
Software Implementations of Elliptic Curve Cryptography

Zhijie Jerry Shi and Hai Yan

Computer Science and Engineering Department
University of Connecticut, Storrs, CT 06269, USA

Email: {zshi, hai.yan}@engr.uconn.edu

Abstract

Elliptic Curve Cryptography (ECC) is a promising alternative for public-key algorithms in

resource-constrained systems because it provides a similar level of security with much shorter

keys than conventional integer-based public-key algorithms. ECC over binary field is of special

interest because the operations in binary field are thought more space and time efficient.

However, the software implementations of ECC over binary field are still slow, especially on

low-end processors used in small computing devices such as sensor nodes. In this paper, we

studied software implementations of ECC. We first investigated whether some architectural

parameters such as word size may affect the choice of algorithms when implementing ECC with

software. We identified a set of algorithms for ECC implementation for low-end processors. We

also examined several improvements to the instruction set architecture of an 8-bit processor and

studied their impact on the performance of ECC.

Keywords: ECC, software implementation, binary field arithmetic, instruction set architecture,

sensor networks

1. Introduction

Elliptic Curve Cryptography (ECC), proposed independently in 1985 by Neal Koblitz [1] and

Victor Miller [2], has been used in cryptographic algorithms for a variety of security purposes

such as key exchange and digital signature. Compared to traditional integer-based public-key

algorithms, ECC algorithms can achieve the same level of security with much shorter keys. For

example, 160-bit Elliptic Curve Digital Signature Algorithm (ECDSA) has a security level

equivalent to 1024-bit Digital Signature Algorithm (DSA) [3]. Because of the shorter key length,

ECC algorithms run faster, require less space, and consume less energy. These advantages make

ECC a better choice of public-key algorithms, especially in resource-constrained systems such as

sensor nodes and mobile devices.

Considerable work on ECC has been focused on mathematical methods and algorithms,

hardware implementations, and extensions of instruction set architecture [4][5][6][7][8][9].

Hankerson et al. discussed the software implementations of in ECC in [6], in which they focused

on 32-bit processors. Gura et al. compared the performance of ECC and RSA on 8-bit processors

[8]. But the elliptic curves they studied are in GF(p). Malan recently investigated the feasibility

of implementing ECC in sensor nodes [5]. Their implementation was not optimized well. Given

that the performance of ECC on low-end processors is far from being satisfactory, many

protocols designed for wireless sensor networks tend to use symmetric-key algorithms only

[10][11][12].

In this paper, we try to identify the problems in the software implementations of ECC and

explore techniques that can accelerate the software implementations. We focus on ECC over

GF(2m). Since each operation in ECC has many different ways to implement, we first

investigated whether processor word size may affect our choice of algorithms. We selected a set

of efficient algorithms and studied their performance on processors of different word sizes.

We also studied how Instruction Set Architecture (ISA) improvements affect the

performance of ECC on low-end 8-bit processors. We examined three instructions, binary field

multiplications, shift operations, and most significant 1, which target the time consuming

operations in ECC. Although some instructions, such as binary field multiplication instructions,

can achieve a large speedup on 64-bit processors [13], they are not as effective on low-end

processors if affine coordinates are adopted. The architectural supports also result in different

selections of algorithms. For example, when binary field multiplication instructions are

supported, it is preferable to adopt projective coordinates to achieve better performances. On 8-

bit microcontrollers running at 16 MHz, we can perform a 163-bit scalar point multiplication in

0.85 seconds.

The rest of the paper is organized as follows. In Section 2, we briefly describe ECC and

relevant algorithms. In Section 3, we compare ECC algorithms on 32-bit processors and examine

the impact of word size on ECC algorithms. In Section 4, we discuss the performance of ECC on

8-bit processors. Section 5 discusses three ISA improvements for accelerating ECC. Section 6

concludes the paper.

2. Overview of ECC

Elliptic curves can be defined in many fields including prime fields GF(p) and finite fields

GF(2m) of characteristic two, which are also called binary fields [14]. The elliptic curves over

binary field are of special interest because the operations in a binary field are faster and easier to

implement. In this paper, we focus on ECC defined in binary field. More specifically, we focus

on the five binary field elliptic curves specified in the Elliptic Curve Digital Signature Algorithm

(ECDSA) [3], which are defined in GF(2163), GF(2233), GF(2283), GF(2409), and GF(2571).

2.1. ECC operations and parameters

When defined in a binary field, an elliptic curve can be represented by

y2 + x•y = x3 + a•x2 + b, (1)

where a and b are constants in GF(2m) and b ≠ 0. The set E(GF(2m)) includes all the points on the

curve and a special point Ο, which is defined as the identity element. For any point P = (x, y) in

E, we have:

P + Ο = Ο + P = P,

P + (− P) = Ο, where − P = (x, x + y).

The addition of two points on the curve, P = (x1, y1) and Q = (x2, y2), are defined as P + Q =

(x3, y3), where

x3 = λ2 + λ + x1 + x2 + a,

y3 = λ (x1+ x3) + x3 + y1,

and
2 1

2 1

1
1

1

, if

, if .

y y
P Q

x x

y
x P Q

x

λ

+
≠

+
=

+ =

⎧
⎪⎪
⎨
⎪
⎪⎩

 (2)

The multiplication of a point P and an integer k is defined as adding k copies of P together.

 times
Q kP P P

k
= = + +L14243 . (3)

If k has l bits and kj represents bit j of k, the scalar point multiplication kP can be computed

as:

∑
−

=

=
1

0
2

l

j

j
j PkkP (4)

The scalar point multiplication can be done with the basic binary algorithm. For example, in

the left-to-right binary algorithm shown in Figure 1, the bits in k are scanned from the left to the

right. For each bit, the partial product is doubled, and then P is added to it if the bit is 1. The

expected running time of this method is approximately l/2 point additions and l point doublings.

Typically, l = m, which is also the key length of ECC algorithms.

Algorithm 1: Left-to-right binary algorithm for point multiplication
INPUT: P ∈E, and a positive integer k = (kl–1 kl–2 …k1k0)2
OUTPUT: A = kP

1. A O
2. For i = l–1 down to 0 do

2.1 A 2A
2.2 If ki = 1 then A A + P

3. Return A

Figure 1: Basic Left-to-Right binary algorithm
The scalar point multiplication is the main workload of ECC algorithms. The binary

algorithm for scalar point multiplications is similar to the algorithm for exponentiations in GF(p).

Therefore, the techniques, such as precomputations and sliding windows that accelerate integer

exponentiations, can also be applied in similar ways to accelerating scalar point multiplications.

Figure 2 shows the m-ary method for the scalar point multiplication of ECC, where m = 2r for

some integer r ≥ 1, and d = ⎡l / r⎤, where ⎡⎤ denotes the ceiling function. The binary method can

be treated as a special case of m-ary method with r = 1. The total number of doublings does not

change much because Step 4.1 of Algorithm 2 requires r point doublings. Nevertheless, the

number of point additions is reduced from l to d (for the worst cases) at the cost of more memory

space to store the precomputed results. If the point P is the same for many multiplications, the

precomputations need to be done only once.

Algorithm 2: m-ary method for point multiplication
INPUT: P ∈ G, and a positive integer k = (kl–1 kl–2 …k1k0)2
OUTPUT: A=kP
Precomputation for window size of r and m = 2r

1. P0 O
2. For i = 1 to m – 1 do

2.1 Pi Pi–1 + P
3. A O

Main loop
4. For j = d – 1 down to 0 do

4.1 A mA
4.2 A A + Pi where i = (kr(j+1)–1… krj)2

5. Return A
Figure 2: m-ary method for point multiplication

2.2. Binary field arithmetic

On programmable processors, an element in GF(2m) is often represented with a polynomial

whose coefficients belong to {0, 1}. The coefficients can be packed into words, with each bit

representing a coefficient. For example, an element in GF(231), x29 + x + 1, can be represented

with a word 0x20000003 on a 32-bit processor. If a polynomial has a degree of m and w is the

word size, the polynomial can be represented with ⎡(m + 1)/w⎤ words.

Addition. The addition of two polynomials a and b in GF(2m) is just bitwise exclusive-or

(xor) of the words representing a and b.

Multiplication. The multiplication of two polynomials of degree (m − 1) results in a

polynomial of degree 2m – 2. The product needs to be reduced with respect to an irreducible

polynomial f(x) of degree m. An irreducible polynomial with a few terms can be chosen to

facilitate fast reductions. In ECDSA, for example, the irreducible polynomial f(x) in GF(2163) has

only five terms: f(x) = x163 + x7 + x6 + x3 + 1. The modular reduction can be done during or after

the polynomial multiplication.

The most straight-forward algorithm for polynomial multiplications is the shift-and-add

method as shown in Figure 3, which is similar to the method for normal binary multiplications.

The difference is that the add operations are in GF(2m). When multiplying two polynomials a(x)

and b(x), we can first set the partial product c(x) to 0 if a0 = 0 or to b(x) if a0 = 1. Then we scan

the bits in a(x) from a1 to am – 1. For each bit, b(x) is first shifted to the left by one. If the scanned

bit in a(x) is 1, the new value of b(x) is also added to the partial product C. The modular

reduction can be integrated into the shift-and-add multiplication. After each shift operation, the

degree of b(x) is checked. If b(x) has a degree of m, it can be reduced to b(x) + f(x), where f(x) is

the irreducible polynomial. This method is suitable for hardware implementations where the shift

operation can be performed in parallel. However, it is less desirable for software

implementations because shifting a polynomial stored in multiple words is a slow operation that

requires many memory accesses.

Algorithm 3: Right-to-left shift-and-add field multiplication
INPUT: Binary polynomials a(x) and b(x) of degree at most m–1
OUTPUT: c(x) = a(x) • b(x) mod f(x)

1. If a0 = 1 then c(x) b(x); else c(x) 0
2. For i = 1 to m – 1 do

2.1 b(x) b(x) • x mod f(x)
2.1 If ai = 1 then c(x) c(x) + b(x)

3. Return c(x)

Figure 3: Shift-and-add algorithm for field multiplication
The comb algorithms are normally used for fast polynomial multiplications [6]. Algorithm 4

in Figure 4 illustrates the right-to-left comb algorithm. Suppose a(x) and b(x) are two

polynomials stored in t words and each word consists of w bits. Unlike the shift-and-add

algorithm, which scans the bits in a(x) one by one sequentially, the comb algorithm first tests bit

0 of all the words in a(x), from a[0] to a[t – 1], i.e., bits a0, aw, a2w, and so on. Then it tests bit 1 in

all the words, then bit 2 in all the words, and so on. Note that c(x) + b(x)•xjw in Step 2.1 can be

performed by aligning b(x) with proper words in c(x). The only step that needs shift operations is

Step 2.2. Compared to the shift-and-add method, the comb algorithm reduces the number of shift

operations from m – 1 to w – 1.

Algorithm 4: Right-to-left comb method for polynomial multiplication
INPUT: Binary polynomials a(x) and b(x) of degree at most m–1
OUTPUT: c(x) = a(x) • b(x)

1. c(x) 0
2. For k = 0 to w – 1 do

2.1 For j = 0 to t – 1 do
If bit k of a[j] is 1 then c(x) c(x) + b(x)• xjw

2.2 If k ≠ w – 1 then b(x) b(x) • x
3. Return c(x) mod f(x)

Figure 4: Right-to-left comb method for field multiplication

The left-to-right comb algorithm, as shown in Figure 5, is similar to the right-to-left comb

algorithm, but it tests the bits in the words of a(x) from the left to the right, i.e., from the most

significant bit to the least significant bit. The shift operations are performed on partial product

c(x) in Step 2.2, not on b(x). Because c(x) is twice as long as b(x), the left-to-right comb

algorithm is a little bit slower.

Algorithm 5: Left-to-right comb method for polynomial multiplication

INPUT: Binary polynomials a(x) and b(x) of degree at most m–1
OUTPUT: c(x) = a(x) • b(x)

1. c(x) 0
2. For k = w – 1 down to 0 do

2.1 For j = 0 to t – 1 do
If bit k of a[j] is 1 then c(x) c(x) + b(x) • xjw

2.1 If k ≠ 0 then c(x) c(x) • x
3. Return c(x) mod f(x)

Figure 5: Left-to-right comb method for field multiplication

The left-to-right comb algorithm does have some advantages though. In addition to keeping

the input polynomials unchanged, it can employ the sliding window technique to reduce the

number of shift operations [6]. By scanning the bits in a(x) with a window of a fixed size, the

algorithm can multiply more than one bit with b(x) at a time. The partial product c(x) is then

shifted to left by the window size. The products of b(x) and every possible value of bits in a

window are precomputed and stored in a table. Algorithm 6 shows the left-to-right comb method

with windows of width s = 4, where the number of windows in one word is d = ⎡w/s⎤. The

sliding window method reduces the number of shifts at the cost of storage overhead. A larger

window size leads to fewer shift operations but requires more space to save the precomputed

results.

Algorithm 6: Left-to-right comb method with windows of width s = 4
INPUT: Binary polynomials a(x) and b(x) of degree at most m–1
OUTPUT: c(x) = a(x) • b(x)

1. Compute Bu = u(x)•b(x) for all polynomials u(x) of degree ≤ 3
2. c(x) 0
3. For k = d – 1 down to 0 do

3.1 For j = 0 to t – 1 do
Let u = (u3, u2, u1, u0), where ui is bit (4k + i) of a[j]
c(x) c(x) + Bu• xjw

3.2 If k ≠ 0 then c(x) c(x) • x4
4. Return c(x) mod f(x)

Figure 6: Left-to-right comb method with windows

The squaring of a polynomial is much efficient than normal multiplications, taking

advantage of the fact that the representation of a(x)2 can be obtained by inserting 0’s between

consecutive bits in a(x)’s binary representation [15]. For example, if a(x) is represented with

0xFFFF, a(x)2 = 0x55555555 mod f(x).

Modular reduction. A modular reduction is needed in the multiplication and squaring

algorithms to reduce the degree of the product below m. The modular reduction is done with

polynomial long division. Let c(x) be a polynomial of degree i where i ≤ 2m – 2, and f(x) be the

irreducible polynomial of degree m. We can reduce the degree of c(x) by eliminating the highest

term xi.

c(x) = c(x)+ f (x) • x i–m. (5)

The process is repeated until the degree of c(x) is smaller than m.

If the irreducible polynomial f(x) is stored in memory like regular polynomials, i.e., its

coefficients are packed into words, Formula (5) can be done by first shifting f(x) to the left by (i

– m) bits, and then adding the result to c(x). A polynomial shift is needed for every term that has

a degree of m or larger. If memory space is not a concern, the number of shift operations can be

reduced by precomputing f(x) • xj for j = 0, 1… w–1, where w is the number of bits in a word [6].

This technique is adopted in Algorithm 7 shown in Figure 7. In the figure, Step 1 performs the

precomputation. If f(x) is the same for many reductions, Step 1 does not have to be done for

every reduction. In Step 2, bits in c(x) are scanned one by one from the highest 1. The 1’s are

eliminated by adding f(x) to c(x). Because of the precomputation, Step 2.1 does not require shift

operations on f(x).

Algorithm 7: Modular reduction (one bit at a time)
INPUT: Binary polynomials c(x) of degree at most 2m–2
OUTPUT: c(x) mod f(x)

1. Compute uk(x) = f(x) • xk, for 0 ≤ k ≤ w – 1
2. For i = 2m – 2 down to m do

2.1 If ci = 1 then
Let j = (i – m) / w and k = (i – m) – w j
c(x) c(x) + uk(x) • xjw

3. Return (c[t–1], …, c[1], c[0])

Figure 7: Modular reduction one bit per time
If f(x) has only a few terms, it can be represented more efficiently with an array that stores

the position of the terms. To perform the operations in Formula (5), we can calculate the position

of the terms after the shift left operation and flip the corresponding bits in c(x).

A faster modular reduction algorithm was described in [6]. It works for irreducible

polynomials in which the difference between the degrees of the first two terms is larger than the

word size. An example of such polynomials is f(x) = x163 + x7 + x6 + x3 + 1, in which the degree

of the leading term is much larger than that of the second term. With these types of irreducible

polynomials, multiple terms in c(x) can be eliminated at a time. In typical software

implementations, w terms can be eliminated at the same time, where w is the word size.

Inversion. The calculation of λ in Formula (2) needs a division in GF(2m), which is

normally done with an inversion followed by a multiplication. To divide a(x) by b(x), we first

obtain b(x)–1, the inverse of b(x), and then compute a(x)•b(x)–1. The classic algorithm for

computing the multiplicative inverse is Extended Euclidean Algorithm (EEA) [6].

The Almost Inverse Algorithm (AIA) in [15] is based on EEA. But unlike EEA, AIA

eliminates the 1 bit in polynomials from the right to the left. AIA is expected to take fewer

iterations than EEA. However, AIA does not give the inverse directly and needs an additional

reduction to generate the inverse. Modified Almost Inverse Algorithm (MAIA), a modification

of AIA, gives the inverse directly [6]. We do not list the details of these algorithms. The reader is

referred to references [6] and [15].

3. ECC on General-Purpose Processors

In this Section, we compare the performance of ECC algorithms on general-purpose processors.

The algorithms are implemented with C on a Debian Linux system. All the code is compiled

with gcc 3.3.5 with –O3 option. Table 1 summarizes the performance of the field arithmetic

operations on a Pentium 4 processor at 3 GHz. We used the five binary elliptic curves that NIST

recommended for ECDSA [3].

3.1. Addition

As expected, the addition of polynomials is the fastest field operation. For each field, Table

1 shows two algorithms, one for the addition of two polynomials and the other for three

polynomials. As we can see, adding three polynomials is faster than invoking the addition of two

polynomials twice. The addition of three polynomials reduces the number of memory accesses

because the results from the first addition do not have to be saved to memory and then loaded

back for the second addition. Combining two additions in one loop also reduces the control

overhead. We did similar optimizations to the shift left and add operations.

Table 1: Execution time of field operations (Unit: ns)

 m = 163 233 283 409 571

Additon
2 polynomials 31.6 40.7 43.6 65.7 81.6

3 polynomials 37.5 48.0 49.2 71.0 86.7

Modular
reduction

By bit 8467.0 8384.4 11016.1 12802.1 21668.9

By word 285.8 226.3 399.5 343.0 749.8

Fixed poly 40.9 46.7 60.5 69.9 107.7

Multiplication

R-to-L comb 5870.5 8251.4 9891.7 16413.6 29180.9

L-to-R comb
4-bit window 3118.4 4172.4 5235.5 8737.0 13055.2

Squaring 489.0 495.4 671.3 736.9 1281.5

Inversion

EEA 20016.8 32221.7 40065.7 71128.8 119246.4

MAIA 34388.5 48682.6 68747.4 110253.6 184128.1

EEA(opt.) 14989.6 25139.5 32898.0 60997.9 106894.7

3.2. Modular reduction

Since all the irreducible polynomials in ECDSA have either three or five terms, we use an

array to store the position of the terms.

Three reduction algorithms discussed in Section 2.2 are compared in Table 1. The first

algorithm (by bit) eliminates one term at a time while the second one (by word) eliminates up to

32 terms each time as the word size on Pentium 4 is 32. The second algorithm is about 27x to

37x faster than the first algorithm. The third algorithm also eliminates 32 terms at a time, but is

optimized specifically for a fixed irreducible polynomial. The third algorithm is the fastest of the

three for all the key sizes. However, it requires different implementations for different

irreducible polynomials and for processors of different word sizes.

Generally, field operations become slower as the operand size increases. However, we

noticed that the modular operations may be faster on larger operands. The reason is that the

irreducible polynomials have different numbers of terms. The irreducible polynomials in GF(2233)

and GF(2409) have three terms while the others have five terms.

3.3. Multiplication

Three multiplication algorithms are compared in Table 1. The first one is the right-to-left

comb algorithm. As we discussed in Section 2, it is slightly faster than the left-to-right comb

algorithm because the shift operations are not performed on the partial product. The second

multiplication algorithm is the left-to-right comb algorithm with a window size of four bits. With

the space overhead for storing 16 precomputed products, the second algorithm is 1.8 to 2.2 times

faster than the right-to-left comb algorithm.

The third multiplication algorithm presented in Table 1 is the squaring algorithm. Our

implementation utilizes a table of 16 bytes to insert 0’s into a group of four bits. As we can see,

squaring is much faster than regular multiplications. When m = 163, the squaring is about six

times faster than the comb algorithm with a window of 4 bits. When m increases, the ratio

becomes even larger.

A modular reduction is needed in the multiplication algorithms. We used the second

modular reduction algorithm (by word) that eliminates 32 terms at a time.

3.4. Inversion

The inverse operation is the most time-consuming operation. Table 1 compares three inverse

algorithms. The first one is EEA and the second one is MAIA. Although MAIA may take fewer

iterations than EEA, our implementations show that MAIA is about 50% to 70% slower than

EEA for all the key sizes. Our results confirm the findings in [6], although they are contrary to

those in [15][16].

By profiling EEA, we noticed that most of the execution time was spent on two functions,

b_length and b_shiftleft_xor. b_length searches for the highest 1 in a polynomial.

It is used to obtain the degree of polynomials. b_shiftleft_xor shifts a polynomial to the

left and adds the result to another polynomial. It is used to perform the shift and add operations

in EEA. When m = 163, b_length accounts for 55.6% of the total execution time, and

b_shiftleft_xor for 25.5%.

To accelerate EEA, we tried to minimize the overhead on determining the degree of

polynomials. In addition to optimizing b_length, we also reduced the number of times we call

b_length. After the improvements, the time spent on b_shiftleft_xor increased to

41.0%, and that on b_length decreased to around 23.8%. When m = 163, the optimized EEA

has a speedup of 1.3 over the original implementation.

The inversion is still the slowest field operation after the improvements. Projective

coordinate systems are options to avoid expensive inversions with the cost of more

multiplication operations [6][9][17]. One of the fastest projective coordinate systems is the one

proposed by Lopez et al. in [9]. In this system, a projective point (X, Y, Z), Z ≠ 0 corresponds to

the affine point (X/Z, Y/Z2) and the equation of the elliptic curve is changed to

Y2 + X•Y•Z = X3•Z + a•X2•Z2 + b•Z4 (6)

To compare different coordinate systems, we look at how many multiplications and

inversions need to be done in a point doubling or addition operation. We do not count squaring

operations because they are much faster than multiplications. In the affine coordinate system we

have discussed so far, a point addition needs one inversion and two multiplications. In the

projective coordinate system, a point addition does not require inversion; however, it needs 14

multiplications, as shown in Table 2 [6]. In the table, I and M denote inversion and multiplication,

respectively. In the left-to-right binary algorithm, point additions are done with mixed

coordinates as the intermediate results are represented with projective coordinates while the base

point is with the affine coordinates. Assume that half of the scalar bits are 1’s. The projective

coordinate can achieve a better performance only when a field inversion is at least 3.7 times

slower than a multiplication. When the right-to-left binary algorithm is adopted, however, both

the intermediate point and the base point have to be represented with projective coordinates.

Hence, the projective coordinates outperform the affine coordinates only when a field inversion

is 5.3 times slower than a multiplication. In our implementations, the optimized EEA is about 2.6

times slower than the right-to-left comb multiplication in a 32-bit system for m=163. When m =

571, the cost ratio of inversion and multiplication is about 3.66. Therefore, adopting projective

coordinates does not provide performance advantages in these cases.

Table 2: Cost of point additions and doublings [6]

Coordinate system General addition General addition
(mixed coordinates)

Doubling

Affine 1I , 2M — 1I , 2M
Projective (X/Z, Y/Z2) 14M 9M 4M

3.5. Field operations with different word sizes

We now examine how the word size of processors affects the choice of algorithms. Table 3

lists the performance of 163-bit binary field operations with different word sizes.

Table 3: Performance of 163-bit binary field operations (Unit: ns)

Operations Word size 32 16 8

Addition
Two polynomials 31.6 37.9 74.6

Three polynomials 37.5 59.0 78.6

Modular
reduction

By bit 8467.0 7093.2 5855.2
By word 285.8 472.3 681.8

Fixed polynomial 40.9 63.1 129.4

Multiplication
R-to-L comb 5870.5 5219.4 8492.1

L-to-R comb (4-bit window) 3118.4 3794.6 7126.7
Squaring 489.0 770.1 804.7

Inversion
EEA 20016.8 36687.2 48250.9

MAIA 34388.5 41654.5 75933.0
EEA(opt.) 14989.6 31408.0 39705.4

Generally, as the word size decreases, the time needed for each operation increases. Modular

reduction by bit is an exception. In this algorithm, the function that searches for the highest 1 in a

word accounts for a significant portion of the total execution time. As a result, the function is

slower on 32-bit words than on 8-bit words. Another exception is that right-to-left comb

algorithm is faster with 16-bit words than with 32-bit words. This is because when the word size

decreases, the number of shift operations in the comb algorithm deceases although each shift

operation takes longer time. Overall, the difference between the right-to-left comb algorithm and

the left-to-right comb algorithm with 4-bit windows becomes smaller as the word size reduces to

8.

We also noticed that the performance of inversion degrades faster than that of multiplication.

With 32-bit words, the inversion is only 2.6 times slower than the right-to-left comb algorithm.

When the word size changes to 8 bits, the inversion is about 4.7 times slower. As a result,

adopting projective coordinates would provide better performance although more storage space

is needed.

3.6. Performance of point multiplication

Table 4 summarizes the performance of scalar point multiplications. The algorithm we

implemented here is the basic binary algorithm that requires about m/2 additions and m

doublings. The binary field arithmetic algorithms we used include the right-to-left algorithm for

filed multiplications and the “by word” modular reduction. As for inverse, the results of both the

original and the optimized EEA are presented. Please note that all the algorithms we chose do

not require precomputations. This is critical for systems with a small amount of memory. Also,

the algorithms are not specific for processors of a particular word size.

Table 4: Performance of scalar point multiplications (Unit: ms)

Word size Algorithm m
163 233 283 409 571

8-bit
EEA 18.6 45.6 74.8 195.3 490.5
EEA(opt.) 14.2 35.1 58.1 154.7 397.7
Speedup 1.31 1.30 1.29 1.26 1.23

16-bit
EEA 14.3 33.6 53.2 147.3 358.7
EEA(opt.) 10.6 25.7 41.0 118.0 294.5
Speedup 1.35 1.31 1.30 1.25 1.22

32-bit
EEA 10.7 21.6 30.5 75.4 169.0
EEA(opt.) 6.1 13.2 19.2 49.9 114.5
Speedup 1.75 1.64 1.59 1.51 1.48

We compiled the same set of algorithms for three different word sizes, 8, 16, and 32 bits,

and measured the performance on a Pentium 4 at 3 GHz. Although the physical word size is

always 32-bit on Pentium 4, we use only 8 bits (or 16 bits) of the datapath when the specified

word size is 8 bits or 16 bits. For each word size, the first two rows are the execution time of a

scalar point multiplication in millisecond. The first row is for the original EEA and the second

row for the optimized EEA. The third row is the speedup of the optimized EEA. We can see that

the optimized EEA accelerates the scalar point multiplication significantly. The speedups range

from 1.48 to 1.75 on 32-bit systems. The speedups are smaller when the word size is 8, ranging

from 1.23 and 1.31.

As expected, ECC has a better performance with a larger word size, and the performance

decreases as the key size increases. However, the performance degradation is worse with small

word sizes. A 571-bit multiplication is 18.8 times slower than a 163-bit multiplication with 32-

bit words while the ratio is 28 times with 8-bit words.

4. ECC on an 8-bit Processor

This section evaluates the ECC implementations on an 8-bit processor Atmega 128 [18].

Atmega 128 is a low-power microcontroller based on the AVR architecture. It contains 128 KB

of FLASH program memory and 4 KB of data memory. ATmega128 can be operated at

frequencies up to 16 MHz and execute most instructions in one cycle. Atmega 128 and other

microcontrollers in its family have been used in many wireless sensor networks [18][19].

Our ECC implementation can be compiled in 8-bit mode for the AVR architecture with avr-

gcc 3.3.2. We simulated the binary code with Avrora [20], a set of simulation and analysis tools

developed at UCLA for the AVR microcontrollers. On Atmega 128, it takes about 151 million

cycles to perform a 163-bit scalar multiplication with the original EEA, as shown in Table 5.

Assuming a clock rate of 8 MHz, it is about 19.0 seconds per multiplication. The optimized EEA

reduces the number of cycles to 133 million and takes 16.7 seconds.

We can improve the performance of ECC by replacing the general modular reduction with

the fastest algorithm fixed for the particular irreducible polynomial. The substitution results in a

speedup of 1.2 over the optimized EEA. The scalar point multiplication can now be done in 13.9

seconds.

Table 5: Performance of 163-bit ECC on Atmega 128

 Number of cycles Time (sec.)
EEA 151,796,532 19.0

EEA(opt.) 133,475,171 16.7
EEA (opt.) with fast modular reduction 111,183,513 13.9

Projective coordinates 120,072,952 15.0
Projective coordinates with

fast modular reduction 97,770,030 12.2

Since the cost ratio of inversion and multiplication is around 4.7 on 8-bit processors,

projective coordinates have better performance than affine coordinates. This can be seen in Table

5. The projective coordinate performed slightly (about 12%) better than affine coordinates.

However, more memory space is required to store points in projective coordinates.

The memory usage of our implementations is summarized in Table 6. The implementation

reported in [5] takes 34 seconds and needs 34 KB of memory. Our implementation is about 2.7

times faster and needs less than half the memory.

Table 6: Memory requirements of ECC

Sections Size (byte)
.data 142
.text 10462
.bss 674

.stab 2448
.stabstr 2029

Total 15755

Table 7 lists the execution time percentage of the three most time-consuming operations in

163-bit ECC. 69.5% of the execution time is on inversion, more than twice as much as

multiplication (25.7%) and squaring (3.6%) combined.

Table 7: Important operations in 163-bit ECC

Operations Time
Multiplication 25.7%

Squaring 3.6%

Inversion 69.5%

5. Architectural Support for ECC

This section investigates several architectural supports for ECC and then discusses how these

supports will affect our choice of coordinate systems.

5.1. Extension of Instruction Set Architecture

We evaluated the performance of ECC on the Atmega system with several ISA

improvements, hoping to find cost-effective methods for improving ECC’s performance on 8-bit

processors. We compared improved systems with the baseline, the best result in Table 5. The

comparison is presented in Table 8. The first thing we did is to rewrite critical routines in ECC

with assembly language, by which we achieved a speedup of 1.18. The assembly code also

provides a basic infrastructure for exploring new instructions. Based on the assembly code, we

experimented with three instructions: binary field multiplications, shift instructions with variable

shift amounts, and most-significant 1 instruction.

While integer multiplication instructions are available in most processors, the

multiplications in GF(2m), which are needed in ECC over binary field, are not supported

efficiently. Recently, some new instructions have been proposed to accelerate binary field

multiplications in processors. For example, binary field multiplication instructions can achieve a

speedup of more than 20 times on 64-bit processors [13].

Table 8: Comparison of architectural techniques

Method Number of cycles Speedup
Baseline 111,183,513 1

Critical routines in assembly language 94,223,316 1.18

Hardware supported GF(2m)
multiplication

86,862,119 1.28

Shift by multiple bits 36,938,044 3.01
Most significant bit 1 instruction 92,652,927 1.20

 All ISA improvements 28,581,879 3.89

To evaluate the effectiveness of binary field multiplication instructions on 8-bit processors,

we modified the Avrora simulator and included binary filed multiplication instructions. As

described in [13], the multiplication can be supported in three different ways. 1) The higher and

lower halves of the product are written in parallel to two registers. 2) Two separate instructions

write either the lower or the higher half of the product to two registers. 3) Only one instruction

that generates the lower half of the product is defined. Thus, a full multiplication also requires a

bit-level reverse instruction that reverses the order of bits in a register.

Our implementation took method 1. We included an instruction that generates both higher

and lower halves of the product and places them into registers R0 and R1. For example, the

following instruction multiplies two 8-bit source registers RS0 and RS1 and stores the 16-bit

product into R0 and R1.

GFMUL RS0, RS1

We found that the hardware supported binary filed multiplication is not very effective in

accelerating ECC on 8-bit processors if the inverse operation is performed. It achieves a speedup

of 1.28 over baseline and gains only 8% improvement over the assembly version. The reason is

that the inverse operation accounts for the most of the execution time. On the other hand, the

hardware supported binary field multiplications do improve the performance of polynomial

multiplications and thus change the performance ratio of inversion and multiplication. As a result,

projective coordinates become a better choice and provide better performance.

As mentioned in Sections 3.3 and 3.4, the shift instruction is used extensively in the

implementation of ECC. However, the shift instruction in the AVR instruction set can shift only

one bit each time. Thus we added a shift instruction that supports an arbitrary shift amount. This

type of instructions is supported in many processors but not available in existing AVR

instruction set. Because of the short instruction words, the shift amount cannot be specified in the

shift instruction explicitly. In our implementation, we decided to use register R0 to store the

shift amount. For example, the following two instructions shift Rs to left by 5 bits and store the

result in Rd.

LDI R0, 5
SHIFT.L Rd, Rs

The shift instruction gives us the best performance improvement of the three methods we

evaluated. It achieves a speedup of 3.01 as shown in Table 8. The shift instruction with arbitrary

shift amounts only accelerates operations like inversion in which the shift amounts are often

more than one. It does not help the multiplication operations in which shift amounts are always

one. Because the inversion accounts for a large portion of the total execution time (see Table 7),

the shift instruction results in a large speedup.

The third instruction we experimented is to find the index of the most significant 1 in a

register. This instruction helps us determine the degree of a polynomial. As described in section

3.4, b_length is an important function. The optimizations on the function have accelerated

inversion by a speedup of 1.3. With the most significant 1 instruction, we can accelerate the

inversion operation further. The most significant 1 instruction is defined as follows.

MSB Rd, Rs

The instruction store in Rd the position of the most significant 1 in Rs. For example, when

Rs = 1, Rd is 0. When Rs = 8, Rd is 3.

While integer multiplication instructions are available in most processors, the

multiplications in GF(2m), which are needed in ECC over binary field, are not supported

efficiently. Recently, some new instructions have been proposed to accelerate binary field

multiplications in processors. For example, binary field multiplication instructions can achieve a

speedup of more than 20 times on 64-bit processors [13].

Table 8 shows that the MSB instruction can increase the speedup over the baseline to 1.20

even if used alone. The benefit of MSB is not significant on 8-bit microprocessors because it is

relatively fast to locate the most significant 1 among 8 bits. However, the instruction will have

larger speedups on 32 or 64-bit microprocessors.

With all the three instructions, we reduced the scalar point multiplication of ECC on 8-bit

microcontroller to 28,581,879 cycles, achieving a speedup of 3.89 over our baseline architecture.

5.2. Elliptic Curve Point Representations

The performance ratio of inversion and multiplication has changed as we added new

instructions. As a result, adopting projective coordinates may become preferable. Table 9

illustrates how the performance of inversion and multiplication is affected by the new

instructions.

With the new instructions, Inversion is 3.4 times faster than in the baseline architecture.

Nevertheless, the multiplication operation has been accelerated even more. Compared with the

baseline architecture, the new instructions result in a speedup of 9.6 for multiplications.

Consequently, the performance ratio of inversion and multiplication has been increased

significantly from 5.6 to 15.9.

Table 9: Performance ratio of binary field inversion and multiplication

Method Inversion
(number of cycles)

Multiplication
(number of cycles)

Inv./Mul.
ratio

Baseline 397985 71580 5.6
Optimized 118642 7479 15.9

Since the inversion is now much more expensive than the multiplication, it is desirable to

adopt projective coordinates to represent the points on the curve. We adopted the projective

coordinates discussed in section 3.4 and implemented the left-to-right binary algorithm with the

point additions in mixed coordinates. Table 10 shows the performance comparison between

affine and projective coordinates. As expected, the projective coordinates have better

performance. They are more than twice faster than affine coordinates and achieve a speedup of

8.23 over the baseline architecture. Assuming a clock rate of 16MHz, a 163-bit ECC can be

performed in about 0.85 seconds.

Table 10: Performance for different coordinates

Coordinate system Number of cycles Speedup*

Affine 28,581,879 3.89
Projective (X/Z, Y/Z2) 13,515,076 8.23

*Compared with the baseline performance in Table 8

6. Conclusions and Discussions

In this paper, we studied the software implementations of ECC and examined how some

architectural features, such as word size and ISA, affect the performance of ECC. We first

examined the algorithms for ECC over binary filed. After comparing algorithms for the major

field operations that are required in ECC, we identified a set of efficient algorithms suitable for

resource-constrained systems. We also compared the performance of these algorithms for

different word sizes. The change of word sizes result in different choices of algorithms. We

simulated our implementations on an 8-bit microcontroller. Our implementations are more than

twice faster than previous results without instruction set architecture extensions or hardware

accelerations.

We also evaluated three instructions for accelerating ECC: binary field multiplications, shift

with arbitrary shift amounts, and index of most significant 1. Combining all three instructions,

we can achieve a speedup of 3.89. More importantly, the new instructions make the projective

coordinates a better choice for point representations. The projective coordinates achieves a

speedup of 8.23 over the baseline architecture. It takes about 0.85 seconds to perform a 163-bit

scalar point multiplication on 8-bit AVR processors at 16MHZ.

We only focus on software implementation of ECC in this paper. Application-specific

hardware can be integrated into processors to accelerate the multiplication and inversion

operations further. When new hardware is implemented, the performance of multiplication and

inversion should be evaluated to choose the best point representations for better performances.

References:

[1] N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of Computation, vol. 48, pp. 203-

209, 1987.

[2] V. Miller, “Uses of elliptic curves in cryptography”, Advances in Cryptology: proceedings of

Crypto’85, pp. 417-426, 1986.

[3] National Institude of Standards and Technology, Digital Signature Standard, FIPS

Publication 186-2, February 2000.

[4] Y. Choi, H. W. Kim, and M. S. Kim, “Implementation of Elliptic Curve Cryptographic

coprocessor over GF(2163) for ECC protocols,” Proceedings of the 2002 International Technical

Conference on Circuits/Systesm, Computers, and Communications, pp. 674-677, July 2002.

[5] D. J. Malan, M. Welsh, M. D. Smith, “A public-key infrastructure for key distribution in

TinyOS based on elliptic curve cryptography,” First Annual IEEE Communications Society

Conference on Sensor and Ad Hoc Communications and Networks, pp. 71-80, October 2004.

[6] D. Hankerson, J. Hernandez, A. Menezes, “Software implementation of Elliptic Curve

Cryptography over binary fields,” Proceedings of Workshop on Cryptographic Hardware and

Embedded System, vol. 1965 of Lecture Notes in Computer Science, pp. 1-24, 2000.

[7] J. Lopez, R. Dahab, “High-speed software multiplication in F(2m)”, Proceedings of

INDOCRYPTO, pp. 203-212, 2000.

[8] N. Gura, A. Patel, A. Wander, H. Eberle, S. C. Shantz, “Comparing elliptic curve

cryptography and RSA on 8-bit CPUs,” Proceedings of Cryptographic Hardware and Embedded

Systems (CHES), pp. 119-132, 2004.

[9] J. Lopez, R. Dahab, “Improved algorithms for elliptic curve arithmetic in GF(2n)”, Selected

Areas in Cryptography – SAC’98, vol. 1556, pp. 201-212, 1999.

[10] S. Zhu, S. Setia, S. Jajodia, “LEAP: efficient security mechanisms for large-scale distributed

sensor networks,” Technique Report, August 2004.

[11] C. Karlof, N. Sastry, D. Wagner, “TinySec: a link layer security architecture for wireless

sensor networks,” SenSys’04, November 2004.

[12] A. Perrig, R. Szewczyk, et al., "SPINS: security protocols for sensor networks", Wireless

Networks, Vol.8, No. 5, pp. 521-534, September 2002.

[13] A. Murat Fiskiran and Ruby B. Lee, Evaluating Instruction Set Extensions for Fast

Arithmetic on Binary Finite Fields, Proceedings of the International Conference on Application-

Specific Systems, Architectures, and Processors (ASAP), pp. 125-136, September 2004.

[14] I. Blake, G. Seroussi, N. Smart, Elliptic Curves in Cryptography, Cambridge University

Press, 1999.

[15] R. Schroeppel, H. Orman, S. O’Malley and O. Spatscheck, “Fast key exchage with elliptic

curve systems”, Advances in Cryptogaphy – Crypto ’95, pp. 43-56, 1995.

[16] J. Solinas, “Efficient arithmetic on Koblitz curves”, Designs, Codes and Cryptography, vol.

19, pp. 195-249, 2000.

[17] D. Chudnovsky, G. Chudnovsky, “Sequences of numbers generated by addition in formal

groups and new primality and factoring tests”, Advances in Applied Mathematics, vol. 7, pp.

385-434, 1987.

[18] Atmel Corp., 8-bit Microcontroller with 128K Bytes In-System Programmable Flash:

ATmega 128, 2004.

[19] I. Crossbow Technology, "MICA2: wireless measurement system",

http://www.xbow.com/Products/ Product_pdf_files/Wireless_pdf/6020-0042-4_A_MICA2.pdf.

[20] Ben L. Titzer, Daniel K. Lee, Jens Palsberg, “Avrora: scalable sensor network simulation

with precise timing”, Proceedings of IPSN, 2005.

