
Chapter 3
Torsion Points

The torsion points, namely those whose orders are finite, play an important
role in the study of elliptic curves. We’ll see this in Chapter 4 for elliptic
curves over finite fields, where all points are torsion points, and in Chapter
8, where we use 2-torsion points in a procedure known as descent. In the
present chapter, we first consider the elementary cases of 2- and 3-torsion,
then determine the general situation. Finally, we discuss the important Weil
and Tate-Lichtenbaum pairings.

3.1 Torsion Points

Let E be an elliptic curve defined over a field K. Let n be a positive integer.
We are interested in

E[n] = {P ∈ E(K) |nP = ∞}

(recall that K = algebraic closure of K). We emphasize that E[n] contains
points with coordinates in K, not just in K.

When the characteristic of K is not 2, E can be put in the form y2 = cubic,
and it is easy to determine E[2]. Let

y2 = (x − e1)(x − e2)(x − e3),

with e1, e2, e3 ∈ K. A point P satisfies 2P = ∞ if and only if the tangent line
at P is vertical. It is easy to see that this means that y = 0, so

E[2] = {∞, (e1, 0), (e2, 0), (e3, 0)}.

As an abstract group, this is isomorphic to Z2 ⊕ Z2.
The situation in characteristic 2 is more subtle. In Section 2.8 we showed

that E can be assumed to have one of the following two forms:

(I) y2 + xy + x3 + a2x
2 + a6 = 0 or (II) y2 + a3y + x3 + a4x + a6 = 0.
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78 CHAPTER 3 TORSION POINTS

In the first case, a6 �= 0 and in the second case, a3 �= 0 (otherwise the curves
would be singular). If P = (x, y) is a point of order 2, then the tangent at
P must be vertical, which means that the partial derivative with respect to
y must vanish. In case I, this means that x = 0. Substitute x = 0 into (I)
to obtain 0 = y2 + a6 = (y +

√
a6)2. Therefore (0,

√
a6) is the only point of

order 2 (square roots are unique in characteristic 2), so

E[2] = {∞, (0,
√

a6)}.
As an abstract group, this is isomorphic to Z2.

In case II, the partial derivative with respect to y is a3 �= 0. Therefore,
there is no point of order 2, so

E[2] = {∞}.
We summarize the preceding discussion as follows.

PROPOSITION 3.1
Let E be an elliptic curve over a field K. If the characteristic of K is not 2,
then

E[2] 	 Z2 ⊕ Z2.

If the characteristic of K is 2, then

E[2] 	 0 or Z2.

Now let’s look at E[3]. Assume first that the characteristic of K is not 2
or 3, so that E can be given by the equation y2 = x3 + Ax + B. A point P
satisfies 3P = ∞ if and only if 2P = −P . This means that the x-coordinate
of 2P equals the x-coordinate of P (the y-coordinates therefore differ in sign;
of course, if they were equal, then 2P = P , hence P = ∞). In equations, this
becomes

m2 − 2x = x, where m =
3x2 + A

2y
.

Using the fact that y2 = x3 + Ax + B, we find that

(3x2 + A)2 = 12x(x3 + Ax + B).

This simplifies to
3x4 + 6Ax2 + 12Bx − A2 = 0.

The discriminant of this polynomial is −6912(4A3+27B2)2, which is nonzero.
Therefore the polynomial has no multiple roots. There are 4 distinct values
of x (in K), and each x yields two values of y, so we have eight points of order
3. Since ∞ is also in E[3], we see that E[3] is a group of order 9 in which
every element is 3-torsion. It follows that

E[3] 	 Z3 ⊕ Z3.
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SECTION 3.1 TORSION POINTS 79

The case where K has characteristic 2 is Exercise 3.2.
Now let’s look at characteristic 3. We may assume that E has the form

y2 = x3 + a2x
2 + a4x + a6. Again, we want the x-coordinate of 2P to equal

the x-coordinate of P . We calculate the x-coordinate of 2P by the usual
procedure and set it equal to the x-coordinate x of P . Some terms disappear
because 3 = 0. We obtain(

2a2x + a4

2y

)2

− a2 = 3x = 0.

This simplifies to (recall that 4 = 1)

a2x
3 + a2a6 − a2

4 = 0.

Note that we cannot have a2 = a4 = 0 since then x3 + a6 = (x + a
1/3
6 )3 has

multiple roots, so at least one of a2, a4 is nonzero.
If a2 = 0, then we have −a2

4 = 0, which cannot happen, so there are no
values of x. Therefore E[3] = {∞} in this case.

If a2 �= 0, then we obtain an equation of the form a2(x3 +a) = 0, which has
a single triple root in characteristic 3. Therefore, there is one value of x, and
two corresponding values of y. This yields 2 points of order 3. Since there
is also the point ∞, we see that E[3] has order 3, so E[3] 	 Z3 as abstract
groups.

The general situation is given by the following.

THEOREM 3.2
Let E be an elliptic curve over a field K and let n be a positive integer. If

the characteristic of K does not divide n, or is 0, then

E[n] 	 Zn ⊕ Zn.

If the characteristic of K is p > 0 and p|n, write n = prn′ with p � n′. Then

E[n] 	 Zn′ ⊕ Zn′ or Zn ⊕ Zn′ .

The theorem will be proved in Section 3.2.
An elliptic curve E in characteristic p is called ordinary if E[p] 	 Zp. It

is called supersingular if E[p] 	 0. Note that the terms “supersingular”
and “singular” (as applied to bad points on elliptic curves) are unrelated.
In the theory of complex multiplication (see Chapter 10), the “singular” j-
invariants are those corresponding to elliptic curves with endomorphism rings
larger than Z, and the “supersingular” j-invariants are those corresponding to
elliptic curves with the largest possible endomorphism rings, namely, orders
in quaternion algebras.

Let n be a positive integer not divisible by the characteristic of K. Choose
a basis {β1, β2} for E[n] 	 Zn⊕Zn. This means that every element of E[n] is
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80 CHAPTER 3 TORSION POINTS

expressible in the form m1β1 + m2β with integers m1,m2. Note that m1,m2

are uniquely determined mod n. Let α : E(K) → E(K) be a homomorphism.
Then α maps E[n] into E[n]. Therefore, there are a, b, c, d ∈ Zn such that

α(β1) = aβ1 + cβ2, α(β2) = bβ1 + dβ2.

Therefore each homomorphism α : E(K) → E(K) is represented by a 2 × 2
matrix

αn =
(

a b
c d

)
.

Composition of homomorphisms corresponds to multiplication of the corre-
sponding matrices.

In many cases, the homomorphism α will be taken to be an endomorphism,
which means that it is given by rational functions (see Section 2.9). But α
can also come from an automorphism of K that fixes K. This leads to the im-
portant subject of representations of Galois groups (that is, homomorphisms
from Galois groups to groups of matrices).

Example 3.1
Let E be the elliptic curve defined over R by y2 = x3 − 2, and let n = 2.
Then

E[2] = {∞, (21/3, 0), (ζ21/3, 0), (ζ221/3, 0)},
where ζ is a nontrivial cube root of unity. Let

β1 = (21/3, 0), β2 = (ζ21/3, 0).

Then {β1, β2} is a basis for E[2], and β3 = (ζ221/3, 0) = β1 + β2.
Let α : E(C) → E(C) be complex conjugation: α(x, y) = (x, y), where

the bar denotes complex conjugation. It is easy to verify that α is a homo-
morphism. In fact, since all the coefficients of the formulas for the group
law have real coefficients, we have P1 + P2 = P1 + P2. This is the same as
α(P1) + α(P2) = α(P1 + P2). We have

α(β1) = 1 · β1 + 0 · β2, α(β2) = β3 = 1 · β1 + 1 · β2.

Therefore we obtain the matrix α2 =
(

1 1
0 1

)
. Note that α ◦ α is the identity,

which corresponds to the fact that α2
2 is the identity matrix mod 2.

3.2 Division Polynomials

The goal of this section is to prove Theorem 3.2. We’ll also obtain a few
other results that will be needed in proofs in Section 4.2.

© 2008 by Taylor & Francis Group, LLC



SECTION 3.2 DIVISION POLYNOMIALS 81

In order to study the torsion subgroups, we need to describe the map on
an elliptic curve given by multiplication by an integer. As in Section 2.9, this
is an endomorphism of the elliptic curve and can be described by rational
functions. We shall give formulas for these functions.

We start with variables A,B. Define the division polynomials ψm ∈
Z[x, y, A, B] by

ψ0 = 0
ψ1 = 1
ψ2 = 2y

ψ3 = 3x4 + 6Ax2 + 12Bx − A2

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − 8B2 − A3)
ψ2m+1 = ψm+2ψ

3
m − ψm−1ψ

3
m+1 for m ≥ 2

ψ2m = (2y)−1(ψm)(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1) for m ≥ 3.

LEMMA 3.3
ψn is a polynomial in Z[x, y2, A,B] when n is odd, and ψn is a polynomial

in 2yZ[x, y2, A,B] when n is even.

PROOF The lemma is true for n ≤ 4. Assume, by induction, that it holds
for all n < 2m. We may assume that 2m > 4, so m > 2. Then 2m > m + 2,
so all polynomials appearing in the definition of ψ2m satisfy the induction
assumptions. If m is even, then ψm, ψm+2, ψm−2 are in 2yZ[x, y2, A,B], from
which it follows that ψ2m is in 2yZ[x, y2, A,B]. If m is odd, then ψm−1 and
ψm+1 are in 2yZ[x, y2, A,B], so again we find that ψ2m is in 2yZ[x, y2, A,B].
Therefore, the lemma holds for n = 2m. Similarly, it holds for n = 2m + 1.

Define polynomials

φm = xψ2
m − ψm+1ψm−1

ωm = (4y)−1(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1).

LEMMA 3.4
φn ∈ Z[x, y2, A,B] for all n. If n is odd, then ωn ∈ yZ[x, y2, A,B]. If n is

even, then ωn ∈ Z[x, y2, A,B].

PROOF If n is odd, then ψn+1 and ψn−1 are in yZ[x, y2, A,B], so their
product is in Z[x, y2, A,B]. Therefore, φn ∈ Z[x, y2, A,B]. If n is even, the
proof is similar.

The facts that y−1ωn ∈ Z[x, y2, A,B] for odd n and ωn ∈ 1
2Z[x, y2, A,B]

for even n follow from Lemma 3.3, and these are all that we need for future
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82 CHAPTER 3 TORSION POINTS

applications. However, to get rid of the extra 2 in the denominator, we proceed
as follows. Induction (treating separately the various possibilities for n mod
4) shows that

ψn ≡ (x2 + A)(n
2−1)/4 (mod 2) when n is odd

and

(2y)−1ψn ≡
(n

2

)
(x2 + A)(n

2−4)/4 (mod 2) when n is even.

A straightforward calculation now yields the lemma.

We now consider an elliptic curve

E : y2 = x3 + Ax + B, 4A3 + 27B2 �= 0.

We don’t specify what ring or field the coefficients A,B are in, so we continue
to treat them as variables. We regard the polynomials in Z[x, y2, A,B] as
polynomials in Z[x, A, B] by replacing y2 with x3 + Ax + B. Therefore, we
write φn(x) and ψ2

n(x). Note that ψn is not necessarily a polynomial in x
alone, while ψ2

n is always a polynomial in x.

LEMMA 3.5

φn(x) = xn2
+ lower degree terms

ψ2
n(x) = n2xn2−1 + lower degree terms

PROOF In fact, we claim that

ψn =

{
y(nx(n2−4)/2 + · · · ) if n is even
nx(n2−1)/2 + · · · if n is odd.

This is proved by induction. For example, if n = 2m + 1 with m even, then
the leading term of ψm+2ψ

3
m is

(m + 2)m3y4x
(m+2)2−4

2 + 3m2−12
2 .

Changing y4 to (x3 + Ax + B)2 yields

(m + 2)m3x
(2m+1)2−1

2 .

Similarly, the leading term of ψm−1ψ
3
m+1 is

(m − 1)(m + 1)3x
(2m+1)2−1

2 .
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SECTION 3.2 DIVISION POLYNOMIALS 83

Subtracting and using the recursion relation shows that the leading term of
ψ2m+1 is as claimed in the lemma. The other cases are treated similarly.

We can now state the main theorem.

THEOREM 3.6
Let P = (x, y) be a point on the elliptic curve y2 = x3 + Ax + B (over some
field of characteristic not 2), and let n be a positive integer. Then

nP =
(

φn(x)
ψ2

n(x)
,

ωn(x, y)
ψn(x, y)3

)
.

The proof will be given in Section 9.5.

COROLLARY 3.7
Let E be an elliptic curve. The endomorphism of E given by multiplication

by n has degree n2.

PROOF From Lemma 3.5, we have that the maximum of the degrees of
the numerator and denominator of φn(x)/ψ2

n(x) is n2. Therefore, the degree
of the endomorphism is n2 if this rational function is reduced, that is, if φn(x)
and ψ2

n(x) have no common roots. We’ll show that this is the case. Suppose
not. Let n be the smallest index for which they have a common root.

Suppose n = 2m is even. A quick calculation shows that

φ2(x) = x4 − 2Ax2 − 8Bx + A2.

Computing the x-coordinate of 2m(x, y) in two steps by multiplying by m
and then by 2, and using the fact that

ψ2
2 = 4y2 = 4(x3 + Ax + B),

we obtain

φ2m

ψ2
2m

=
φ2(φm/ψ2

m)
ψ2

2(φm/ψ2
m)

=
φ4

m − 2Aφ2
mψ4

m − 8Bφmψ6
m + A2ψ8

m

(4ψ2
m)(φ3

m + Aφmψ4
m + Bψ6

m)

=
U

V
,

where U and V are the numerator and denominator of the preceding expres-
sion. To show U and V have no common roots, we need the following.
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84 CHAPTER 3 TORSION POINTS

LEMMA 3.8
Let ∆ = 4A3 + 27B2 and let

F (x, z) = x4 − 2Ax2z2 − 8Bxz3 + A2z4

G(x, z) = 4z(x3 + Axz2 + Bz3)
f1(x, z) = 12x2z + 16Az3

g1(x, z) = 3x3 − 5Axz2 − 27Bz3

f2(x, z) = 4∆x3 − 4A2Bx2z + 4A(3A3 + 22B2)xz2 + 12B(A3 + 8B2)z3

g2(x, z) = A2Bx3 + A(5A3 + 32B2)x2z + 2B(13A3 + 96B2)xz2

− 3A2(A3 + 8B2)z3.

Then
Ff1 − Gg1 = 4∆z7 and Ff2 + Gg2 = 4∆x7.

PROOF This is verified by a straightforward calculation. Where do these
identities come from? The polynomials F (x, 1) and G(x, 1) have no common
roots, so the extended Euclidean algorithm, applied to polynomials, finds
polynomials f1(x), g1(x) such that F (x, 1)f1(x)+G(x, 1)g1(x) = 1. Changing
x to x/z, multiplying by z7 (to make everything homogeneous), then multi-
plying by 4∆ to clear denominators yields the first identity. The second is
obtained by reversing the roles of x and z.

The lemma implies that

U · f1(φm, ψ2
m) − V · g1(φm, ψ2

m) = 4ψ14
m ∆

U · f2(φm, ψ2
m) + V · g2(φm, ψ2

m) = 4φ7
m∆.

If U, V have a common root, then so do φm and ψ2
m. Since n = 2m is the first

index for which there is a common root, this is impossible.
It remains to show that U = φ2m and V = ψ2

2m. Since U/V = φ2m/ψ2
2m

and since U, V have no common root, it follows that φ2m is a multiple of U
and ψ2

2m is a multiple of V . A quick calculation using Lemma 3.5 shows that

U = x4m2
+ lower degree terms.

Lemma 3.5 and the fact that φ2m is a multiple of U imply that φ2m = U .
Therefore, V = ψ2

2m. It follows that φ2m and ψ2
2m have no common roots.

Now suppose that the smallest index n such that there is a common root is
odd: n = 2m + 1. Let r be a common root of φn and ψ2

n. Since

φn = xψ2
n − ψn−1ψn+1,

and since ψn+1ψn−1 is a polynomial in x, we have (ψn+1ψn−1)(r) = 0.
But ψ2

n±1 are polynomials in x and their product vanishes at r. Therefore
ψ2

n+δ(r) = 0, where δ is either 1 or −1.
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Since n is odd, both ψn and ψn+2δ are polynomials in x. Moreover,

(ψnψn+2δ)2 = ψ2
nψ2

n+2δ

vanishes at r. Therefore ψnψn+2δ vanishes at r. Since

φn+δ = xψ2
n+δ − ψnψn+2δ,

we find that φn+δ(r) = 0. Therefore, φn+δ and ψ2
n+δ have a common root.

Note that n + δ is even.
When considering the case that n is even, we showed that if φ2m and ψ2

2m

have a common root, then φm and ψ2
m have a common root. In the present

case, we apply this to 2m = n + δ. Since n is assumed to be the smallest
index for which there is a common root, we have

n + δ

2
≥ n.

This implies that n = 1. But clearly φ1 = x and ψ2
1 = 1 have no common

roots, so we have a contradiction.
This proves that φn and ψ2

n have no common roots in all cases. Therefore,
as pointed out at the beginning of the proof, the multiplication by n map has
degree n2. This completes the proof of Corollary 3.7.

Recall from Section 2.9 that if α(x, y) = (R(x), yS(x)) is an endomorphism
of an elliptic curve E, then α is separable if R′(x) is not identically 0. Assume
n is not a multiple of the characteristic p of the field. From Theorem 3.6 we
see that the multiplication by n map has

R(x) =
xn2

+ · · ·
n2xn2−1 + · · · .

The numerator of the derivative is n2x2n2−2+· · · �= 0, so R′(x) �= 0. Therefore,
multiplication by n is separable. From Corollary 3.7 and Proposition 2.21,
E[n], the kernel of multiplication by n, has order n2. The structure theorem
for finite abelian groups (see Appendix B) says that E[n] is isomorphic to

Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znk
,

for some integers n1, n2, . . . , nk with ni|ni+1 for all i. Let 
 be a prime dividing
n1. Then 
|ni for all i. This means that E[
] ⊆ E[n] has order 
k. Since we
have just proved that E[
] has order 
2, we must have k = 2. Multiplication by
n annihilates E[n] 	 Zn1 ⊕ Zn2 , so we must have n2|n. Since n2 = #E[n] =
n1n2, it follows that n1 = n2 = n. Therefore,

E[n] 	 Zn ⊕ Zn

when the characteristic p of the field does not divide n.
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It remains to consider the case where p|n. We first determine the p-power
torsion on E. By Proposition 2.28, multiplication by p is not separable. By
Proposition 2.21, the kernel E[p] of multiplication by p has order strictly less
than the degree of this endomorphism, which is p2 by Corollary 3.7. Since
every element of E[p] has order 1 or p, the order of E[p] is a power of p, hence
must be 1 or p. If E[p] is trivial, then E[pk] must be trivial for all k. Now
suppose E[p] has order p. We claim that E[pk] 	 Zpk for all k. It is easy to
see that E[pk] is cyclic. The hard part is to show that the order is pk, rather
than something smaller (for example, why can’t we have E[pk] = E[p] 	 Zp

for all k?). Suppose there exists an element P of order pj . By Theorem 2.22,
multiplication by p is surjective, so there exists a point Q with pQ = P . Since

pjQ = pj−1P �= ∞ but pj+1Q = pjP = ∞,

Q has order pj+1. By induction, there are points of order pk for all k. There-
fore, E[pk] is cyclic of order pk.

We can now put everything together. Write n = prn′ with r ≥ 0 and p � n′.
Then

E[n] 	 E[n′] ⊕ E[pr].

We have E[n′] 	 Zn′ ⊕ Zn′ , since p � n′. We have just showed that E[pr] 	
0 or Zpr . Recall that

Zn′ ⊕ Zpr 	 Zn′pr 	 Zn

(see Appendix A). Therefore, we obtain

E[n] 	 Zn′ ⊕ Zn′ or Zn ⊕ Zn′ .

This completes the proof of Theorem 3.2.

3.3 The Weil Pairing

The Weil pairing on the n-torsion on an elliptic curve is a major tool in the
study of elliptic curves. For example, it will be used in Chapter 4 to prove
Hasse’s theorem on the number of points on an elliptic curve over a finite
field. It will be used in Chapter 5 to attack the discrete logarithm problem
for elliptic curves. In Chapter 6, it will be used in a cryptographic setting.

Let E be an elliptic curve over a field K and let n be an integer not divisible
by the characteristic of K. Then E[n] 	 Zn ⊕ Zn. Let

µn = {x ∈ K |xn = 1}
be the group of nth roots of unity in K. Since the characteristic of K does
not divide n, the equation xn = 1 has no multiple roots, hence has n roots in
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K. Therefore, µn is a cyclic group of order n. Any generator ζ of µn is called
a primitive nth root of unity. This is equivalent to saying that ζk = 1 if
and only if n divides k.

THEOREM 3.9
Let E be an elliptic curve defined over a field K and let n be a positive integer.
Assume that the characteristic of K does not divide n. Then there is a pairing

en : E[n] × E[n] → µn,

called the Weil pairing, that satisfies the following properties:

1. en is bilinear in each variable. This means that

en(S1 + S2, T ) = en(S1, T )en(S2, T )

and
en(S, T1 + T2) = en(S, T1)en(S, T2)

for all S, S1, S2, T, T1, T2 ∈ E[n].

2. en is nondegenerate in each variable. This means that if en(S, T ) = 1
for all T ∈ E[n] then S = ∞ and also that if en(S, T ) = 1 for all
S ∈ E[n] then T = ∞.

3. en(T, T ) = 1 for all T ∈ E[n].

4. en(T, S) = en(S, T )−1 for all S, T ∈ E[n].

5. en(σS, σT ) = σ(en(S, T )) for all automorphisms σ of K such that σ is
the identity map on the coefficients of E (if E is in Weierstrass form,
this means that σ(A) = A and σ(B) = B).

6. en(α(S), α(T )) = en(S, T )deg(α) for all separable endomorphisms α of
E. If the coefficients of E lie in a finite field Fq, then the statement
also holds when α is the Frobenius endomorphism φq. (Actually, the
statement holds for all endomorphisms α, separable or not. See [38].)

The proof of the theorem will be given in Chapter 11. In the present section,
we’ll derive some consequences.

COROLLARY 3.10
Let {T1, T2} be a basis of E[n]. Then en(T1, T2) is a primitive nth root of

unity.

PROOF Suppose en(T1, T2) = ζ with ζd = 1. Then en(T1, dT2) = 1.
Also, en(T2, dT2) = en(T2, T2)d = 1 (by (1) and (3)). Let S ∈ E[n]. Then
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S = aT1 + bT2 for some integers a, b. Therefore,

en(S, dT2) = en(T1, dT2)aen(T2, dT2)b = 1.

Since this holds for all S, (2) implies that dT2 = ∞. Since dT2 = ∞ if and
only if n|d, it follows that ζ is a primitive nth root of unity.

COROLLARY 3.11
If E[n] ⊆ E(K), then µn ⊂ K.

REMARK 3.12 Recall that points in E[n] are allowed to have coordinates
in K. The hypothesis of the corollary is that these points all have coordinates
in K.

PROOF Let σ be any automorphism of K such that σ is the identity on
K. Let T1, T2 be a basis of E[n]. Since T1, T2 are assumed to have coordinates
in K, we have σT1 = T1 and σT2 = T2. By (5),

ζ = en(T1, T2) = en(σT1, σT2) = σ(en(T1, T2)) = σ(ζ).

The fundamental theorem of Galois theory says that if an element x ∈ K is
fixed by all such automorphisms σ, then x ∈ K. Therefore, ζ ∈ K. Since ζ
is a primitive nth root of unity by Corollary 3.10, it follows that µn ⊂ K.
(Technical point: The fundamental theorem of Galois theory only implies
that ζ lies in a purely inseparable extension of K. But an nth root of unity
generates a separable extension of K when the characteristic does not divide
n, so we conclude that ζ ∈ K.)

COROLLARY 3.13
Let E be an elliptic curve defined over Q. Then E[n] �⊆ E(Q) for n ≥ 3.

PROOF If E[n] ⊆ E(Q), then µn ⊂ Q, which is not the case when n ≥ 3.

REMARK 3.14 When n = 2, it is possible to have E[2] ⊆ E(Q). For
example, if E is given by y2 = x(x − 1)(x + 1), then

E[2] = {∞, (0, 0), (1, 0), (−1, 0)}.
If n = 3, 4, 5, 6, 7, 8, 9, 10, 12, there are elliptic curves E defined over Q that
have points of order n with rational coordinates. However, the corollary says
that it is not possible for all points of order n to have rational coordinates for
these n. The torsion subgroups of elliptic curves over Q will be discussed in
Chapter 8.
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SECTION 3.3 THE WEIL PAIRING 89

We now use the Weil pairing to deduce two propositions that will be used in
the proof of Hasse’s theorem in Chapter 4. Recall that if α is an endomorphism

of E, then we obtain a matrix αn =
(

a b
c d

)
with entries in Zn, describing the

action of α on a basis {T1, T2} of E[n].

PROPOSITION 3.15

Let α be an endomorphism of an elliptic curve E defined over a field K.
Let n be a positive integer not divisible by the characteristic of K. Then
det(αn) ≡ deg(α) (mod n).

PROOF By Corollary 3.10, ζ = en(T1, T2) is a primitive nth root of unity.
By part (6) of Theorem 3.9, we have

ζdeg(α) = en(α(T1), α(T2)) = en(aT1 + cT2, bT1 + dT2)
= en(T1, T1)aben(T1, T2)aden(T2, T1)cben(T2, T2)cd

= ζad−bc,

by the properties of the Weil pairing. Since ζ is a primitive nth root of unity,
deg(α) ≡ ad − bc (mod n).

As we’ll see in the proof of the next result, Proposition 3.15 allows us to
reduce questions about the degree to calculations with matrices. Both Propo-
sition 3.15 and Proposition 3.16 hold for all endomorphisms, since part (6)
of Theorem 3.9 holds in general. However, we prove part (6) only for sepa-
rable endomorphisms and for the Frobenius map, which is sufficient for our
purposes. We’ll state Proposition 3.16 in general, and the proof is sufficient
for separable endomorphisms and for all endomorphisms of the form r + sφq

with arbitrary integers r, s.
Let α and β be endomorphisms of E and let a, b be integers. The endomor-

phism aα + bβ is defined by

(aα + bβ)(P ) = aα(P ) + bβ(P ).

Here aα(P ) means multiplication on E of α(P ) by the integer a. The result
is then added on E to bβ(P ). This process can all be described by rational
functions, since this is true for each of the individual steps. Therefore aα+bβ
is an endomorphism.

PROPOSITION 3.16

deg(aα + bβ) = a2 deg α + b2 deg β + ab(deg(α + β) − deg α − deg β).
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90 CHAPTER 3 TORSION POINTS

PROOF Let n be any integer not divisible by the characteristic of K.
Represent α and β by matrices αn and βn (with respect to some basis of
E[n]). Then aαn + bβn gives the action of aα+ bβ on E[n]. A straightforward
calculation yields

det(aαn + bβn) = a2 det αn + b2 det βn + ab(det(αn + βn) − det αn − det βn)

for any matrices αn and βn (see Exercise 3.4). Therefore

deg(aα + bβ) ≡
a2 deg α + b2 deg β + ab(deg(α + β) − deg α − deg β) (mod n).

Since this holds for infinitely many n, it must be an equality.

3.4 The Tate-Lichtenbaum Pairing

Starting from the Weil pairing, it is possible to define a pairing that can be
used in cases where the full n-torsion is not available, so the Weil pairing does
not apply directly. The approach used in this section was inspired by work of
Schaefer [96].

THEOREM 3.17
Let E be an elliptic curve over Fq. Let n be an integer such that n|q − 1.

Denote by E(Fq)[n] the elements of E(Fq) of order dividing n, and let µn =
{x ∈ Fq |xn = 1}. Let P ∈ E(Fq)[n] and Q ∈ E(Fq) and choose R ∈ E(Fq)
satisfying nR = Q. Denote by en the nth Weil pairing and by φ = φq the qth
power Frobenius endomorphism. Define

τn(P,Q) = en(P,R − φ(R)).

Then
τn : E(Fq)[n] × E(Fq)/nE(Fq) −→ µn

is a well-defined nondegenerate bilinear pairing.

The pairing of the theorem is called the modified Tate-Lichtenbaum
pairing. The original Tate-Lichtenbaum pairing is obtained by taking
the nth root of τn, thus obtaining a pairing

〈·, ·〉n : E(Fq)[n] × E(Fq)/nE(Fq) −→ F×
q /(F×

q )n.

The pairing τn is better suited for computations since it gives a definite answer,
rather than a coset in F×

q mod nth powers. These pairings can be computed
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SECTION 3.4 THE TATE-LICHTENBAUM PAIRING 91

quickly (using at most a constant times log q point additions on E). See
Section 11.4.

Technically, we should write τn(P,Q) as τn(P,Q+nE(Fq)), since an element
of E(Fq)/nE(Fq) has the form Q + nE(Fq). However, we’ll simply write
τn(P,Q) and similarly for 〈P,Q〉n. The fact that τn is nondegenerate means
that if τn(P,Q) = 1 for all Q then P = ∞, and if τn(P,Q) = 1 for all P then
Q ∈ nE(Fq). Bilinearity means that

τn(P1 + P1, Q) = τn(P1, Q)τn(P2, Q)

and
τn(P,Q1 + Q2) = τn(P,Q1)τn(P,Q2).

PROOF We now prove the theorem. First, we need to show that τn(P,Q)
is defined and is independent of the choice of R. Since nR = Q ∈ E(Fq), we
have

∞ = Q − φ(Q) = n (R − φR) ,

so R − φR ∈ E[n] (to lower the number of parentheses, we often write φR
instead of φ(R)). Since P ∈ E[n], too, the Weil pairing en(P,R − φR) is
defined. Suppose that nR′ = Q gives another choice of R. Let T = R′ − R.
Then nT = Q − Q = ∞, so T ∈ E[n]. Therefore,

en(P,R′ − φR′) = en(P,R − φR + T − φT )
= en(P,R − φR)en(P, T )/en(P, φT ).

But P = φP , since P ∈ E(Fq), so

en(P, φT ) = en(φP, φT ) = φ (en(P, T )) = en(P, T ),

since en(P, T ) ∈ µn ⊂ Fq. Therefore,

en(P,R′ − φR′) = en(P,R − φR),

so τn does not depend on the choice of R.
Since Q is actually a representative of a coset in E(Fq)/nE(Fq), we need

to show that the value of τn depends only on the coset, not on the particular
choice of representative. Therefore, suppose Q′ − Q = nU ∈ nE(Fq). Let
nR = Q and let R′ = R + U . Then nR′ = Q′. We have

en(P,R′ − φR′) = en(P,R − φR + U − φU) = en(P,R − φR),

since U = φU for U ∈ E(Fq). Therefore, the value does not depend on the
choice of coset representative. This completes the proof that τn is well defined.

The fact that τn(P,Q) is bilinear in P follows immediately from the cor-
responding fact for en. For bilinearity in Q, suppose that nR1 = Q1 and
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92 CHAPTER 3 TORSION POINTS

nR2 = Q2. Then n(R1 + R2) = Q1 + Q2, so

τn(P,Q1 + Q2) = en(P,R1 + R2 − φR1 − φR2)
= en(P,R1 − φR1)en(P,R2 − φR2)
= τn(P,Q1)τn(P,Q2).

It remains to prove the nondegeneracy. This we postpone to Section 11.7.

The Tate-Lichtenbaum pairing can be used in some situations where the
Weil pairing does not apply. The Weil pairing needs E[n] ⊆ E(Fq), which
implies that µn ⊆ F×

q , by Corollary 3.11. The Tate-Lichtenbaum pairing
requires that µn ⊆ F×

q , but only needs a point of order n, rather than all
of E[n], to be in E(Fq). In fact, it doesn’t even need a point of order n. If
E(Fq)[n] is trivial, for example, then we have a pairing between two trivial
groups.

Exercises

3.1 Let E be the elliptic curve y2 = x3 + 1 mod 5.

(a) Compute the division polynomial ψ3(x).

(b) Show that gcd(x5 − x, ψ3(x)) = x.

(c) Use the result of part (b) to show that the 3-torsion points in E(F5)
are {∞, (0, 1), (0,−1)}.

3.2 Let E be an elliptic curve in characteristic 2. Show that E[3] 	 Z3⊕Z3.
(Hint: Use the formulas at the end of Section 2.8.)

3.3 Let E be an elliptic curve over a field of characteristic not 2. Let E[2] =
{∞, P1, P2, P3}. Show that e2(Pi, Pj) = −1 whenever i �= j.

3.4 Let M and N be 2 × 2 matrices with N =
(

w x
y z

)
. Define Ñ =(

z −x
−y w

)
(this is the adjoint matrix).

(a) Show that Trace(MÑ) = det(M + N) − det(M) − det(N).

(b) Use (a) to show that

det(aM + bN) − a2 det M − b2 det N

= ab(det(M + N) − det M − det N)
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EXERCISES 93

for all scalars a, b. This is the relation used in the proof of Propo-
sition 3.16.

3.5 Show that part (6) of Theorem 3.9 holds when α is the endomorphism
given by multiplication by an integer m.

3.6 Let E be an elliptic curve over a field K and let P be a point of order
n (where n is not divisible by the characteristic of the field K). Let
Q ∈ E[n]. Show that there exists an integer k such that Q = kP if and
only if en(P,Q) = 1.

3.7 Write the equation of the elliptic curve E as

F (x, y, z) = y2z − x3 − Axz2 − Bz3 = 0.

Show that a point P on E is in E[3] if and only if

det

⎛
⎝Fxx Fxy Fxz

Fyx Fyy Fyz

Fzx Fzy Fzz

⎞
⎠ = 0

at the point P , where Fab denotes the 2nd partial derivative with respect
to a, b. The determinant is called the Hessian. For a curve in P2 defined
by an equation F = 0, a point where the Hessian is zero is called a flex
of the curve.

3.8 The division polynomials ψn were defined for n ≥ 0. Show that if we
let ψ−n = −ψn, then the recurrence relations preceding Lemma 3.3,
which are stated only for m ≥ 2, hold for all integers m. (Note that this
requires verifying the relations for m ≤ −2 and for m = −1, 0, 1.)
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