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Much of this talk is based on the article “ECC:  

The Serpentine Course of a Paradigm Shift”  

by Ann Hibner Koblitz, N.K., & Alfred Menezes, 

to appear in the ECC issue of J. Number Theory. 

In the meantime it‟s available at eprint.iacr.org – 

do a title word search for “serpentine”. 

See especially Section 11 concerning the 

security implications of isogeny walks. 



• In cryptography, for greatest security choose 
parameters as randomly as possible. 

• In elliptic/hyperelliptic curve cryptography it’s 
safest to choose the defining equation to have 
random coefficients. 

• It’s okay to use special curves for reasons of 
efficiency if you insist, but some day that 
choice might come back to bite you.  

Conventional wisdom 



In 1991, I proposed the use of the non- 

supersingular  F2 -curves (also called 

anomalous binary curves) 

y2 + xy = x3 + 1   or    y2 + xy = x3 + x2 +1  

because they seemed to have some 

efficiency advantages over random curves. 

NSA liked these curves, and at Crypto 1997  

J. Solinas gave a talk presenting a thorough 

and definitive treatment of how to optimize 

ECC operations on these curves. 



At present these curves are one of the 

three sets of NIST-recommended curves 

(each set containing 5 curves at a range 

of security levels). 

Some people have been mistrustful of this 

family of curves, in part because of the 

“conventional wisdom” given above. 



There are various scenarios in which someone 

who chooses ECC with a special curve might 

end up better off than someone else who 

chooses a random curve. 

Some such scenarios are suggested by recent 

work on isogenies.   (For more details see 

Section 11 of the “serpentine course” paper.) 

However, in the random-vs-special debate 

about curve selection, Menezes and I found 

reason to question the conventional wisdom 

that random is always more secure. 



Isogenies 

E1,  E2  defined over  Fq 

An isogeny  ψ:  E1 → E2  defined over  Fq 

is a non-constant rational map defined 

over  Fq   that maps  ∞  to  ∞ .    Its degree   

is its degree as a rational map.   In our 

setting the degree is also the order of the 

kernel of the isogeny. 



Any isogeny has a “dual” isogeny going 

the other way, so we get an equivalence 

relation of “isogenous” elliptic curves. 

Tate‟s Theorem:    E1  and  E2  are  

isogenous over   Fq   iff they have  

the same number of   Fq-points. 

Low-degree isogenies are easy to construct, 

but high-degree isogenies are usually not. 



Endomorphisms 

Let  t = q + 1 − #E(Fq)  denote the trace 

of an elliptic curve  E  defined over  Fq. 

An  endomorphism  of  E  is an isogeny 

from  E  to itself that is defined over the 

algebraic closure of  Fq. 

We shall consider the case of ordinary 

curves  E,  meaning that  t  is prime to 

the characteristic of  Fq.   In that case 

all endomorphisms are defined over  Fq. 



The endomorphisms form a ring, denoted 

End(E),  that contains the subring  Z  of 

scalar multiplications   P → nP . 

Let  ∆ = t2 – 4q  < 0  denote the discriminant 

of  E.    

 

Then   K = Q(√∆)   is the CM-field of   E. 

We have   ∆  =  c0
2 d,   where   d < 0  is the 

discriminant of  K.  

Then  End(E)  is an order of the ring of 

integers   ZK .   Its index  c  in  ZK  is  

called the conductor of  End(E). 



The elliptic curves isogenous to a given  E 

can be partitioned according to their 

endomorphism ring. 

These endomorphism classes are 

determined by the conductor  c,  and they 

are in 1-to-1 correspondence with divisors   

c  of  c0 . 

The number of isomorphism classes of 

curves in a given endomorphism class 

is equal to the class number of the order, 

which is approximately equal to  chK . 



For example, if  ∆  is squarefree, then 

all  O(√q)  curves in the isogeny class 

of  E  have the same endomorphism 

ring of conductor  1. 

If  c0 is a large prime, then the isogeny class 

consists of a small number of curves whose 

endomorphism ring is the full ring of integers 

ZK ,  and the remaining  O(√q)  curves have 

endomorphism ring of conductor  c0 . 



Let  ℓ  denote a prime.  If there is a degree-ℓ 

isogeny between  E1  and  E2,  then either the 

two curves have the same endomorphism 

ring, or else the conductors satisfy either 

          c1 = ℓc2   or   c2 = ℓc1 . 

By the conductor gap between two endomorphism 

classes we mean the largest prime that divides one 

conductor and not the other.  

If there is a large conductor gap between two 

endomorphism classes, then one cannot go from 

a curve in one class to a curve in the other by a 

string of low-degree isogenies. 



Conversely, by a result of Jao, Miller, and 

Venkatesan, within an endomorphism class or 

among classes with small conductor gaps one 

can efficiently travel randomly and uniformly 

throughout the set of curves. 

Isogenies allow one to transport the discrete log 

problem from one curve to another.  That is, the 

discrete log problem is “random self-reducible” 

within a set of endomorphism classes with small 

conductor gaps. 



Definition.  The  L-conductor-gap class of 

E  is the set of all endomorphism classes 

in the isogeny class of  E  that have 

conductor gap  < L  with  End(E). 



Suppose that an algorithm were found that 

solves the discrete log problem in time  T1  in 

a proportion  ε  of all elliptic curves over  Fq,  

where the property of being a “weak” curve is 

independent of isogeny and endomorphism 

class.  

Then the discrete log can be found on any 

curve in an  L-conductor gap class in time 

roughly  T1 + T2/ε,  where  T2  denotes the 

time for constructing a low-degree isogeny  − 

assuming, of course, that the  L-conductor-gap 

class contains more than  1/ε  curves. 



It is the possibility of random isogeny walks 

through a conductor-gap class that under 

certain circumstances might make a random  

curve less secure than a special curve. 

Let‟s look at a hypothetical scenario. 

For a random curve all isogenous curves are 

in the same conductor-gap class, because  ∆  

has negligible probability of being divisible by 

the square of a large prime. 



We‟ll suppose that some version of 

Weil descent or another approach 

some day leads to a faster-than-sqrt 

attack on a small but non-negligible 

proportion of curves defined over  Fq. 

In this example  Fq  is a prime-degree 

extension of  F2. 



NIST‟s 2000 Digital Signature Standard 

recommends  5  elliptic curves over prime fields  

and  10  over binary fields.  For each of  5  

binary fields they suggest one random curve 

and one anomalous binary curve.   

The conventional wisdom is that, if anything, 

the random curve B-571 is a safer choice 

than the anomalous binary curve K-571. 

The largest binary field is the degree-571 

extension of  F2,  which should provide more 

than the 256 bits of security needed to protect a 

high-security AES private key. 



However, let‟s suppose that a proportion  ε  of 

all curves over this field could be attacked by a 

new faster-than-sqrt algorithm, and that the 

“weak” property is independent of isogeny and 

endomorphism class. 

The curve B-571 has squarefree discriminant 

and so isogeny walks can fan out from B-571 

throughout its isogeny class, which consists of 

roughly  2285  curves.  After  O(1/ε)  isogenies, 

the DLP on B-571 can be transported to a 

weak curve. 



In contrast, K-571 has discriminant  ∆ = −7c0
2  

with  c0  the product of a 22-bit prime and a 

263-bit prime. 

The endomorphism ring of K-571 has 

conductor 1, i.e., it is the full ring of integers 

of  Q(√−7).   Thus, the  2262-conductor-gap 

class of K-571 has only about  222  curves, 

and so if  ε  is much less than  2−22,  the 

DLP on K-571 probably cannot be 

transported to a weak curve by isogenies. 

Under our hypothetical assumptions, 

K-571 is likely to be safer than B-571. 



What conclusions do we want to draw? 

Not that we should prefer special curves 

over random ones. 

All we can say is that we don‟t really know. 

It‟s a judgment call. 



To give a similar example over a prime field,  

suppose we choose a random prime B and  

a random even number A such that 

(i)  p = A2 + B2  is prime; 

(ii) either  n = (p+1)/2 – A 

     or else  n = (p+1)/2 + A 

     is prime. 

Then the elliptic curve  E  over  Fp defined 

(for suitable  a  in  Fp) by   y2 = x3 – ax 

is the only curve (up to isomorphism) in 

its conductor-gap class. 



Remarks.  1.  The only NIST-recommended 

curves over a prime field are random ones.  

2. In his Ph.D. thesis Wenhan Wang has 

found that a very similar situation exists 

for genus-2 curves.  That is, curves over 

a prime field whose Jacobians have a  

large endomorphism ring are often isolated,  

in the sense that you can‟t travel widely  

from them using isogeny walks. 



An abbreviated history of  

embarrassing misjudgments 

I‟ve made in the last 24 years 

First major one: 

In the late 1980‟s it seemed (to me 

at least) that any elliptic curve group 

would be secure as long as its order 

is prime or almost prime. 



So for pedagogical reasons why not use the 

simplest possible curves?   And this is what I 

often did  (in my introductory book and in 

articles and talks). 

It‟s an elementary exercise to show that 

the curve    

   y2 = x3 – x   over   Fp  with  4|(p+1) 

or 

   y2 + y = x3   over  Fp  with  3|(p+1)  

has group order  p+1. 

Just choose  p  so that  (p+1)/4  or (p+1)/6  is 

prime, and ECC is secure, or so I thought. 



These curves also have some nice efficiency 

advantages for computing point multiples, 

especially over extension fields of  F2 and F3. 

Then in 1991 Menezes-Okamoto-Vanstone 

showed that the Weil pairing gives a reduction 

of the ECDLP to the DLP on the multiplicative 

group of an extension of the field  of definition. 

And for supersingular curves, such as the two  

written above, the extension degree is very  

small.  Usually it‟s 2, as in the above cases. 

 



This killed supersingular curves for ECC 

and made me feel foolish for having used 

them so often as illustrative examples. 

I felt chagrined and embarrassed. 



In the early 1990‟s, Mike Fellows and I became 

captivated by the notion that, despite the fiasco 

with knapsacks, good cryptosystems could in 

fact be constructed from NP-hard combinatorial 

problems. 

Next embarrassing episode: 

We even wrote a paper with the exuberant title 

“Combinatorial Cryptosystems Galore!” 



“Mike Fellows and I… constructed a system based 

on… ideal membership… that involved polynomials, 

and we challenged people to try to crack it. 

“The most attractive feature of our cryptosystem was 

the name that Mike thought up for it: Polly Cracker.  

“It was very inefficient, and before long some papers 

were published that indeed cracked the code.” 

There was only one actual example that we spent 

some time developing, and it had a sorry history. 

As I recount in my book Random Curves: 



Back to ECC: 

During the first 15 years of ECC my feeling 

was that it didn‟t matter what field you worked 

over.  You had to avoid generic algorithms 

by working in groups of large prime order, 

and after MOV you had to avoid supersingular 

curves.   

But otherwise you could use whatever field  

you most enjoy working with, and security 

is unaffected by that choice. 



Late 1990‟s: Frey proposes Weil descent 

to attack the DLP on curves over composite 

degree extension fields; 

then Gaudry, Hess, Smart, Galbraith, 

Menezes, Teske, and others find 

weak curves over certain binary fields. 

 
Fortunately, other people (such as Scott 

Vanstone) had had better instincts than I 

had, and all commercial implementations 

and all ECC standards used prime fields 

or prime-degree extensions of  F2 . 



I was very bad at anticipating future developments. 

In early 1998 I published Algebraic Aspects  

of  Cryptography.  In a section titled “Cultural 

Background” I discussed the Birch and 

Swinnerton-Dyer Conjecture, after which I 

essentially apologized to my readers for 

taking their time with something that, while 

mathematically important, has no relevance 

for cryptography.  



A mere 8 months later I was eating those words, 

after I received an email from J. Silverman 

outlining a striking new approach to the ECDLP. 

It was a variant – somewhat backwards –  

version of index calculus, and for that reason 

Silverman called it “xedni calculus.” 

What was most alarming for ECC people 

was that Silverman used the heuristics of 

the BSD Conjecture (and an analytic rank 

formula of Mestre) to boost the likelihood 

of a successful attack on the ECDLP.   



After a lot of initial worry about xedni (fueled 

by our concern that RSA would use xedni 

as a weapon in their public relations battle 

with ECC, which was still going strong in  

1998), I found that we could use the height  

function to show that xedni wouldn‟t work. 

I was so thrilled about this success in defending 

ECC that I gave a talk at ECC 2000 titled 

      “Miracles of the Height Function:  

      A Golden Shield Protecting ECC” 



At around the same time a paper by Silverman 

and Suzuki made a detailed examination of 

index calculus and explained why it wouldn‟t work. 

Essentially, the Silverman-Suzuki paper  

elaborated on the argument that Vic Miller 

made in his original ECC paper in 1985. 

At ECC 2007, Silverman made a similar 

analysis for all 4 ways one could try index 

or xedni with liftings to global fields. 



But alas!  Index calculus has reared its  

evil head during the last few years. 

For example, Gaudry and Diem found 

subexponential index calculus algorithms 

for the ECDLP on elliptic curves defined 

over the degree-m extension of  Fq  as 

m  and  q   grow suitably. 



 
 

Regrettably, much cryptographic writing exudes 

a brash certainty about the work. 

Abstracts and introductions to papers often 

read as if they were written by marketing 

people or as part of a patent application,  

full of hype with little connection to reality. 

For example (from iacr.org/2007/438): 

“…permits savings on bandwidth and 

storage… substantially improves com- 

putational efficiency and scalability 

over any existing scheme with suitable 

functionality…  



“In contrast to the only prior scheme to 

provide this functionality, ours offers 

improved security…  We provide formal 

security definitions and support the 

proposed scheme with security proofs…” 

This paper by Boldyreva-Gentry-O‟Neill-Yum 

constructed pairing-based “sequential 

aggregate signatures” (meaning that several 

parties in sequence compose a single compact 

signature).  



The claim has often been made that reduction  

arguments constitute “proofs of security” that 

can be offered to the public as a guarantee. 

The amusing thing about this example is that 

about a year later Hwang, Lee, and Yung showed 

that a crucial security proof in this paper was  

fallacious. 

 

They also broke the corresponding protocol. 



From the preface to the book by Katz and Lindell: 

 
“…cryptographic constructions can be proven 

secure with respect to a clearly-stated 

definition of security and relative to a well- 

defined cryptographic assumption. 

“This is the essence of modern cryptography, 

and what has transformed cryptography from 

an art to a science.  The importance of this 

idea cannot be over-emphasized.” 



And anyone who‟s dismayed by the large number 

of fallacious proofs in the provable security 

literature is supposed to be consoled by the 

prospect that advances in “theorem-proving” 

software will soon make it possible to prove the 

security of our protocols automatically, with no 

longer any possibility of flaws in the proofs; 

human mistakes and failings will supposedly 

disappear from the process of establishing 

guarantees of security.  

 

For more discussion of this dubious claim, see 

“Another look at automated theorem-proving”, 

http://www.iacr.org/2007/401.pdf 



Anyone who‟s bewildered by the exotic 

nature of some of the cryptographic assumptions 

that underlie security proofs for many of the 

pairing-based protocols is supposed to be 

reassured by Boyen‟s exuberant explanation: 

 “The newcomer to this particular branch 

of cryptography will… be astonished by 

the sheer number, and sometimes  

creativity, of these assumptions… 

“…in comparison to the admittedly quite 

simpler algebraic structures of twentieth- 

century public-key cryptography… the 

new „bilinear‟ groups offer a much richer 

palette of cryptographically useful trapdoors 

than their „unidimensional‟ counterparts…” 



On the one hand, we see the trend 

of bold and boastful writing by crypto 

researchers. 

On the other hand, we see a long 

history of misjudgments and 

uncertainty that continues to the 

present. 

How can we reconcile the disciplinary 

culture of our field with reality? 


