
CONTRIBUTION TO IEEE STANDARD P1363, 1999 1Non-Conventional Basis of Finite Fields- implementing a fast communication between twoelliptic curve cryptosystems in software andhardware.Sang Ho Oh, Chang Han Kim, Joong Chul Yoon, Hee Jin Kim, and Jong In LimAbstract|Finite �eld arithmetic is becoming increasinglyimportant in cryptographic applications. In particular cryp-tographic primitives based on the discrete logarithm prob-lem over elliptic curve groups are accomplished essentiallyby arithmetic in �nite �elds. It is well known that the ef-�ciency of �nite �eld arithmetic depends strongly on theparticular way in which the �eld elements are represented.The �nite �eld representation can be classi�ed according tothe choice of basis - a polynomial basis in software imple-mentation and a normal basis in hardware implementationconventionally. The big problems of the communication be-tween one Elliptic Curve Cryptosystem(ECC) in softwareimplementation and another ECC in hardware implemen-tation result from the di�erence in the choice of basis. Inthis paper we discuss the cost of the communication be-tween such cryptosystems and propose the use of a non-conventional basis representation[3] providing the improvedcommunicaton.Keywords|Finite Fields, Basis Conversion, Elliptic Curve,and Public Key. I. IntroductionE lliptic Curve Cryptosystem(ECC) is well-suitable foruse in constrained environments1 such as mobile devicesand smart cards, since it provides more e�cient, high-strength security with smaller key sizes than any knownPublic-key cryptosystem. We focus on the interoperabil-ity of a hardware-based system(e.g. cryptographic VLSIchip-embedded mobile devices) and a software-based sys-tem (e.g. smart cards) for ECC. The implementation ofECC is accomplished essentially by arithmetic in �nite�elds, in particular GF (2n) of characteristic two or GF (p)of odd prime p. In VLSI implementation or smart cardwith no additional coprocessor for modular exponentiationthe common choice for the underlying �nite �eld is a classof �elds GF (2n). The e�cient computation of �eld arith-metic depends greatly on the particular ways in which the�eld elements are represented. These most e�cient waysare a polynomial basis representation and a normal basisrepresentation. The di�culty of communication betweenthese two systems for ECC results from the choice of basis;S. H. Oh, J. C. Yoon,and J. I. Lim are with the Departmentof Mathematics, Korea University, Seoul, Korea. E-mail: gaus-math@bora.dacom.co.kr .H. J. Kim is with the Telemann Co., Seoul, Korea.C. H. Kim is with the Department of Computational Mathematics,Semyung University, Jecheon, Korea. E-mail: chkim235@chollian.net. Research supported by The Basic Research Grants(97-0100-13-01-5),Korea Science and Engineering Foundation, 19971limits in memory usage and processing power.

the most common choices of basis for software implementa-tion and hardware implementation are a polynomial basisand a normal basis respectively. Interoperability betweenthese systems using the two di�erent types of �eld rep-resentation needs a conversion of basis by a appropriatechange-of-basis matrix. Since the size of key for ECC isbecoming increasingly large in proportion to the growth ofcomputing power, this method seems to be a signi�cantburden for the space-sensitive systems such as mentionedabove. To enhance usability of the space-sensitive systemsKaliski Jr.et al presented algorithm for the storage-e�cient�nite �eld basis conversion[2]. The time complexity of thisalgorithm for a basis conversion amounts to 10% � 20%of one elliptic curve scalar multiplication according to achoice of basis. Such a fact gives us some motive for thecommunication with no basis conversion.In this paper we discuss the details for the communi-cation of systems using two di�erent basis representationsand propose the use of non-conventional basis represen-tation providing the improved communication. Hereafterlet's assume a matrix2 for a basis conversion to be precom-puted and consider �nite �elds GF (2n).II. Description of Elliptic Curve CryptosystemsIn this section we describe brie
y a public-key encryptionand a digital signature for elliptic curve3and look into howa communication between two ECCs using di�erent basesis performed.A. Public-Key Encryption SchemeAlice(using system A) wants to send a secure messageM to Bob(using System B).Case I: Between two systems using one basisa. Setup1. E(a; b)4 is an elliptic curve de�ned over the �eldGF (2n).2. P is a base point of prime order N in E(GF (2n)).b. Key Generation1. Choose a statistically unique and unpredictable integer2n-by-n matrix with entries in GF (2).3American National Standard X9.62 and X9.63.4As a matter of convenience we denote a elliptic curve E as a pairof �eld elements E(a,b) where E : y2 + xy = x3 + ax2 + b.



CONTRIBUTION TO IEEE STANDARD P1363, 1999 21 < d < N .2. Compute Q = dP .3. Bob has the private key d and announces the publickey Q.c. Encryption1. Choose a statistically unique and unpredictable integer1 < k < N .2. Compute P 0 = kP , Q0 = kQ and C = Q0LM 5.3. Alice sends (P 0; C) to Bob.d. Decryption1. Compute dP 0LC.2. Bob obtains Alice's message M .Case II: Between two systems using di�erent basesSuppose a basis B0 of system A di�ers from another basisB1 of system B and let � be a change-of-basis matrix fromB0 to B1.First of all for system B's user to decrypt a message Mthe parameter E(a; b) and the point P 0 de�ned in systemA must be converted to adequate forms(denoted by E(a; b)and P 0 respectively) by a matrix �, since they were repre-sented by a basis B0.6d0. Decryption1. Compute dP 0.2. Convert dP 0 to dP 0 by a matrix ��1.3. Compute dP 0LC.4. Bob obtains Alice's message M .Note 1: dP 0 = dP 0 where dP 0 is the converted form ofdP 0 by a matrix �In order to decrypt a messageM we must convert 6 �eldelements. A basis conversion and a �eld multiplication ina �nite �eld GF (2n) require 2n2�n and n2 bit operationsrespectively. As a result, a communication between twosystems using di�erent bases takes additionally times for12 �eld multiplications and storages for a matrix � and aninverse matrix of �.B. Digital Signature SchemeAlice(using system A) wants to send a message M withher signature (r,s) to Bob(using System B).Case I: Between two systems using one basisThe Setup and Key-Generation of Digital SignatureScheme is identical with those of Public-Key EncryptionScheme.c. Signature Generation1. Choose a statistically unique and unpredictable integer1 < k < N .2. Compute kP = (x1; y1).3. Compute r = x1 mod N .5M can be consider as a bits-string andL is an exclusive OR.6A conversion of basis may be done before or after sending a mes-sage .

4. Compute e = H(M)7.5. Compute s = k�1(e+ dr) mod N .6. Alice sends (r; s);M to Bob.d. Signature Veri�cation1. Compute e = H(M).2. Compute s�1 mod N .3. Compute u1 = es�1 mod N .4. Compute u2 = rs�1 mod N .5. Compute u1P + u2Q = (x1; y1).6. Compute v = x1 mod N .7. Bob accepts the signature if v = r.Case II: Between two systems using two basesLike a case of Public-Key Encryption, consider a basisB0 of system A, a basis B1 of system B and a change-of-basis matrix �.The veri�cation of a signature (r; s) can be describedusing the converted forms (denoted by E(a; b), P and Qrespectively) of the parameter E(a; b), the point P and thepoint Q by a matrix �.d0. Signature Veri�cation1. Compute e = H(M).2. Compute s�1 mod N .3. Compute u1 = es�1 mod N .4. Compute u2 = rs�1 mod N .5. Compute u1P + u2Q = (x1; y1), where x1 and y1 arethe converted forms of x1 and y1 by a matrix �.6. Convert x1 to x1 by a matirix ��1.7. Compute v = x1 mod N .8. Bob accepts the signature if v = r.Note 2: u1P+u2Q = kP where kP is the converted formof kP by a matrix �, from the following fact:u1P + u2Q = (es�1 mod N)P + (rs�1 mod N)(dP )= (es�1 mod N)P + (drs�1 mod N)P= ((e+ dr)s�1 mod N)P= kP = kP :Also in case of Digital Signature a communication betweentwo systems using di�erent bases takes additionally timesfor 14 �eld multiplications and spaces for a matrix � andan inverse matrix of �.III. Space and Time ComplexitiesCompared to the time complexity of a scalar multiplica-tion 8 over an elliptic curve group, that of a basis conversionis hardly critical. But the space complexity of two change-of-basis matrices � and ��1, that is the additional storageof 2n2 bits is considered to be a serious load in practicalimplemetations, in particular in hardware implemetation.Recently the time complexity of algorithms of the stoage-e�cient �nite �eld basis conversion introduced by KaliskiJr.et al[2] amounts to 10% � 20% of one elliptic curvescalar multiplication according to a choice of basis.7H is a hash function8it needs 10n �eld multiplications and 6:5n �eld squarings.



CONTRIBUTION TO IEEE STANDARD P1363, 1999 3The cryptosystems based on the arithmetic operationsof �nite �elds depend greatly on the �nite �eld basis rep-resentation. It is known typically that a polynomial ba-sis representation and a normal basis representation aremost suitable for a software implementation and a hard-ware implementation respectively. The communication oftwo cryptosystems in software implementation and hard-ware implementation needs a basis conversion. Now weare ready for introducing a non-conventional basis repre-sentation .IV. Non-Conventional Basis RepresentationIn this section we show that the proposed basis repre-sentation gives the very e�cient results in both of softwareimplementation and hardware implementation in compar-ison with the previous results.De�nition 1: If a subset B = f�; �2; �3; � � � ; �ng ofGF (2n) is linearly independent over GF (2), then we'll calla set B an anomalous basis of GF (2n) over GF (2).Let f be a monic irreducible polynomial of degreen over GF (2) where � is a root of f . Then the setf�; �2; �3; � � � ; �ng is linearly independent over GF (2).Note that an anomalous basis f�; �2; �3; � � � ; �ng is notequal to a polynomial basis f1; �; �2; � � � ; �n�1g overGF (2). We'll pay attention to a special case of a generatingpolynomial f , that is all-one-polynomials(AOP), since the�nite �eld arithmetic operations derived from such poly-nomials are performed very e�ciently in hardware imple-mentation.A. Software ImplementationLet B = f�; �2; �3; � � � ; �ng be an anomalous basis ofGF (2n) over GF (2) where � is a root of AOP of the de-gree n. Let a and b be the elements of a �nite �eld GF (2n).Then they can be represented by a basis B as follows:a = �ni=1ai�1�i and b = �ni=1bi�1�iwhere ai; bi 2 GF (2) for each i 2 f0; 1; 2; � � � ; n� 1g.The �eld multiplication consists of two steps, that is theproduct of two polynomials and the reduction using theidentity �n+1 = 1. The squaring operation is of the simplevector-form 9. For example, if n = 10 then a2 can bedescribed as (a5; a0; a6; a1; a7; a2; a8; a3; a9; a4).Note 3:a2 =  nXi=1 ai�1�i!2=  2mXi=1 ai�1�i!29The coordinate vector (a0 ; a1; � � � ; an�1) with the ordered anoma-lous basis B can be interpreted as �ni=1ai�1�i.

= 2mXi=1 ai�1�2i= mXi=1 ai�1�2i + 2mXi=m+1 ai�1�2i= mXi=1 ai�1�2i + mXi=1 am+i�1�2i�1:where n = 2m for some positive integer m.Almost Inverse algorithm[6] has been known as the mostimproved algorithm of multiplicative inversion. it is appli-cable to computing a multiplicative inverse of non-zero �eldelements represented by an anomalous basis. To describemultiplicative inversion and Almost Inverse algorithm weidentify GF (2n) with a residue class of polynomial ringover GF (2), that isGF (2n) �= GF (2)[x]=(f)Given a non-zero polynomial A(x) of degree less than orequal to n� 1, the inverse of A(x) is a polynomial B(x) ofdegree less than or equal to n� 1 such thatA(x)B(x) � 1 mod f:Almost Inverse algorithm computes B(x) and k such thatA(x)B(x) � xk mod f:where degree of B < n and a nonnegative integer k isuniquely determined. Suppose the degree of A(x) is equalto n and A(x) is not same with f . We'll show Almost In-verse algorithm to �nd the almost inverse B(x) of A(x).Algorithm 1: (Almost Inverse Algorithm)Intialize integer k = 0, and polynomials B = 1,C = 0,F = A, G = f .loop:1. While the constant term of F is zero, do F = F=x,C = C � x, k = k + 1.2. If F = 1, then return B, k.3. If deg(F ) < deg(G), then exchange F , G andexchage B, C.4. F = F +G, B = B + C.Goto loop.Let F (x) = xk0 � F 0(x) for a polynomial F 0(x) with thenon-zero constant term and a positive10 integer k0. AlmostInverse algorithm applied to F 0(x) computes the almostinverse B0(x) of F 0(x) such thatF 0(x)B0(x) � xk0mod ffor a nonnegative integer k0. To compute the multiplicativeinverse of F (x) we need to divide B0(x) by xk0+k0 . Theremainder is left to the reader.10The anomalous basis representation does not include a constantterm.
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Fig. 1. Multiplier ArchitectureArithmetic in the �elds GF (2180) derived from ananomalous basis, was implemented in the C-language ona Pentium 120. In Table 1 we give the running times forthe operations of squaring, multiplication and inversion in� seconds and compare our results with those of [7] 11.anomalous basis standard basisusing AOP using trinomialmultiplication 51.4 71.8squaring 1.5 2.7inversion 161.4 225Table 1. Time for �eld operationsB. Hardware ImplementationThe hardware implementation of �eld arithmetic usingan anomalous basis representation was introduced alreadyin [3]12 . We'll brief the reader on a hardware architecturefor a multiplier. The de�nitions and the notations in thesection IV-A is also valid here. The multiplication of two�eld elements a;b can be rewritten using matrix forms asfollows: a� b = (C +D)[b]B = E, whereC = 0BBBBB@ 0 an�1 an�2 an�3 � � � a1a0 0 an�1 an�2 � � � a2a1 a0 0 an�1 � � � a3... ... ... ... ... ...an�2 an�3 an�4 an�5 � � � 0
1CCCCCA

11The work implemented arithmetic in GF (2177) using Pentium133.12The multiplier mentioned here was originated from [3].

; D = 0BBBBB@ an�1 an�2 an�3 an�4 � � � a0an�1 an�2 an�3 an�4 � � � a0an�1 an�2 an�3 an�4 � � � a0... ... ... ... ... ...an�1 an�2 an�3 an�4 � � � a0
1CCCCCA

and [b]B = 0BBBBB@ b0b1b2...bn�1
1CCCCCALet C[b]B = (c0; c1; c2; � � � ; cn�1); D[b]B = (d; d; d; � � � ; d)and E = (e0; e1; e2; � � � ; en�1). Then Fig 1. outlines thearchitecture for the parallel multiplier using an anoma-lous basis representation. Also Fig 2. gives a full detailof the multiplier architecture. The multiplier consists ofthree units, that is Inner Product(IP), Cyclic Shift(CS)and Exchange(Ei) as illustrated in Fig 3.
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Fig. 2. Multiplier ArchitectureA squaring operation is a rewiring with no delays and nogates as mentioned in Note 3. In Table 2 we list space(forgates) and time(for delays due to gates:DA; DX13) com-13DA and DX are delays for AND gates and XOR gates respec-tively.
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Fig. 3. Multiplier Architectureplexities of the previous known parallel multipliers includ-ing the above multiplier. The following inverse algorithm[5]for computing a multiplicative inverse of a non-zero �eldelement takes 9 to 12 multiplications and 149 to 199 squar-ings for 150 � n � 200. For reference, an elliptic curvepoint addition using a�ne coordinates requires two �eldmultiplications, a squaring and a multiplicative inversion.Therefore the total of 11 to 14 multiplications in progress ofthe inversion algorithm is required, while an elliptic curvepoint addition using projective coordinates needs 10 to 15multiplications.Algorithm 2 ( Optimal Inverse Algorithm )Input: a positive integer n and � 2 GF (2n).Output: ��1 = �2+22+���+2n�1 :1. Set t n� 1; x 1; u �2:2. While t > 0 do2.1 While t0 = 0 and t > 1 do (where (ti)2 is the binaryrepresentation of t)2.1.1 t t� 1 (one right shift).2.1.2 Set u u � u2t .2.2 Set x x � u.2.3 If t = 1, then stop.2.4 else set u u2.2.5 Set t0  0: multiplication (squaring)anomalous n2 AND, n2 � 1 XOR gates,basis DA + (1 + dlog2(n� 1)e)DX Delays(AOP)[3] (Rewiring)standard n2 AND, n2 � 1 XOR gates,basis DA + (2 + dlog2(n� 1)e)DX Delays(AOP)[4] (n� 1 XOR gates, 1DX Delay)normal n2 AND, n2 � 1 XOR gates,basis DA + (1 + dlog2(n� 1)e)DX Delays(type I)[1] (Rewiring)Table 2. Space and time complexities for �eld operationsV. ConclusionElliptic Curve Cryptography which o�ers the highest se-curity for the same key-size of any known Public-key Cryp-tosystem plays a very important role in the practical ap-

plications of cryptography, in particular, in hardware im-plementation including cellular phones, smart cards, small-size computers(HPC) and the like. Let us assume that inyears to come it is possible for you to pay securely foryour car to a motor company using a cellular phone. Thenmaybe in both of your phone and the sever computer ofthe bank with which you do a deal, you may �nd Ellip-tic Curve Cryptosystems. If it happens, we can considerthe communication between your phone and the server ofthe bank. Under the assumption that the former has anElliptic Curve Cryptosystem in hardware implementation,while the latter has that in software implementation thecommunication needs a basis conversion. We have shownthat a basis conversion is a hindrance to a fast communica-tion. Such a fact gives us the motive for the communicationwith no basis conversion, that is the implementation by onebasis. In conclusion, anomalous basis representation givesthe very remarkable performance of arithmetic operationsin both of hardware implementation and software imple-mentation as compared to the previous results.AcknowledgmentsThe authors would like to acknowledge the suggestionsof many people. References[1] M. A. Hasan, M. Z. Wang, and V. K. Bhargava, "A Modi�edMassey-Omura parallel multiplier for a class of �nite �elds",IEEE Transactions on Computers, v42, no.10, pp.1278-1280, Oc-tober 1993.[2] B. S. Kaliski Jr and Y. L. Yin, "Storage-E�cient Finite FieldBasis Conversion", Contribution to IEEE Standard P1363, 1998.[3] C. H. Kim, S. H. Oh, and J. I. Lim, "A New Hardware Architec-ture of Operations in GF (2n)", Submitted to IEEE Transactionson Computers, 1998.[4] C. K. Koc and B. Sunar, "Low-complexity Bit-parallel Canonicaland Normal Basis Multiplier for a Class of Finite Fields", IEEETransactions on Computers, v47, no.3, pp.353-356, March 1998.[5] S. H. Oh and C. H. Kim, "Algorithm of Inverse Operation inGF (2n)", Submitted to IEEE Transactions on Information The-ory, 1998.[6] R. Schroeppel, H. Orman, S. O'Malley, and O Spatscheck, "FastKey Exchange with Elliptic Curve Systems", Proc. Crypto'95,Springer-Verlag, 1995, pp.43-56.[7] E. De Win, A. Bosselaers, S. Vandenberghe, P De Gersem, andJ. Vandewalle, "A Fast Software Implementation for ArithmeticOperations in GF (2t)", Asia Crypto'96, Springer-Verlag, 1996,pp.65-76.[8] IEEE P1363, Standard Speci�cations For Public Key Cryptogra-phy, Annex A, 1998.


