Non-Conventional Basis of Finite Fields
- implementing a fast communication between two
elliptic curve cryptosystems in software and
hardware.

Sang Ho Oh, Chang Han Kim, Joong Chul Yoon, Hee Jin Kim, and Jong In Lim

Abstract— Finite field arithmetic is becoming increasingly
important in cryptographic applications. In particular cryp-
tographic primitives based on the discrete logarithm prob-
lem over elliptic curve groups are accomplished essentially
by arithmetic in finite fields. It is well known that the ef-
ficiency of finite field arithmetic depends strongly on the
particular way in which the field elements are represented.
The finite field representation can be classified according to
the choice of basis - a polynomial basis in software imple-
mentation and a normal basis in hardware implementation
conventionally. The big problems of the communication be-
tween one Elliptic Curve Cryptosystem(ECC) in software
implementation and another ECC in hardware implemen-
tation result from the difference in the choice of basis. In
this paper we discuss the cost of the communication be-
tween such cryptosystems and propose the use of a non-
conventional basis representation[3] providing the improved
communicaton.

Keywords— Finite Fields, Basis Conversion, Elliptic Curve,
and Public Key.

I. INTRODUCTION

lliptic Curve Cryptosystem(ECC) is well-suitable for
Euse in constrained environments' such as mobile devices
and smart cards, since it provides more efficient, high-
strength security with smaller key sizes than any known
Public-key cryptosystem. We focus on the interoperabil-
ity of a hardware-based system(e.g. cryptographic VLSI
chip-embedded mobile devices) and a software-based sys-
tem (e.g. smart cards) for ECC. The implementation of
ECC is accomplished essentially by arithmetic in finite
fields, in particular GF(2") of characteristic two or GF'(p)
of odd prime p. In VLSI implementation or smart card
with no additional coprocessor for modular exponentiation
the common choice for the underlying finite field is a class
of fields GF'(2"). The efficient computation of field arith-
metic depends greatly on the particular ways in which the
field elements are represented. These most efficient ways
are a polynomial basis representation and a normal basis
representation. The difficulty of communication between
these two systems for ECC results from the choice of basis;

S. H. Oh, J. C. Yoon,and J. I. Lim are with the Department
of Mathematics, Korea University, Seoul, Korea. E-mail: gaus-
math@bora.dacom.co.kr .

H. J. Kim is with the Telemann Co., Seoul, Korea.

C. H. Kim is with the Department of Computational Mathematics,
Semyung University, Jecheon, Korea. E-mail: chkim235@chollian.net
. Research supported by The Basic Research Grants(97-0100-13-01-
5),Korea Science and Engineering Foundation, 1997

limits in memory usage and processing power.

the most common choices of basis for software implementa-
tion and hardware implementation are a polynomial basis
and a normal basis respectively. Interoperability between
these systems using the two different types of field rep-
resentation needs a conversion of basis by a appropriate
change-of-basis matrix. Since the size of key for ECC is
becoming increasingly large in proportion to the growth of
computing power, this method seems to be a significant
burden for the space-sensitive systems such as mentioned
above. To enhance usability of the space-sensitive systems
Kaliski Jr.et al presented algorithm for the storage-efficient
finite field basis conversion[2]. The time complexity of this
algorithm for a basis conversion amounts to 10% ~ 20%
of one elliptic curve scalar multiplication according to a
choice of basis. Such a fact gives us some motive for the
communication with no basis conversion.

In this paper we discuss the details for the communi-
cation of systems using two different basis representations
and propose the use of non-conventional basis represen-
tation providing the improved communication. Hereafter
let’s assume a matrix? for a basis conversion to be precom-
puted and consider finite fields GF(2").

II. DEScRIPTION OF ELLIPTIC CURVE CRYPTOSYSTEMS

In this section we describe briefly a public-key encryption
and a digital signature for elliptic curve®and look into how
a communication between two ECCs using different bases
is performed.

A. Public-Key Encryption Scheme

Alice(using system A) wants to send a secure message
M to Bob(using System B).

Case I: Between two systems using one basis

a. Setup

1. E(a,b)* is an elliptic curve defined over the field
GF(2™).

2. P is a base point of prime order N in E(GF'(2")).

b. Key Generation
1. Choose a statistically unique and unpredictable integer

2n-by-n matrix with entries in GF(2).

3 American National Standard X9.62 and X9.63.

4As a matter of convenience we denote a elliptic curve F as a pair
of field elements E(a,b) where E : y? + zy = 2% + az? + b.

1<d<N.
2. Compute @) = dP.
3. Bob has the private key d and announces the public

key Q.

c. Encryption

1. Choose a statistically unique and unpredictable integer
1<k<N.

2. Compute P' = kP, Q' = kQ and C = Q" @ M 5.

3. Alice sends (P, C) to Bob.

d. Decryption
1. Compute dP' @ C.
2. Bob obtains Alice’s message M.

Case II: Between two systems using different bases

Suppose a basis By of system A differs from another basis
B, of system B and let T be a change-of-basis matrix from
B() to Bl.

First of all for system B’s user to decrypt a message M
the parameter E(a,b) and the point P’ defined in system
A must be converted to adequate forms(denoted by E(a,b)
and P’ respectively) by a matrix T, since they were repre-

sented by a basis By.%

d’. Decryption

1. Compute dP’.

2. Convert dP’ to dP' by a matrix I'"1.
3. Compute dP' P C.

4. Bob obtains Alice’s message M.

Note 1: dP' = dP' where dP’ is the converted form of
dP' by a matrix T’

In order to decrypt a message M we must convert 6 field
elements. A basis conversion and a field multiplication in
a finite field GF(2") require 2n? —n and n? bit operations
respectively. As a result, a communication between two
systems using different bases takes additionally times for
12 field multiplications and storages for a matrix I' and an
inverse matrix of I'.

B. Digital Signature Scheme

Alice(using system A) wants to send a message M with
her signature (r,s) to Bob(using System B).

Case I: Between two systems using one basis

The Setup and Key-Generation of Digital Signature
Scheme is identical with those of Public-Key Encryption
Scheme.

c. Signature Generation

1. Choose a statistically unique and unpredictable integer
1<k<N.

2. Compute kP = (z1,y1).

3. Compute r = 21 mod N.

5M can be consider as a bits-string and EB is an exclusive OR.
6 A conversion of basis may be done before or after sending a mes-
sage .

Compute e = H(M)".
Compute s = k(e + dr) mod N.
Alice sends (r, s), M to Bob.

. Signature Verification

Compute e = H(M).

Compute s~ ! mod N.

Compute u; = es~! mod N.
Compute us = rs~! mod N.
Compute ui P+ u2Q = (z1,y1).
Compute v = 1 mod N.

Bob accepts the signature if v = r.

N OtE WD = oot

Case II: Between two systems using two bases

Like a case of Public-Key Encryption, consider a basis
By of system A, a basis B; of system B and a change-of-
basis matrix T

The verification of a signature (r,s) can be described

using the converted forms (denoted by E(a,b), P and Q

respectively) of the parameter F(a, b), the point P and the
point @ by a matrix I'.

d’. Signature Verification

1. Compute e = H(M).

2. Compute s~ mod N.

3. Compute u; = es~ ' mod N.

4. Compute us = rs~! mod N.

5. Compute u; P + u»Q = (7, 77), where Z7 and 77 are
the converted forms of z; and y; by a matrix I.

6. Convert Z1 to 21 by a matirix T ~!.

7. Compute v = z; mod N.

8. Bob accepts the signature if v = 7.

Note 2: u1ﬁ+u2§ = kP where kP is the converted form
of kP by a matrix I, from the following fact:

(es™' mod N)P + (rs~' mod N)(dP)
= (es ' mod N)P + (drs™' mod N)P
= ((e4dr)s™' mod N)P
= kP =kP.
Also in case of Digital Signature a communication between
two systems using different bases takes additionally times

for 14 field multiplications and spaces for a matrix I' and
an inverse matrix of T

u P + U2§

III. SPACE AND TIME COMPLEXITIES

Compared to the time complexity of a scalar multiplica-
tion ® over an elliptic curve group, that of a basis conversion
is hardly critical. But the space complexity of two change-
of-basis matrices I' and I'"!, that is the additional storage
of 2n? bits is considered to be a serious load in practical
implemetations, in particular in hardware implemetation.
Recently the time complexity of algorithms of the stoage-
efficient finite field basis conversion introduced by Kaliski
Jr.et all2] amounts to 10% ~ 20% of one elliptic curve
scalar multiplication according to a choice of basis.

7H is a hash function
8it needs 10n field multiplications and 6.5n field squarings.

The cryptosystems based on the arithmetic operations
of finite fields depend greatly on the finite field basis rep-
resentation. It is known typically that a polynomial ba-
sis representation and a normal basis representation are
most suitable for a software implementation and a hard-
ware implementation respectively. The communication of
two cryptosystems in software implementation and hard-
ware implementation needs a basis conversion. Now we
are ready for introducing a non-conventional basis repre-
sentation .

IV. NON-CONVENTIONAL BASIS REPRESENTATION

In this section we show that the proposed basis repre-
sentation gives the very efficient results in both of software
implementation and hardware implementation in compar-
ison with the previous results.

Definition 1: If a subset B = {a,a? a®,---,a"} of
GF'(2") is linearly independent over GF'(2), then we’ll call
a set B an anomalous basis of GF(2™) over GF(2).

Let f be a monic irreducible polynomial of degree
n over GF(2) where a is a root of f. Then the set

{a,a? a3 .-+, a"} is linearly independent over GF(2).
Note that an anomalous basis {a,a?, a3,---, a"} is not
equal to a polynomial basis {1,a,a? - -, @'} over

GF(2). We'll pay attention to a special case of a generating
polynomial f, that is all-one-polynomials(AOP), since the
finite field arithmetic operations derived from such poly-
nomials are performed very efficiently in hardware imple-
mentation.

A. Software Implementation

Let B = {a,a% a®,---,a"} be an anomalous basis of
GF(2™) over GF(2) where a is a root of AOP of the de-
gree n. Let a and b be the elements of a finite field GF'(2").
Then they can be represented by a basis B as follows:

a=3Y",a; 10" and b=3%" b, ;0!
where a;,b; € GF(2) for each i € {0,1,2,---,n — 1}.

The field multiplication consists of two steps, that is the
product of two polynomials and the reduction using the
identity ! = 1. The squaring operation is of the simple

vector-form . For example, if n = 10 then a®? can be
described as (as, ag, ag, a1, ar, as, as, as, ag, aq).

Note 3:
n 2
i=1

2m 2
a;_1¢
i=1

9The coordinate vector (ap, a1, +,an_1) with the ordered anoma-
lous basis B can be interpreted as X7 a;_10".

»
Il

2m
— Z (11;10427.’
i=1
2m
Z ai,la%

m
= E ;1 CMQZ +
i=1 i=m+1

m m

2i 2i—1

= E a;j_1¢x +E Qpygi—1Q .
i=1 i=1

where n = 2m for some positive integer m.

Almost Inverse algorithm[6] has been known as the most
improved algorithm of multiplicative inversion. it is appli-
cable to computing a multiplicative inverse of non-zero field
elements represented by an anomalous basis. To describe
multiplicative inversion and Almost Inverse algorithm we
identify GF(2") with a residue class of polynomial ring
over GF'(2), that is

GF(2") = GFQ2)[=]/(f)

Given a non-zero polynomial A(z) of degree less than or
equal to n — 1, the inverse of A(z) is a polynomial B(z) of
degree less than or equal to n — 1 such that

A(z)B(z) =1 mod f.
Almost Inverse algorithm computes B(z) and k such that
A(x)B(z) = z* mod f.

where degree of B < n and a nonnegative integer k is
uniquely determined. Suppose the degree of A(z) is equal
to n and A(z) is not same with f. We’ll show Almost In-
verse algorithm to find the almost inverse B(z) of A(zx).

Algorithm 1: (Almost Inverse Algorithm)
Intialize integer & = 0, and polynomials B = 1,C =0,
F=AG-=f.
loop:
1. While the constant term of F' is zero, do F' = F/z,
C=Cxz, k=k+1.
2. If F =1, then return B, k.
3. If deg(F') < deg(@), then exchange F', G and

exchage B, C.
4. F=F+G,B=B+C.
Goto loop.

Let F(z) = x*0 % F'(z) for a polynomial F'(z) with the
non-zero constant term and a positive!® integer k. Almost
Inverse algorithm applied to F'(z) computes the almost
inverse B'(z) of F'(z) such that

F'(z)B'(z) = 2" mod f

for a nonnegative integer k’. To compute the multiplicative
inverse of F(z) we need to divide B'(z) by az*+¥ . The
remainder is left to the reader.

10The anomalous basis representation does not include a constant
term.

A s n(bits data flow) cs cs] cs
boby.b g n E E : =
n i Al Al Al Al Al Al | Al AL
i
i
P P P P P
L d , Sl el & Cna
/ T T T L
v v v v
v { { v
€ € € €1
Fig. 1. Multiplier Architecture
. . . an—-1 Op—-2 0p-3 0On—4 ao
Arithmetic in the fields GF(2'%9) derived from an an] an \ an ; an) a
anomalous basis, was implemented in the C-language on an71 an72 anig an74 ao
a Pentium 120. In Table 1 we give the running times for D= " " e
the operations of squaring, multiplication and inversion in : :
i seconds and compare our results with those of [7] 1 Ap—1 Qp_9 Gp_3 GQAp_4 ag
anomalous basis | standard basis bo
using AOP using trinomial b1
multiplication 51.4 71.8 and [blg = ba
squaring 1.5 2.7 :
inversion 161.4 225 b
n—1

Table 1. Time for field operations

B. Hardware Implementation

The hardware implementation of field arithmetic using
an anomalous basis representation was introduced already
in [3]'2 . We’ll brief the reader on a hardware architecture
for a multiplier. The definitions and the notations in the
section IV-A is also valid here. The multiplication of two
field elements a,b can be rewritten using matrix forms as
follows:

axb=(C+D)bls=E

, where
0 an1 an2 an-3 ay
ag 0 n—1 Qp—2 a
C = a ag 0 ana as
ap—2 Ap-3 Gp—-4 Aap-5 " 0

IThe work implemented arithmetic in GF(2'77) using Pentium
133.

12The multiplier mentioned here was originated from [3].

Let C[blg = (co,c1,¢2,- -+, ¢n_1), D|blg = (d,d,d,---,d)
and E = (eg,e1,€9,--,€,—1). Then Fig 1. outlines the
architecture for the parallel multiplier using an anoma-
lous basis representation. Also Fig 2. gives a full detail
of the multiplier architecture. The multiplier consists of
three units, that is Inner Product(IP), Cyclic Shift(CS)

and Exchange(E;) as illustrated in Fig 3.

S

Cs Cs

vy

oo AP

23D SED
iyl
An

jojo ey
F3I3

\aAd

d o
Fig. 2. Multiplier Architecture

A squaring operation is a rewiring with no delays and no
gates as mentioned in Note 3. In Table 2 we list space(for

gates) and time(for delays due to gates:D4, Dx'?) com-

13Dy and Dx are delays for AND gates and XOR gates respec-
tively.

0 1 0 i
1 2 1 | 1
2 3 2 » 2
3 3 j 3

i 0

n_3 . .
n-3 n-2 n-3 | n-3
n-2 n-1 n-2 » n-2
n-1 0 n-1 [n-1

Cyclic Shift Exchange (E))

Fig. 3. Multiplier Architecture

plexities of the previous known parallel multipliers includ-
ing the above multiplier. The following inverse algorithm[5]
for computing a multiplicative inverse of a non-zero field
element takes 9 to 12 multiplications and 149 to 199 squar-
ings for 150 < n < 200. For reference, an elliptic curve
point addition using affine coordinates requires two field
multiplications, a squaring and a multiplicative inversion.
Therefore the total of 11 to 14 multiplications in progress of
the inversion algorithm is required, while an elliptic curve
point addition using projective coordinates needs 10 to 15
multiplications.

Algorithm 2 (Optimal Inverse Algorithm)
Input: a positive integer n and o« € GF(2").
Output: a~! = Q2+ a2
1.Sett = n—1,2 + 1,u + a?.

2. While t > 0 do
2.1 While to = 0 and ¢ > 1 do (where (#;)2 is the binary
representation of t)
2.1.1 ¢t < ¢t > 1 (one right shift).
2.1.2 Set u + u xu?".
2.2 Set © ¢ z *u.
2.3 If t = 1, then stop.

2.4 else set u « u?.
2.5 Set to « 0.
multiplication (squaring)
anomalous n? AND, n? — 1 XOR gates,
basis D4+ (14 [logs(n — 1)])Dx Delays
(AOP)[3] (Rewiring)
standard n? AND, n? — 1 XOR gates,
basis D4+ (2 + [logy(n —1)])Dx Delays
(AOP)[4] (n — 1 XOR gates, 1Dx Delay)
normal n? AND, n? — 1 XOR gates,
basis D4+ (1+ [logy(n —1)])Dx Delays
(type D[1] (Rewiring)

Table 2. Space and time complexities for field operations

V. CONCLUSION

Elliptic Curve Cryptography which offers the highest se-
curity for the same key-size of any known Public-key Cryp-
tosystem plays a very important role in the practical ap-

plications of cryptography, in particular, in hardware im-
plementation including cellular phones, smart cards, small-
size computers(HPC) and the like. Let us assume that in
years to come it is possible for you to pay securely for
your car to a motor company using a cellular phone. Then
maybe in both of your phone and the sever computer of
the bank with which you do a deal, you may find Ellip-
tic Curve Cryptosystems. If it happens, we can consider
the communication between your phone and the server of
the bank. Under the assumption that the former has an
Elliptic Curve Cryptosystem in hardware implementation,
while the latter has that in software implementation the
communication needs a basis conversion. We have shown
that a basis conversion is a hindrance to a fast communica-
tion. Such a fact gives us the motive for the communication
with no basis conversion, that is the implementation by one
basis. In conclusion, anomalous basis representation gives
the very remarkable performance of arithmetic operations
in both of hardware implementation and software imple-
mentation as compared to the previous results.

ACKNOWLEDGMENTS

The authors would like to acknowledge the suggestions
of many people.

REFERENCES

[1] M. A. Hasan, M. Z. Wang, and V. K. Bhargava, ”A Modified
Massey-Omura parallel multiplier for a class of finite fields”,
TEEE Transactions on Computers, v42, no.10, pp.1278-1280, Oc-
tober 1993.

[2] B. S. Kaliski Jr and Y. L. Yin, ”Storage-Efficient Finite Field
Basis Conversion”, Contribution to TEEE Standard P1363, 1998.

[3] C. H. Kim, S. H. Oh, and J. I. Lim, A New Hardware Architec-
ture of Operations in GF(2™)”, Submitted to TEEE Transactions
on Computers, 1998.

[4] C. K. Koc and B. Sunar, ”Low-complezity Bit-parallel Canonical
and Normal Basis Multiplier for a Class of Finite Fields”, IEEE
Transactions on Computers, v47, no.3, pp.353-356, March 1998.

[5] S. H. Oh and C. H. Kim, ”Algorithm of Inverse Operation in
GF(2™)”, Submitted to IEEE Transactions on Information The-
ory, 1998.

[6] R. Schroeppel, H. Orman, S. O’Malley, and O Spatscheck, ”Fast
Key FExchange with Elliptic Curve Systems”, Proc. Crypto’95,
Springer-Verlag, 1995, pp.43-56.

[7] E. De Win, A. Bosselaers, S. Vandenberghe, P De Gersem, and
J. Vandewalle, ”A Fast Software Implementation for Arithmetic
Operations in GF(2!)”, Asia Crypto’96, Springer-Verlag, 1996,
pp.65-76.

[8] TEEE P1363, Standard Specifications For Public Key Cryptogra-
phy, Anner A, 1998.

