International Standards Organization) [13, 14], and NIST (Na-
tional Institute of Standards and Technology) [24].

Before implementing an ECC system, several choices have to be made. These
include selection of elliptic curve domain parameters (underlying finite field, field
representation, elliptic curve), and algorithms for field arithmetic, elliptic curve
arithmetic, and protocol arithmetic. The selections can be influenced by se-
curity considerations, application platform (software, firmware, or hardware),
constraints of the particular computing environment (e.g., processing speed,
code size (ROM), memory size (RAM), gate count, power consumption), and
constraints of the particular communications environment (e.g., bandwidth, re-
sponse time). Not surprisingly, it is difficult, if not impossible, to decide on a
single “best” set of choices—for example, the optimal choices for a PC applica-
tion can be quite different from the optimal choice for a smart card application.

Over the past 15 years, numerous papers have been written on various aspects
of ECC implementation. Most of these papers do not consider all the factors
involved in an efficient implementation. For example, many papers focus only on
finite field arithmetic, or only on elliptic curve arithmetic.

The contribution of this paper is an extensive and careful study of the soft-
ware implementation on workstations of the NIST-recommended elliptic curves
over prime fields. While the only significant constraint in workstation environ-
ments may be processing power, some of our work may also be applicable to
other more constrained environments. We present the results of our implemen-
tation on a Pentium II 400MHz workstation. These results serve to validate our
conclusions based primarily on theoretical considerations. Although we make no
claims that our implementations are the best possible (they certainly are not),
and the optimization techniques used for the two larger fields were restricted to
those employed for the smaller fields, we nonetheless hope that our work will
serve as a benchmark for future efforts in this area.

The remainder of this paper is organized as follows. §2 describes the NIST
elliptic curves and presents some rationale for their selection. In §3, we describe
methods for arithmetic in prime fields. §4 and §5 consider efficient techniques
for elliptic curve arithmetic. In §6, we select the best methods for performing
elliptic curve operations in ECC protocols such as the ECDSA, and compare the
performance of the NIST curves over binary and prime fields. Finally, we draw
our conclusions in §7 and discuss avenues for future work in §8.

2 NIST-Recommended Elliptic Curves

In February 2000, FIPS 186-1 was revised by NIST to include the elliptic curve
digital signature algorithm (ECDSA) as specified in ANSI X9.62 [1] with further
recommendations for the selection of underlying finite fields and elliptic curves;
the revised standard is called FIPS 186-2 [24].

FIPS 186-2 has 10 recommended finite fields: 5 prime fields Fp for p192 =
2192 − 264 − 1, p224 = 2224 − 296 + 1, p256 = 2256 − 2224 + 2192 + 296 − 1,
p384 = 2384 − 2128 − 296 + 232 − 1, and p521 = 2521 − 1, and the binary fields
F2163 , F2233 , F2283 , F2409 , and F2571 . For each of the prime fields, one randomly
selected elliptic curve was recommended, while for each of the binary fields one
randomly selected elliptic curve and one Koblitz curve was selected.

The fields were selected so that the bitlengths of their orders are at least
twice the key lengths of common symmetric-key block ciphers—this is because
exhaustive key search of a k-bit block cipher is expected to take roughly the
same time as the solution of an instance of the elliptic curve discrete logarithm
problem using Pollard’s rho algorithm for an appropriately-selected elliptic curve
over a finite field whose order has bitlength 2k. The correspondence between
symmetric cipher key lengths and field sizes is given in Table 1. For binary fields
F2m , m was chosen so that there exists a Koblitz curve of almost prime order
over F2m . In order to allow for efficient modular reduction (see Algorithms 7–11),
the primes p for the prime fields Fp were chosen to either be a Mersenne prime,
or a Mersenne-like prime with bitsize a multiple of 32.

The remainder of this paper considers the implementation of the NIST-
recommended curves over the prime fields Fp192 , Fp224 , Fp256 , Fp384 and Fp521 .

Description of the NIST curves over prime fields. The NIST elliptic
curves over prime fields are listed in Table 2. An elliptic curve E over Fp is

2

Table 1. NIST-recommended field sizes for U.S. Federal Government use.

Symmetric cipher Example Bitlength of p Dimension m of
key length algorithm in prime field Fp binary field F2m

80 SKIPJACK 192 163
112 Triple-DES 224 233
128 AES Small [25] 256 283
192 AES Medium [25] 384 409
256 AES Large [25] 521 571

specified by the coefficients a, b ∈ Fp of its defining equation y2 = x3 + ax + b.
The NIST curves all have a = −3 because this yields a faster algorithm for point
doubling when using Jacobian coordinates (see §4). This choice is without much
loss of generality since about half of all isomorphism classes of elliptic curves
over Fp have a representative with a = −3. The number of points on E defined
over Fp is nh, where n is prime, and h is called the co-factor. A random curve
over Fp, where p is an m-bit prime, is denoted by P-m.

Description of the NIST curves over binary fields. The NIST elliptic
curves over F2163 , F2233 , F2283 , F2409 and F2571 are listed in Table 3. The following
notation is used. The elements of F2m are represented using a polynomial basis
representation with reduction polynomial f(x). An elliptic curve E over F2m

is specified by the coefficients a, b ∈ F2m of its defining equation y2 + xy =
x3 + ax2 + b. The number of points on E defined over F2m is nh, where n is
prime, and h is called the co-factor. A random curve over F2m is denoted by
B-m, while a Koblitz curve over F2m is denoted by K-m.

3 Prime Field Arithmetic

This section presents algorithms for performing arithmetic in Fp in software. For
concreteness, we assume that the implementation platform has a 32-bit archi-
tecture. The bits of a word W are numbered from 0 to 31, with the rightmost
bit of W designated as bit 0.

3.1 Field representation

The elements of Fp are the integers between 0 and p− 1, written in binary. Let
m = dlog2 pe and t = dm/32e. In software, we store a field element a in an array
of t 32-bit words: a = (at−1, . . . , a2, a1, a0). For the NIST primes p192, p224, p256,
p384 and p521, we have t = 6, 7, 8, 12, and 17, respectively.

3.2 Addition and subtraction

Algorithm 1 calculates a + b mod p by first finding the sum word-by-word and
then subtracting p if the result exceeds p − 1. Each word addition produces
a 32-bit sum and a 1-bit carry digit which is added to the next higher-order
sum. It is assumed that “Add” in step 1 and “Add with carry” in step 2 of
the algorithm manage the carry digit. On processors such as the Intel Pentium

3

Table 2. NIST-recommended elliptic curves over prime fields.

P-192: p = 2192 − 264 − 1, a = −3, h = 1,

b = 0x 64210519 E59C80E7 0FA7E9AB 72243049 FEB8DEEC C146B9B1

n = 0x FFFFFFFF FFFFFFFF FFFFFFFF 99DEF836 146BC9B1 B4D22831

P-224: p = 2224 − 296 + 1, a = −3, h = 1,

b = 0x B4050A85 0C04B3AB F5413256 5044B0B7 D7BFD8BA 270B3943 2355FFB4

n = 0x FFFFFFFF FFFFFFFF FFFFFFFF FFFF16A2 E0B8F03E 13DD2945 5C5C2A3D

P-256: p = 2256 − 2224 + 2192 + 296 − 1, a = −3, h = 1,

b = 0x 5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53B0F6 3BCE3C3E

27D2604B

n = 0x FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD A7179E84 F3B9CAC2

FC632551

P-384: p = 2384 − 2128 − 296 + 232 − 1, a = −3, h = 1,

b = 0x B3312FA7 E23EE7E4 988E056B E3F82D19 181D9C6E FE814112 0314088F

5013875A C656398D 8A2ED19D 2A85C8ED D3EC2AEF

n = 0x FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF C7634D81

F4372DDF 581A0DB2 48B0A77A ECEC196A CCC52973

P-521: p = 2521 − 1, a = −3, h = 1,

b = 0x 00000051 953EB961 8E1C9A1F 929A21A0 B68540EE A2DA725B 99B315F3

B8B48991 8EF109E1 56193951 EC7E937B 1652C0BD 3BB1BF07 3573DF88

3D2C34F1 EF451FD4 6B503F00

n = 0x 000001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFA 51868783 BF2F966B 7FCC0148 F709A5D0 3BB5C9B8

899C47AE BB6FB71E 91386409

4

Table 3. NIST-recommended elliptic curves over binary fields.

B-163: a = 1, h = 2, f(x) = x163 + x7 + x6 + x3 + 1

b = 0x 00000002 0A601907 B8C953CA 1481EB10 512F7874 4A3205FD

n = 0x 00000004 00000000 00000000 000292FE 77E70C12 A4234C33

B-233: a = 1, h = 2, f(x) = x233 + x74 + 1

b = 0x 00000066 647EDE6C 332C7F8C 0923BB58 213B333B 20E9CE42 81FE115F

7D8F90AD

n = 0x 00000100 00000000 00000000 00000000 0013E974 E72F8A69 22031D26

03CFE0D7

B-283: a = 1, h = 2, f(x) = x283 + x12 + x7 + x5 + 1

b = 0x 027B680A C8B8596D A5A4AF8A 19A0303F CA97FD76 45309FA2 A581485A

F6263E31 3B79A2F5

n = 0x 03FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFEF90 399660FC 938A9016

5B042A7C EFADB307

B-409: a = 1, h = 2, f(x) = x409 + x87 + 1

b = 0x 021A5C2 C8EE9FEB 5C4B9A75 3B7B476B 7FD6422E F1F3DD67 4761FA99

D6AC27C8 A9A197B2 72822F6C D57A55AA 4F50AE31 7B13545F

n = 0x 01000000 00000000 00000000 00000000 00000000 00000000 000001E2

AAD6A612 F33307BE 5FA47C3C 9E052F83 8164CD37 D9A21173

B-571: a = 1, h = 2, f(x) = x571 + x10 + x5 + x2 + 1

b = 0x 02F40E7E 2221F295 DE297117 B7F3D62F 5C6A97FF CB8CEFF1 CD6BA8CE

4A9A18AD 84FFABBD 8EFA5933 2BE7AD67 56A66E29 4AFD185A 78FF12AA

520E4DE7 39BACA0C 7FFEFF7F 2955727A

n = 0x 03FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF E661CE18 FF559873 08059B18 6823851E C7DD9CA1

161DE93D 5174D66E 8382E9BB 2FE84E47

K-163: a = 1, b = 1, h = 2, f(x) = x163 + x7 + x6 + x3 + 1

n = 0x 00000004 00000000 00000000 00020108 A2E0CC0D 99F8A5EF

K-233: a = 0, b = 1, h = 4, f(x) = x233 + x74 + 1

n = 0x 00000080 00000000 00000000 00000000 00069D5B B915BCD4 6EFB1AD5

F173ABDF

K-283: a = 0, b = 1, h = 4, f(x) = x283 + x12 + x7 + x5 + 1

n = 0x 01FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFE9AE 2ED07577 265DFF7F

265DFF7F 94451E06 1E163C61

K-409: a = 0, b = 1, h = 4, f(x) = x409 + x87 + 1

n = 0x 007FFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFE5F

83B2D4EA 20400EC4 557D5ED3 E3E7CA5B 4B5C83B8 E01E5FCF

K-571: a = 0, b = 1, h = 4, f(x) = x571 + x10 + x5 + x2 + 1

n = 0x 02000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 131850E1 F19A63E4 B391A8DB 917F4138 B630D84B

E5D63938 1E91DEB4 5CFE778F 637C1001

5

family which offer an “add with carry” as part of the instruction set, these may
be fast single-instruction operations.

Algorithm 1. Modular addition

Input: A modulus p, and integers a, b ∈ [0, p− 1].
Output: c = (a + b) mod p.

1. c0←Add(a0, b0).

2. For i from 1 to t− 1 do: ci←Add with carry(ai, bi).

3. If the carry bit is set, then subtract p from c = (ct−1, . . . , c2, c1, c0).

4. If c ≥ p then c← c− p.

5. Return(c).

Modular subtraction is implemented in a fashion similar to addition; however,
the carry is now interpreted as a “borrow.” As with addition, the operations in
steps 1 and 2 are typically fast in any case, but especially so if they are part of
the processor’s instruction set.

Algorithm 2. Modular subtraction

Input: A modulus p, and integers a, b ∈ [0, p− 1].
Output: c = (a− b) mod p.

1. c0← Subtract(a0, b0).

2. For i from 1 to t− 1 do: ci←Subtract with borrow(ai, bi).

3. If the carry bit is set, then add p to c = (ct−1, . . . , c2, c1, c0).

4. Return(c).

3.3 Multiplication and squaring

Algorithm 3 is an elementary multiplication routine which arranges the arith-
metic so that the product is calculated right-to-left. Other choices are possible
(see [20, Algorithm 14.12], for example). Step 2.1 of the algorithm requires a 64-
bit product of two 32-bit operands. Since multiplication is typically much more
expensive than addition, a (fast) 32×32 multiply instruction should be used if
available. In Algorithm 3, r0, r1, r2, u and v are 32-bit words, and (uv) denotes
the 64-bit concatenation of u and v.

Algorithm 3. Integer multiplication

Input: Integers a, b ∈ [0, p− 1].
Output: c = a · b.
1. r0← 0, r1←0, r2← 0.

2. For k from 0 to 2(t− 1) do

2.1 For each element of {(i, j) | i + j = k, 0 ≤ i, j < t} do

(uv) = ai · bj .
r0←Add(r0, v), r1←Add with carry(r1, u), r2←Add with carry(r2, 0).

2.2 ck← r0, r0← r1, r1← r2, r2← 0.

3. c2t−1← r0.

4. Return(c).

6

The method of Karatsuba [16] can be used to reduce the number of 32×32-bit
multiplications at the cost of some complexity in the algorithm. For comparison,
Karatsuba was implemented with a depth-2 split for each of the three smaller
fields of interest.

A straightforward modification of the multiplication algorithm gives the fol-
lowing algorithm for squaring. There are roughly 1/2 fewer multiplication op-
erations. In step 2.1, the notation “(uv) � 1” indicates multiplication of the
64-bit quantity by 2, which may be implemented as two shift-through-carry (if
available) or as two additions with carry.

Algorithm 4. Classical squaring

Input: Integer a ∈ [0, p− 1].
Output: c = a2.

1. r0← 0, r1←0, r2← 0.
2. For k from 0 to 2(t− 1) do

2.1 For each element of {(i, j) | i + j = k, 0 ≤ i ≤ j < t} do
(uv) = ai · aj .
If (i < j) then (uv)� 1, r2←Add with carry(r2, 0).
r0←Add(r0, v), r1←Add with carry(r1, u), r2←Add with carry(r2, 0).

2.2 ck← r0, r0← r1, r1← r2, r2← 0.
3. c2t−1← r0.
4. Return(c).

The following squaring algorithm, based on Algorithm 14.16 of [20] as modi-
fied by Guajardo and Paar [9], was also implemented for the timings in Table 4.

Algorithm 5. Squaring

Input: Integer a ∈ [0, p− 1].
Output: c = a2.

1. For i from 0 to 2t− 1 do: ci← 0.
2. For i from 0 to t− 1 do

2.1 (uv)← c2i + a2
i .

2.2 c2i← v, C1←u, C2← 0.
2.3 For j from i + 1 to t− 1 do

(uv)← ci+j + aiaj + C1, C1←u.
(uv)← v + aiaj + C2, ci+j← v, C2←u.

2.4 (uv)←C1 + C2, C2←u.
2.5 (uv)← ci+t + v, ci+t← v.
2.6 ci+t+1←C2 + u.

3. Return(c).

Despite the simplicity of Algorithms 3 and 4, register allocation and other
(platform-dependent) optimizations can greatly influence the performance. For
example, the Intel Pentium family of processors have relatively few registers, and
the 32×32 multiplication is restrictive in the registers involved. Furthermore,
some care in choosing instruction sequences and registers is required in order
to cooperate with the processor’s ability to “pair” instructions and fully exploit
the processor’s pipelining capabilities.

7

3.4 Reduction

The NIST primes are of special form which permits very fast modular reduction.
For bitlengths of practical interest, the work of [3] suggests that the methods
of Montgomery and Barrett (which do not take advantage of the special form
of the prime) are roughly comparable. For comparison with the fast reduction
techniques, Barrett reduction was implemented.

Algorithm 6. Barrett reduction

Input: b > 3, p, k = blogb pc+ 1, 0 ≤ x < b2k , µ = bb2k/pc.
Output: x mod p.

1. q̂←bbx/bk−1c · µ/bk+1c.
2. r← (x mod bk+1) − (q̂ · p mod bk+1).
3. If r < 0 then r← r + bk+1.
4. While r ≥ p do: r← r − p.
5. Return(r).

The arithmetic in Barrett reduction can be reduced by choosing b to be a
power of 2. Note that calculation of µ may be done once per field. For the NIST
primes Solinas [26] gives the following fast reduction algorithms.

Algorithm 7. Fast reduction modulo p192 = 2192 − 264 − 1

Input: Integer c = (c5, c4, c3, c2, c1, c0) where each ci is a 64-bit word, and 0 ≤ c < p2
192.

Output: c mod p192.

1. Define 192-bit ints: s1 = (c2, c1, c0), s2 = (0, c3, c3), s3 = (c4, c4, 0), s4 = (c5, c5, c5).
2. Return(s1 + s2 + s3 + s4 mod p192).

Algorithm 8. Fast reduction modulo p224 = 2224 − 296 + 1

Input: Integer c = (c13, . . . , c2, c1, c0) where each ci is a 32-bit word, and 0 ≤ c < p2
224.

Output: c mod p224.

1. Define 224-bit integers: s1 = (c6, c5, c4, c3, c2, c1, c0),
s2 = (c10, c9, c8, c7, 0, 0, 0), s3 = (0, c13, c12, c11, 0, 0, 0),
s4 = (c13, c12, c11, c10, c9, c8, c7), s5 = (0, 0, 0, 0, c13, c12, c11).

2. Return(s1 + s2 + s3 − s4 − s5 mod p224).

Algorithm 9. Fast reduction modulo p256 = 2256 − 2224 + 2192 + 296 − 1

Input: Integer c = (c15, . . . , c2, c1, c0) where each ci is a 32-bit word, and 0 ≤ c < p2
256.

Output: c mod p256.

1. Define 256-bit integers: s1 = (c7, c6, c5, c4, c3, c2, c1, c0),
s2 = (c15, c14, c13, c12, c11, 0, 0, 0), s3 = (0, c15, c14, c13, c12, 0, 0, 0),
s4 = (c15, c14, 0, 0, 0, c10, c9, c8), s5 = (c8, c13, c15, c14, c13, c11, c10, c9),
s6 = (c10, c8, 0, 0, 0, c13, c12, c11), s7 = (c11, c9, 0, 0, c15, c14, c13, c12),
s8 = (c12, 0, c10, c9, c8, c15, c14, c14), s9 = (c13, 0, c11, c10, c9, 0, c15, c14).

2. Return(s1 + 2s2 + 2s3 + s4 + s5 − s6 − s7 − s8 − s9 mod p256).

8

Algorithm 10. Fast reduction modulo p384 = 2384 − 2128 − 296 + 232 − 1

Input: Integer c = (c23, . . . , c2, c1, c0) where each ci is a 32-bit word, and 0 ≤ c < p2
384.

Output: c mod p384.

1. Define 384-bit integers: s1 = (c11, c10, c9, c8, c7, c6, c5, c4, c3, c2, c1, c0),
s2 = (0, 0, 0, 0, 0, c23, c22, c21, 0, 0, 0, 0),
s3 = (c23, c22, c21, c20, c19, c18, c17, c16, c15, c14, c13, c12),
s4 = (c20, c19, c18, c17, c16, c15, c14, c13, c12, c23, c22, c21),
s5 = (c19, c18, c17, c16, c15, c14, c13, c12, c20, 0, c23, 0),
s6 = (0, 0, 0, 0, c23, c22, c21, c20, 0, 0, 0, 0), s7 = (0, 0, 0, 0, 0, 0, c23, c22, c21, 0, 0, c20),
s8 = (c22, c21, c20, c19, c18, c17, c16, c15, c14, c13, c12, c23),
s9 = (0, 0, 0, 0, 0, 0, 0, c23, c22, c21, c20, 0), s10 = (0, 0, 0, 0, 0, 0, 0, c23, c23, 0, 0, 0).

2. Return(s1 + 2s2 + s3 + s4 + s5 + s6 + s7 − s8 − s9 − s10 mod p384).

Algorithm 11. Fast reduction modulo p521 = 2521 − 1

Input: A binary integer c = (c1041, . . . , c2, c1, c0).
Output: c mod p521.

1. Define 521-bit integers: s1 = (c1041, . . . , c514, c513, c512), s2 = (c511, . . . , c2, c1, c0).
2. Return(s1 + s2 mod p521).

3.5 Inversion

Algorithm 12 computes the inverse of a non-zero field element a ∈ [1, p−1] using
a variant of the Extended Euclidean Algorithm (EEA). The algorithm maintains
the invariants Aa + dp = u and Ca + ep = v for some d and e which are not
explicitly computed. The algorithm terminates when u = 0, in which case v = 1
and Ca+ ep = 1; hence C = a−1 mod p.

Algorithm 12. Binary inversion algorithm

Input: Prime p, a ∈ [1, p− 1].
Output: a−1 mod p.

1. u←a, v←p, A← 1, C← 0.
2. While u 6= 0 do

2.1 While u is even do:
u←u/2. If A is even then A←A/2; else A← (A + p)/2.

2.2 While v is even do:
v← v/2. If C is even then C←C/2; else C← (C + p)/2.

2.3 If u ≥ v then: u←u− v, A←A− C; else: v← v − u, C←C − A.
3. Return(C mod p).

3.6 Timings

Table 4 presents timing results on a Pentium II 400MHz workstation for oper-
ations in the NIST prime fields. The first column for Fp192 indicates times for
routines written in C without the aid of hand-coded assembly code1; the other
1 A notable exception was made in that 32× 32 multiply (with add) in assembly was

used. This was done because standard C does not necessarily support a 32 × 32
multiply and does not give direct access to the carry bit.

9

columns show the best times with most code in assembly. The compiler for these
timings was Microsoft C (professional edition), with maximal optimizations set;
the assembler was the “Netwide Assembler” NASM.

The case for hand-coded assembly is fairly compelling from the table, al-
though timings showed that much of the performance benefit in classical mul-
tiplication comes from relatively easy and limited insertion of assembly code.
Some assembly coding was driven by the need to work around the relatively
poor register-allocation strategy of the Microsoft compiler on some code.

As expected, fast reduction for the NIST primes was much faster than Bar-
rett. Despite our best efforts, we could not make Karatsuba multiplication com-
petitive with the classical version (but the situation was different on some plat-
forms where primarily C was used). It is likely that the overhead in the Karatsuba
code can be reduced by additional hand-tuning; however, it appears from the
timings that such tuning is unlikely to be sufficient to change the conclusions
for these fields on the given platform. The implementation of the squaring algo-
rithm (Algorithm 5) is slower than classical squaring, in part due to the repeated
accesses of the output array. The ratio of inversion to multiplication (with fast
reduction) is roughly 80 to 1.

Table 4. Timings (in µs) for operations in the NIST prime fields.

Fp192
a Fp192 Fp224 Fp256 Fp384 Fp521

Addition (Algorithm 1) 0.235 0.097 0.114 0.123 0.169 0.162
Subtraction (Algorithm 2) 0.243 0.094 0.112 0.125 0.158 0.150

Modular reduction
Barrett reduction (Algorithm 6) 3.645 1.021 1.462 1.543 3.004 5.448
Fast reduction (Algorithms 7–11) 0.223 0.203 0.261 0.522 0.728 0.503

Multiplication (including fast reduction)

Classical (Algorithm 3) 1.268b 0.823 1.074 1.568 2.884 4.771
Karatsuba 2.654c 1.758 2.347 2.844 — —

Squaring (including fast reduction)
Classical (Algorithm 4) — 0.705 0.913 1.358 2.438 3.864
Algorithm 5 1.951c 1.005 1.284 1.867 3.409 5.628

Inversion (Algorithm 12) 146.21 66.30 88.26 115.90 249.69 423.21

a Coded primarily in C.
b Uses a 32× 32 multiply-and-add.
c Uses a 32× 32 multiply.

4 Elliptic Curve Point Representation

Affine coordinates. Let E be an elliptic curve over Fp given by the (affine)
equation y2 = x3 − 3x + b. Let P1 = (x1, y1) and P2 = (x2, y2) be two points
on E with P1 6= −P2. Then the coordinates of P3 = P1 + P2 = (x3, y3) can be

10

computed as follows:

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1, where

λ =
y2 − y1

x2 − x1
if P1 6= P2, and λ =

3x2
1 − 3
2y1

if P1 = P2. (1)

When P1 6= P2 (general addition) the formulas for computing P3 require 1 in-
version, 2 multiplications, and 1 squaring—as justified in §3.6, we can ignore the
cost of field additions and subtractions. When P1 = P2 (doubling) the formulas
for computing P3 require 1 inversion, 2 multiplications, and 2 squarings.

Projective coordinates. Since inversion in Fp is significantly more expen-
sive than multiplication (see §3.6), it is advantageous to represent points using
projective coordinates of which several types have been proposed. In standard
projective coordinates, the projective point (X : Y : Z), Z 6= 0, corresponds
to the affine point (X/Z, Y/Z). The projective equation of the elliptic curve is
Y 2Z = X3 − 3XZ2 + bZ3. In Jacobian projective coordinates [5], the projec-
tive point (X : Y : Z), Z 6= 0, corresponds to the affine point (X/Z2, Y/Z3)
and the projective equation of the curve is Y 2 = X3 − 3XZ4 + bZ6. In Chud-
novsky Jacobian coordinates [5], the Jacobian point (X : Y : Z) is represented
as (X : Y : Z : Z2 : Z3).

Formulas which do not require inversions for adding and doubling points in
projective coordinates can be derived by first converting the points to affine
coordinates, then using the formulas (1) to add the affine points, and finally
clearing denominators. Also of use in left-to-right point multiplication methods
(see §5.1 and §5.2) is the addition of two points using mixed coordinates—where
the two points are given in different coordinates [6].

The field operation counts for point addition and doubling in various coor-
dinate systems are listed in Table 5. From Table 5 we see that Jacobian coordi-
nates yield the fastest point doubling, while mixed Jacobian-affine coordinates
yield the fastest point addition. Also useful in some point multiplication al-
gorithms (see Algorithm 17) are mixed Jacobian-Chudnovsky coordinates and
mixed Chudnovsky-affine coordinates for point addition. We note that the modi-
fied Jacobian coordinates presented in [6] do not yield any speedups over ordinary
Jacobian coordinates for curves with a = −3.

Table 5. Operation counts for elliptic curve point addition and doubling. A = affine,
P = standard projective, J = Jacobian, C = Chudnovsky.

Doubling General addition Mixed coordinates

2A→ A 1I , 2M , 2S A + A→ A 1I , 2M , 1S J + A→ J 8M , 3S
2P → P 7M , 3S P + P → P 12M , 2S J + C → J 11M , 3S
2J → J 4M , 4S J + J → J 12M , 4S C + A→ C 8M , 3S
2C → C 5M , 4S C + C → C 11M , 3S

11

Formulas for doubling in Jacobian coordinates are: 2(X1 : Y1 : Z1) = (X3 :
Y3 : Z3), where

A = 4X1 · Y 2
1 , B = 8Y 4

1 , C = 3(X1 − Z2
1) · (X1 + Z2

1), D = −2A + C2,

X3 = D, Y3 = C · (A−D)−B, Z3 = 2Y1 · Z1. (2)

Formulas for addition in mixed Jacobian-affine coordinates are: (X1 : Y1 : Z1)+
(X2 : Y2 : 1) = (X3 : Y3 : Z3), where

A = X2 · Z2
1 , B = Y2 · Z3

1 , C = A−X1, D = B − Y1,

X3 = D2 − (C3 + 2X1 · C2), Y3 = D · (X1 · C2 −X3) − Y1 · C3, Z3 = Z1 · C. (3)

Formulas for addition in mixed Jacobian-Chudnovsky coordinates are: (X1 : Y1 :
Z1) + (X2 : Y2 : Z2 : Z2

2 : Z3
2) = (X3 : Y3 : Z3), where

A = X1 · Z2
2 , B = Y1 · Z3

2 , C = X2 · Z2
1 − A, D = Y2 · Z3

1 −B,

X3 = D2 − 2A · C2 −C3, Y3 = D · (A · C2 −X3) −B · C3, Z3 = Z1 · Z2 · C. (4)

5 Point Multiplication

This section considers methods for computing kP , where k is an integer and
P is an elliptic curve point. This operation is called point multiplication and
dominates the execution time of elliptic curve cryptographic schemes. We will
assume that #E(Fp) = nh where n is prime and h is small (so n ≈ p), P has
order n, and k ∈R [1, n− 1]. §5.1 covers the case where P is not known a priori.
One can take advantage of the situation where P is a fixed point (e.g., the base
point in elliptic curve domain parameters) by precomputing some data which
depends only on P ; this case is covered in §5.2.

5.1 Unknown Point

Algorithm 13 is the additive version of the basic repeated-square-and-multiply
method for exponentiation.

Algorithm 13. (Left-to-right) binary method for point multiplication

Input: k = (km−1, . . . , k1, k0)2, P ∈ E(Fp).
Output: kP .

1. Q←O.
2. For i from m− 1 downto 0 do

2.1 Q← 2Q.
2.2 If ki = 1 then Q←Q + P .

3. Return(Q).

The expected number of ones in the binary representation of k ism/2, whence
the expected running time of Algorithm 13 is approximately m/2 point addi-
tions and m point doublings, denoted 0.5mA + mD. If affine coordinates (see
§4) are used, then the running time expressed in terms of field operations is
1.5mI + 3mM + 2.5mS, where I denotes an inversion, M a multiplication, and

12

S a squaring. If mixed Jacobian-affine coordinates (see §4) are used, then Q is
stored in Jacobian coordinates, while P is stored in affine coordinates. Thus the
doubling in step 2.1 can be performed using (2), while the addition in step 2.2
can be performed using (3). The field operation count of Algorithm 13 is then
8mM + 5.5mS + (1I + 3M + 1S) (1 inversion, 3 multiplications and 1 squaring
are required to convert back to affine coordinates).

If P = (x, y)∈E(Fp) then −P = (x,−y). Thus point subtraction is as efficient
as addition. This motivates using a signed digit representation k =

∑
ki2i, where

ki ∈ {0,±1}. A particularly useful signed digit representation is the non-adjacent
form (NAF) which has the property that no two consecutive coefficients ki are
nonzero. Every positive integer k has a unique NAF, denoted NAF(k). Moreover,
NAF(k) has the fewest non-zero coefficients of any signed digit representation
of k, and can be efficiently computed using Algorithm 14 [27].

Algorithm 14. Computing the NAF of a positive integer

Input: A positive integer k.
Output: NAF(k).

1. i←0.

2. While k ≥ 1 do

2.1 If k is odd then: ki← 2− (k mod 4), k← k − ki;
2.2 Else: ki← 0.

2.3 k← k/2, i← i + 1.

3. Return((ki−1, ki−2, . . . , k1, k0)).

Algorithm 15 modifies Algorithm 13 by using NAF(k) instead of the binary
representation of k. It is known that the length of NAF(k) is at most one longer
than the binary representation of k. Also, the average density of non-zero coeffi-
cients among all NAFs of length l is approximately 1/3 [23]. It follows that the
expected running time of Algorithm 15 is approximately (m/3)A +mD.

Algorithm 15. Binary NAF method for point multiplication

Input: NAF(k) =
∑l−1
i=0 ki2

i, P ∈ E(Fp).
Output: kP .

1. Q←O.

2. For i from l− 1 downto 0 do

2.1 Q← 2Q.

2.2 If ki = 1 then Q←Q + P .

2.3 If ki = −1 then Q←Q− P .

3. Return(Q).

If some extra memory is available, the running time of Algorithm 15 can be
decreased by using a window method which processes w digits of k at a time.
One approach we did not implement is to first compute NAF(k) or some other
signed digit representation of k (e.g., [18] or [22]), and then process the digits
using a sliding window of width w. Algorithm 16 from [27], described next, is
another window method.

13

A width-w NAF of an integer k is an expression k =
∑l−1
i=0 ki2

i, where each
non-zero coefficient ki is odd, |ki| < 2w−1, and at most one of any w con-
secutive coefficients is nonzero. Every positive integer has a unique width-w
NAF, denoted NAFw(k). Note that NAF2(k) = NAF(k). NAFw(k) can be ef-
ficiently computed using Algorithm 14 modified as follows: in step 2.1 replace
“ki← 2− (k mod 4)” by “ki←k mods 2w”, where k mods 2w denotes the inte-
ger u satisfying u ≡ k (mod 2w) and −2w−1 ≤ u < 2w−1. It is known that the
length of NAFw(k) is at most one longer than the binary representation of k.
Also, the average density of non-zero coefficients among all width-w NAFs of
length l is approximately 1/(w + 1) [27]. It follows that the expected running
time of Algorithm 16 is approximately (1D+(2w−2−1)A)+(m/(w+1)A+mD).
When using mixed Jacobian-Chudnovsky coordinates, the running time is mini-
mized when w = 5 for P-192, P-224, and P-256, while w = 6 is optimal for P-384
and P-521.

Algorithm 16. Window NAF method for point multiplication

Input: Window width w, NAFw(k) =
∑l−1
i=0 ki2

i, P ∈ E(Fp).
Output: kP .

1. Compute Pi = iP , for i ∈ {1, 3, 5, . . . , 2w−1 − 1}.
2. Q←O.
3. For i from l− 1 downto 0 do

3.1 Q← 2Q.
3.2 If ki 6= 0 then:

If ki > 0 then Q←Q + Pki ;
Else Q←Q− Pki .

4. Return(Q).

5.2 Fixed Point

If the point P is fixed and some storage is available, then point multiplication can
be sped up by precomputing some data which depends only on P . For example,
if the points 2P, 22P, . . . , 2m−1P are precomputed, then the right-to-left binary
method has expected running time (m/2)A (all doublings are eliminated). In [4],
a refinement of this idea was proposed. Let (kd−1, . . . , k1, k0)2w be the 2w-ary
representation of k, where d = dm/we, and let Qj =

∑
i:ki=j

2wiP . Then

kP =
d−1∑
i=0

ki(2wiP) =
2w−1∑
j=1

(
j
∑
i:ki=j

2wiP
)

=
2w−1∑
j=1

jQj

= Q2w−1 + (Q2w−1 +Q2w−2) + · · ·+ (Q2w−1 +Q2w−2 + · · ·+Q1). (5)

Algorithm 17 is based on this observation. Its expected running time is approx-
imately ((d(2w − 1)/2w − 1) + (2w − 2))A. The optimum choice of coordinates
is affine in step 1, mixed Chudnovsky-affine in step 3.1, and mixed Jacobian-
Chudnovsky in step 3.2.

14

Algorithm 17. Fixed-base windowing method

Input: Window width w, d = dm/we, k = (kd−1, . . . , k1, k0)2w , P ∈ E(Fp).
Output: kP .

1. Precomputation. Compute Pi = 2wiP , 0 ≤ i ≤ d− 1.
2. A←O, B←O.
3. For j from 2w − 1 downto 1 do

3.1 For each i for which ki = j do: B←B + Pi. {Add Qj to B}
3.2 A←A + B.

4. Return(A).

In a variation of the comb method proposed in [19], the binary representation
of k is written in w rows, and the columns of the resulting rectangle are processed
two columns at a time. We define [aw−1, . . . , a2, a1, a0]P = aw−12(w−1)dP+· · ·+
a222dP +a12dP +a0P , where d = dm/we and ai ∈ {0, 1}. The expected running
time of Algorithm 18 is ((d−1)(2w−1)/2w)A+((d/2)−1)D. The optimum choice
of coordinates is affine in step 1, Jacobian in step 4.1, and mixed Jacobian-affine
in step 4.2.

Algorithm 18. Fixed-base comb method with two tables

Input: Window width w, d = dm/we, k = (km−1, . . . , k1, k0)2, P ∈ E(Fp).
Output: kP .

1. Precomputation. Let e = dd/2e. Compute [aw−1, . . . , a0]P and 2e[aw−1, . . . , a0]P
for all (aw−1, . . . , a1, a0) ∈ {0, 1}w.

2. By padding k on the left with 0’s if necessary, write k = Kw−1‖ · · · ‖K1‖K0, where
each Kj is a bit string of length d. Let Kj

i denote the ith bit of Kj .
3. Q←O.
4. For i from e− 1 downto 0 do

4.1 Q← 2Q.
4.2 Q←Q + [Kw−1

i , . . . , K1
i , K

0
i]P + 2e[Kw−1

i+e , . . . , K1
i+e, K

0
i+e]P

5. Return(Q).

From Table 6 we see that the fixed-base comb method is expected to slightly
outperform the fixed-base window method for similar amounts of storage. For
our implementation, we chose w = 4 for the comb method and w = 5 for fixed-
base window for curves over Fp192 , Fp224 , and Fp256 ; the curves over the larger
fields Fp384 and Fp521 used w = 5 for comb and w = 6 in fixed-base window.

Table 6. Comparison of fixed-base window and fixed-base comb methods for Fp192 .
w is the window width, S denotes the number of points stored in the precomputation
phase, and T denotes the number of field operations.

w = 2 w = 3 w = 4 w = 5 w = 6 w = 7 w = 8
Method S T S T S T S T S T S T S T

Fixed-base window 95 860 63 745 47 737 38 876 31 1246 27 2073 23 3767
Fixed-base comb 6 1188 14 900 30 725 62 632 126 529 254 472 510 415

15

5.3 Timings

Table 7 presents rough estimates of costs in terms of both elliptic curve opera-
tions and field operations for point multiplication methods for the P-192 elliptic
curve. These estimates serve as a guideline for comparing point multiplication
algorithms without concern for platform or implementation specifics.

Table 7. Rough estimates of point multiplication costs for P-192, with S = .85M .

Points EC operations Field operations
Method Coordinates w stored A D M I Totala

Binary affine — 0 96 191 980 287 23940
(Algorithm 13) Jacobian-affine — 0 96 191 2430 1 2510

Binary NAF affine — 0 64 191 889 255 21289
(Algorithm 15) Jacobian-affine — 0 64 191 2092 1 2172

Window NAF Jacobian-affine 4 3 42 192 1844 4 2164
(Algorithm 16) Jacobian-Chudnovsky 5 7 39 192 1949 1 2029

Fixed-base window Chudnovsky-affine & 5 38 30b+37c 0 796 1 876
(Algorithm 17) Jacobian-Chudnovsky

Fixed-base comb Jacobian-affine 4 30 45 23 645 1 725
(Algorithm 18)

a Total cost in field multiplications assuming 1I = 80M .
b Jacobian-Chudnovsky.
c Chudnovsky-affine.

Table 8 presents timing results for the NIST curves over prime fields, obtained
on a Pentium II 400MHz workstation. The field arithmetic is largely in assembly,
while the curve arithmetic is in C.

The timings in Table 8 are consistent with the estimates in Table 7. The large
inverse to multiplication ratio gives a slight edge to the use of Chudnovsky over
affine in Window NAF. As predicted, the simpler binary NAF with Jacobian
coordinates obtains fairly comparable speeds with less code. The first column
in Table 8 illustrates the rather steep performance penalty for using C over
assembly in the field operations.

6 ECDSA Elliptic Curve Operations

The execution times of elliptic curve cryptographic schemes such as the ECDSA
[1] are typically dominated by point multiplications. In ECDSA, there are two
types of point multiplications, kP where P is fixed (signature generation), and
kP + lQ where P is fixed and Q is not known a priori (signature verification).
One method to potentially speed the computation of kP + lQ is simultaneous
multiple point multiplication (Algorithm 20), also known as Shamir’s trick [8].
Algorithm 20 has an expected running time of (22w − 3)A + ((d − 1)(22w −
1)/22wA + (d− 1)wD), and requires storage for 22w points.

16

Table 8. Timings (in µs) for point multiplication on the NIST curves over prime fields.

P-192a P-192 P-224 P-256 P-384 P-521

Binary (Algorithm 13)
Affine 44,604 20,570 31,646 47,568 153,340 347,478
Jacobian-affine 4,847 2,443 3,686 6,038 20,570 35,171

Binary NAF (Algorithm 15)
Affine 39,838 18,306 26,260 42,402 136,376 310,386
Jacobian-affine 4,386 2,144 3,255 5,298 17,896 30,484

Window NAF (Algorithm 16)

Jacobian-affineb 4,346 2,103 3,144 5,058 16,374 27,830
Jacobian-Chudnovskyc 4,016 1,962 2,954 4,816 16,163 27,189

Fixed-base window (Algorithm 17)
Chud-affine & Jacobian-Chudc 1,563 812 1,161 1,773 6,389 9,533

Fixed-base comb (Algorithm 18)

Jacobian-affineb 1,402 681 1,052 1,672 4,656 8,032

a Field ops coded primarily in C except for 32×32 multiply-and-add instructions.
b w = 4 in P-192, P-224, and P-256; w = 5 in P-384 and P-521.
c w = 5 in P-192, P-224, and P-256; w = 6 in P-384 and P-521.

Algorithm 20. Simultaneous multiple point multiplication

Input: Window width w, k = (km−1, . . . , k1, k0)2, l = (lm−1, . . . , l1, l0)2, P,Q ∈ E(Fp).
Output: kP + lQ.

1. Compute iP + jQ for all i, j ∈ [0, 2w − 1].

2. Write k = (kd−1, . . . , k1, k0) and l = (ld−1, . . . , l1, l0) where each ki and li is a
bitstring of length w, and d = dt/we.

3. R←O.

4. For i from d− 1 downto 0 do

4.1 R← 2wR.

4.2 R←R + (kiP + liQ).

5. Return(R).

Table 9 lists the most efficient methods for computing kP , P fixed, for the
NIST random prime curves, random binary curves, and Koblitz binary curves.
The timings for the binary curves are from [10]. For each type of curve, two cases
are distinguished—when there is no extra memory available and when memory
is not heavily constrained. Table 10 does the same for computing kP + lQ where
P is fixed and Q is not known a priori. We should note that no special effort
was expended in optimizing our field arithmetic over the larger fields Fp384 , Fp521 ,
F2409 and F2571—the optimization techniques used for these fields were restricted
to those employed in the smaller fields.

Table 11 presents timings for these operations for the P-192 curve when the
field arithmetic is implemented primarily in assembly, when Barrett reduction

17

Table 9. Timings (in µs) of the fastest methods for point multiplication kP , P fixed,
in ECDSA signature generation.

Curve Memory Fastest NIST
type constrained? method curve

P-192 P-224 P-256 P-384 P-521
Random No Fixed-base comba 681 1,052 1,672 4,656 8,032
prime Yes Binary NAF Jacobian 2,144 3,255 5,298 17,896 30,484

B-163 B-233 B-283 B-409 B-571

Random No Fixed-base combb 1,683 3,966 5,919 12,448 30,120
binary Yes Montgomery 3,240 7,697 11,602 29,535 71,132

K-163 K-233 K-283 K-409 K-571
Koblitz No FBW TNAF (w=6) 1,176 2,243 3,330 7,611 18,118
binary Yes TNAF 1,946 4,349 6,612 15,762 37,685

a w = 4 for P-192, P-224, and P-256; w = 5 for P-384 and P-521.
b w = 4 for B-163, B-233, and B-283; w = 5 for B-409 and B-571. A “single table”

comb method was used, which has half the points of precomputation for a given w
compared with Algorithm 18.

Table 10. Timings (in µs) of the fastest methods for point multiplications kP + lQ,
P fixed and Q not known a priori, in ECDSA signature verification.

Curve Memory
type constrained? Fastest method NIST curve

P-192 P-224 P-256 P-384 P-521
Random No Fixed-base comba + 2,594 3,965 6,400 20,610 34,850

prime Window NAF Jac-Chudb

No Simultaneous (w=2) 2,663 4,898 7,510 22,192 40,048
Yes Binary NAF Jacobian 4,288 6,510 10,596 35,792 60,968

B-163 B-233 B-283 B-409 B-571
Random No Simultaneous (w=2) 4,969 11,332 16,868 42,481 100,963
binary No Fixed-base comb (w=5) — — — 41,322 98,647

+ Window NAF (w=5)
Yes Montgomery 6,564 15,531 23,346 59,254 142,547

K-163 K-233 K-283 K-409 K-571
Koblitz No Window TNAF (w=5) 2,702 5,348 7,826 17,621 40,814
binary + FBW TNAF (w=6)

Yes TNAF 3,971 8,832 13,374 31,618 75,610

a w = 4 for P-192, P-224, and P-256; w = 5 for P-384 and P-521.
b w = 5 for P-192, P-224, and P-256; w = 6 for P-384 and P-521.

18

is used instead of fast reduction2, and when the field arithmetic is implemented
primarily in C.

Table 11. Timings (in µs) of the fastest methods for point multiplication kP , P fixed,
and for kP + lQ, P fixed and Q not known a priori on the P-192 curve.

Point multiplication Field arithmetic Barretta Field arithmetic
method primarily in assembly reduction primarily in C

For kP :
Fixed-base comb (w = 4) 681 1,211 1,402
Binary NAF Jacobian 2,144 3,906 4,386

For kP + lQ:
Fixed-base comb (w = 4) + 2,594 4,767 5,278
Window NAF Jac-Chud (w = 5)
Simultaneous (w = 2) 2,663 4,907 5,407
Binary NAF Jacobian 4,288 7,812 8,772

a Fast reduction is replaced by an assembler version of Barrett reduction (Alg. 6).

Finally, to give an indication of which field operations are worthy of further
optimization efforts, Table 12 presents the percentage of the total time spent in
Algorithm 15 on the operations of addition, subtraction, integer multiplication,
integer squaring, fast reduction, and inversion. Note that 95.4% of the total
execution time was spent on these basic operations.

Table 12. Average number of function calls and percentage of time spent on the basic
field operations in executions of the binary NAF Jacobian method (Algorithm 15) for
the P-192 curve.

Field Number of Percentage of
operation function calls total time

Addition (Algorithm 1) 1,137 5.8%
Subtraction (Algorithm 2) 1,385 7.4%
Integer multiplication (Algorithm 3) 1,213 38.3%
Integer squaring (Algorithm 4) 934 28.2%
Fast reduction (Algorithm 7) 2,147 14.8%
Modular inversion (Algorithm 12) 1 0.9%

7 Conclusions

Significant performance improvements are obtained when using Jacobian and
Chudnovsky coordinates, primarily due to the high inversion to multiplication
2 Since Barrett reduction does not exploit the special nature of the NIST primes,

the Barrett column of Table 11 can be interpreted as rough timings for ECDSA
operations over a random 192-bit prime.

19

ratio observed in our implementation. The high cost of inversion also favored
precomputation in Chudnovsky coordinates for point multiplication (in the case
of a point which is not known a priori), although some extra storage was also
required.

As a rough comparison with curves over binary fields, times for the curves
over the smaller fields in ECDSA operations show that known-point multiplica-
tions were significantly faster in the Koblitz (binary) and random prime cases
than for the random binary case. For the point multiplication kP + lQ where
only P is known a priori, the random prime timings were somewhat faster than
the Koblitz binary times, and both were significantly faster than the random
binary times.

In our environment, hand-coded algorithms in assembly for field arithmetic
gave significant performance improvements. It should be noted that the routines
for curves over binary fields in the ECDSA tables were written entirely in C;
some performance improvements would be obtained if segments were optimized
with assembly, although it is expected that these would be less than in the
prime-field case.

As expected, the special form of the NIST primes makes modular reduction
very fast; the times for reduction with the Barrett method were generally much
larger than the fast reduction by a factor of more than 2.5.

8 Future Work

A careful and extensive study of ECC implementation in software for constrained
devices such as smart cards, and in hardware, would be beneficial to practition-
ers. Also needed is a thorough comparison of the implementation of ECC, RSA,
and discrete logarithm systems on various platforms, continuing the work re-
ported in [7, 11, 15].

Acknowledgements

The authors would like to thank Donny Cheung, Eric Fung and Mike Kirkup for
numerous fruitful discussions and for help with the implementation and timings.

References

1. ANSI X9.62, Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA), 1999.

2. ANSI X9.63, Public Key Cryptography for the Financial Services Industry: Elliptic
Curve Key Agreement and Key Transport Protocols, working draft, October 2000.

3. A. Bosselaers, R. Govaerts and J. Vandewalle, “Comparison of three modular re-
duction functions”, Advances in Cryptology–Crypto ’93, LNCS 773, 1994, 175-186.

4. E. Brickell, D. Gordon, K. McCurley and D. Wilson, “Fast exponentiation with
precomputation”, Advances in Cryptology–Eurocrypt ’92, LNCS 658, 1993, 200-
207.

5. D. Chudnovsky and G. Chudnovsky, “Sequences of numbers generated by addition
in formal groups and new primality and factoring tests”, Advances in Applied
Mathematics, 7 (1987), 385-434.

20

6. H. Cohen, A. Miyaji and T. Ono, “Efficient elliptic curve exponentiation using
mixed coordinates”, Advances in Cryptology–Asiacrypt ’98, LNCS 1514, 1998, 51-
65.

7. E. De Win, S. Mister, B. Preneel and M. Wiener, “On the performance of signature
schemes based on elliptic curves”, Algorithmic Number Theory, Proceedings Third
Intern. Symp., ANTS-III, LNCS 1423, 1998, 252-266.

8. T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms”, IEEE Transactions on Information Theory, 31 (1985), 469-472.

9. J. Guajardo and C. Paar, “Modified squaring algorithm”, preprint, 1999.
10. D. Hankerson, J. Hernandez and A. Menezes, “Software implementation of elliptic

curve cryptography over binary fields”, Cryptographic Hardware and Embedded
Systems–CHES 2000, to appear.

11. T. Hasegawa, J. Nakajima and M. Matsui, “A practical implementation of el-
liptic curve cryptosystems over GF (p) on a 16-bit microcomputer”, Public Key
Cryptography–Proceedings of PKC ’98, LNCS 1431, 1998, 182-194.

12. IEEE 1363-2000, Standard Specifications for Public-Key Cryptography, 2000.
13. ISO/IEC 14888-3, Information Technology – Security Techniques – Digital Signa-

tures with Appendix – Part 3: Certificate Based-Mechanisms, 1998.
14. ISO/IEC 15946, Information Technology – Security Techniques – Cryptographic

Techniques Based on Elliptic Curves, Committee Draft (CD), 1999.
15. K. Itoh, M. Takenaka, N. Torii, S. Temma and Y. Kurihara, “Fast implementation

of public-key cryptography on a DSP TMS320C6201”, Cryptographic Hardware
and Embedded Systems–CHES ’99, LNCS 1717, 1999, 61-72.

16. D. Knuth, The Art of Computer Programming–Seminumerical Algorithms,
Addison-Wesley, 3rd edition, 1998.

17. N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of Computation, 48
(1987), 203-209.

18. K. Koyama and Y. Tsuruoka, “Speeding up elliptic cryptosystems by using a signed
binary window method”, Advances in Cryptology–Crypto ’92, LNCS 740, 1993,
345-357.

19. C. Lim and P. Lee, “More flexible exponentiation with precomputation”, Advances
in Cryptology–Crypto ’94, LNCS 839, 1994, 95-107.

20. A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1997.

21. V. Miller, “Uses of elliptic curves in cryptography”, Advances in Cryptology–Crypto
’85, LNCS 218, 1986, 417-426.

22. A. Miyaji, T. Ono and H. Cohen, “Efficient elliptic curve exponentiation”, Pro-
ceedings of ICICS ’97, LNCS 1334, 1997, 282-290.

23. F. Morain and J. Olivos, “Speeding up the computations on an elliptic curve using
addition-subtraction chains”, Informatique théorique et Applications, 24 (1990),
531-544.

24. National Institute of Standards and Technology, Digital Signature Standard, FIPS
Publication 186-2, February 2000.

25. National Institute of Standards and Technology, Advanced Encryption Standard,
work in progress.

26. J. Solinas, “Generalized Mersenne numbers”, Technical Report CORR 99-39, Dept.
of C&O, University of Waterloo, 1999.

27. J. Solinas, “Efficient arithmetic on Koblitz curves”, Designs, Codes and Cryptog-
raphy, 19 (2000), 195-249.

21

