
Chapter 5
The Discrete Logarithm

Problem

Let p be a prime and let a, b be integers that are nonzero mod p. Suppose we
know that there exists an integer k such that

ak ≡ b (mod p).

The classical discrete logarithm problem is to find k. Since k + (p− 1) is
also a solution, the answer k should be regarded as being defined mod p − 1,
or mod a divisor d of p − 1 if ad ≡ 1 (mod p).

More generally, let G be any group, written multiplicatively for the moment,
and let a, b ∈ G. Suppose we know that ak = b for some integer k. In this
context, the discrete logarithm problem is again to find k. For example, G
could be the multiplicative group F×

q of a finite field. Also, G could be E(Fq)
for some elliptic curve, in which case a and b are points on E and we are
trying to find an integer k with ka = b.

In Chapter 6, we’ll meet several cryptographic applications of the discrete
logarithm problem. The security of the cryptosystems will depend on the
difficulty of solving the discrete log problem.

One way of attacking a discrete log problem is simple brute force: try all
possible values of k until one works. This is impractical when the answer k
can be an integer of several hundred digits, which is a typical size used in
cryptography. Therefore, better techniques are needed.

In this chapter, we start by discussing an attack, called the index calculus,
that can be used in F×

p , and more generally in the multiplicative group of a
finite field. However, it does not apply to general groups. Then we discuss the
method of Pohlig-Hellman, the baby step, giant step method, and Pollard’s ρ
and λ methods. These work for general finite groups, in particular for elliptic
curves. Finally, we show that for special classes of elliptic curves, namely
supersingular and anomalous curves, it is possible to reduce the discrete log
problem to easier discrete log problems (in the multiplicative group of a finite
field and in the additive group of integers mod a prime, respectively).
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144 CHAPTER 5 THE DISCRETE LOGARITHM PROBLEM

5.1 The Index Calculus

Let p be a prime and let g be primitive root (see Appendix A) mod p,
which means that g is a generator for the cyclic group F×

p . In other words,
every h �≡ 0 (mod p) can be written in the form h ≡ gk for some integer k
that is uniquely determined mod p − 1. Let k = L(h) denote the discrete
logarithm of h with respect to g and p, so

gL(h) ≡ h (mod p).

Suppose we have h1 and h2. Then

gL(h1h2) ≡ h1h2 ≡ gL(h1)+L(h2) (mod p),

which implies that

L(h1h2) ≡ L(h1) + L(h2) (mod p − 1).

Therefore, L changes multiplication into addition, just like the classical loga-
rithm function.

The index calculus is a method for computing values of the discrete log
function L. The idea is to compute L(�) for several small primes �, then use
this information to compute L(h) for arbitrary h. It is easiest to describe the
method with an example.

Example 5.1
Let p = 1217 and g = 3. We want to solve 3k ≡ 37 (mod 1217). Most
of our work will be precomputation that will be independent of the number
37. Let’s choose a set of small primes, called the factor base, to be B =
{2, 3, 5, 7, 11, 13}. First, we find relations of the form

3x ≡ ±product of some primes in B (mod 1217).

Eventually, we find the following:

31 ≡ 3 (mod 1217)
324 ≡ −22 · 7 · 13
325 ≡ 53

330 ≡ −2 · 52

354 ≡ −5 · 11
387 ≡ 13

These can be changed into equations for discrete logs, where now the congru-
ences are all mod p−1 = 1216. Note that we already know that 3(p−1)/2 ≡ −1
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SECTION 5.1 THE INDEX CALCULUS 145

(mod p), so L(−1) = 608.

1 ≡ L(3) (mod 1216)
24 ≡ 608 + 2L(2) + L(7) + L(13)
25 ≡ 3L(5)
30 ≡ 608 + L(2) + 2L(5)
54 ≡ 608 + L(5) + L(11)
87 ≡ L(13)

The first equation yields L(3) ≡ 1. The third yields L(5) ≡ 819 (mod 1216).
The sixth yields L(13) ≡ 87. The fourth gives

L(2) ≡ 30 − 608 − 2 · 819 ≡ 216 (mod 1216).

The fifth yields L(11) ≡ 54 − 608 − L(5) ≡ 1059. Finally, the second gives

L(7) ≡ 24 − 608 − 2L(2) − L(13) ≡ 113 (mod 1216).

We now know the discrete logs of all the elements of the factor base.
Recall that we want to solve 3k ≡ 37 (mod 1216). We compute 3j · 37

(mod p) for several random values of j until we obtain an integer that can be
factored into a product of primes in B. In our case, we find that

316 · 37 ≡ 23 · 7 · 11 (mod 1217).

Therefore,

L(37) ≡ 3L(2) + L(7) + L(11) − 16 ≡ 588 (mod 1216),

and 3588 ≡ 37 (mod 1217).

The choice of the size of the factor base B is important. If B is too small,
then it will be very hard to find powers of g that factor with primes in B. If B
is too large, it will be easy to find relations, but the linear algebra needed to
solve for the logs of the elements of B will be unwieldy. An example that was
completed in 2001 by A. Joux and R. Lercier used the first 1 million primes
to compute discrete logs mod a 120-digit prime.

There are various methods that produce relations of the form gx ≡ product
of primes in B. A popular one uses the number field sieve. See [58].

The expected running time of the index calculus is approximately a constant
times exp(

√
2 ln p ln ln p) (see [81, p. 129]), which means that it is a subex-

ponential algorithm. The algorithms in Section 5.2, which are exponential
algorithms, run in time approximately

√
p = exp(1

2 ln p). Since
√

2 ln p ln ln p
is much smaller than 1

2 ln p for large p, the index calculus is generally much
faster when it can be used.
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146 CHAPTER 5 THE DISCRETE LOGARITHM PROBLEM

Note that the index calculus depends heavily on the fact that integers can
be written as products of primes. An analogue of this is not available for
arbitrary groups.

There is a generalization of the index calculus that works for finite fields,
but it requires some algebraic number theory, so we do not discuss it here.

In Section 13.4, we show how an analogue of the index calculus can be
applied to groups arising from hyperelliptic curves.

5.2 General Attacks on Discrete Logs

In this section, we discuss attacks that work for arbitrary groups. Since our
main focus is elliptic curves, we write our group G additively. Therefore, we
are given P,Q ∈ G and we are trying to solve kP = Q (we always assume
that k exists). Let N be the order of G. Usually, we assume N is known. For
simplicity, it is usually assumed that P generates G.

5.2.1 Baby Step, Giant Step

This method, developed by D. Shanks [107], requires approximately
√

N
steps and around

√
N storage. Therefore it only works well for moderate

sized N . The procedure is as follows.

1. Fix an integer m ≥ √
N and compute mP .

2. Make and store a list of iP for 0 ≤ i < m.

3. Compute the points Q − jmP for j = 0, 1, · · ·m − 1 until one matches
an element from the stored list.

4. If iP = Q − jmP , we have Q = kP with k ≡ i + jm (mod N).

Why does this work? Since m2 > N , we may assume the answer k satisfies
0 ≤ k < m2. Write k = k0 + mk1 with k0 ≡ k (mod m) and 0 ≤ k0 < m and
let k1 = (k − k0)/m. Then 0 ≤ k1 < m. When i = k0 and j = k1, we have

Q − k1mP = kP − k1mP = k0P,

so there is a match.
The point iP is calculated by adding P (a “baby step”) to (i− 1)P . The

point Q − jmP is computed by adding −mP (a “giant step”) to Q − (j −
1)mP . The method was developed by Shanks for computations in algebraic
number theory.
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SECTION 5.2 GENERAL ATTACKS ON DISCRETE LOGS 147

Note that we did not need to know the exact order N of G. We only
required an upper bound for N . Therefore, for elliptic curves over Fq, we
could use this method with m2 ≥ q + 1 + 2

√
q, by Hasse’s theorem.

A slight improvement of the method can be made for elliptic curves by
computing and storing only the points iP for 0 ≤ i ≤ m/2 and checking
whether Q − jmP = ±iP (see Exercise 5.1).

Example 5.2
Let G = E(F41), where E is given by y2 = x3 + 2x + 1. Let P = (0, 1) and
Q = (30, 40). By Hasse’s theorem, we know that the order of G is at most 54,
so we let m = 8. The points iP for 1 ≤ i ≤ 7 are

(0, 1), (1, 39), (8, 23), (38, 38), (23, 23), (20, 28), (26, 9).

We calculate Q − jmP for j = 0, 1, 2 and obtain

(30, 40), (9, 25), (26, 9),

at which point we stop since this third point matches 7P . Since j = 2 yielded
the match, we have

(30, 40) = (7 + 2 · 8)P = 23P.

Therefore k = 23.

5.2.2 Pollard’s ρ and λ Methods

A disadvantage of the Baby Step, Giant Step method is that it requires a
lot of storage. Pollard’s ρ and λ methods [87] run in approximately the same
time as Baby Step, Giant Step, but require very little storage. First, we’ll
discuss the ρ method, then its generalization to the λ method.

Let G be a finite group of order N . Choose a function f : G → G that
behaves rather randomly. Then start with a random element P0 and compute
the iterations Pi+1 = f(Pi). Since G is a finite set, there will be some indices
i0 < j0 such that Pi0 = Pj0 . Then

Pi0+1 = f(Pi0) = f(Pj0) = Pj0+1,

and, similarly, Pi0+� = Pj0+� for all � ≥ 0. Therefore, the sequence Pi is
periodic with period j0 − i0 (or possibly a divisor of j0 − i0). The picture
describing this process (see Figure 5.1) looks like the Greek letter ρ, which
is why it is called Pollard’s ρ method. If f is a randomly chosen random
function (we’ll not make this precise), then we expect to find a match with j0
at most a constant times

√
N . For an analysis of the running time for various

choices of function f , see [119].
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148 CHAPTER 5 THE DISCRETE LOGARITHM PROBLEM

A naive implementation of the method stores all the points Pi until a match
is found. This takes around

√
N storage, which is similar to Baby Step, Giant

Step. However, as R. W. Floyd has pointed out, it is possible to do much better
at the cost of a little more computation. The key idea is that once there is a
match for two indices differing by d, all subsequent indices differing by d will
yield matches. This is just the periodicity mentioned above. Therefore, we
can compute pairs (Pi, P2i) for i = 1, 2, . . . , but only keep the current pair;
we don’t store the previous pairs. These can be calculated by the rules

Pi+1 = f(Pi), P2(i+1) = f(f(P2i)).

Suppose i ≥ i0 and i is a multiple of d. Then the indices 2i and i differ by a
multiple of d and hence yield a match: Pi = P2i. Since d ≤ j0 and i0 < j0, it
follows easily that there is a match for i ≤ j0. Therefore, the number of steps
to find a match is expected to be at most a constant multiple of

√
N .

Another method of finding a match is to store only those points Pi that
satisfy a certain property (call them “distinguished points”). For example, we
could require the last k bits of the binary representation of the x-coordinate to
be 0. We then store, on the average, one out of every 2k points Pi. Suppose
there is a match Pi = Pj but Pi is not one of these distinguished points.
We expect Pi+� to be a distinguished point for some � with 1 ≤ � ≤ 2k,
approximately. Then Pj+� = Pi+�, so we find a match between distinguished
points with only a little more computation.

The problem remains of how to choose a suitable function f . Besides having
f act randomly, we need to be able to extract useful information from a match.
Here is one way of doing this. Divide G into s disjoint subsets S1, S2, . . . , Ss

of approximately the same size. A good choice for s seems to be around 20.
Choose 2s random integers ai, bi mod N . Let

Mi = aiP + biQ.

Finally, define
f(g) = g + Mi if g ∈ Si.

The best way to think of f is as giving a random walk in G, with the possible
steps being the elements Mi.

Finally, choose random integers a0, b0 and let P0 = a0P+b0Q be the starting
point for the random walk. While computing the points Pj , we also record
how these points are expressed in terms of P and Q. If Pj = ujP + vjQ and
Pj+1 = Pj + Mi, then Pj+1 = (uj + ai)P + (vj + bi)Q, so (uj+1, vj+1) =
(uj , vj) + (ai, bi). When we find a match Pj0 = Pi0 , then we have

uj0P + vj0Q = ui0P + vi0Q, hence (ui0 − uj0)P = (vj0 − vi0)Q.

If gcd(vj0 − vi0 , N) = d, we have

k ≡ (vj0 − vi0)
−1(ui0 − uj0) (mod N/d).
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P0

P1

P2

P3

P4

P58�P5

P59�P6

Figure 5.1

Pollard’s Rho Method

This gives us d choices for k. Usually, d will be small, so we can try all
possibilities until we have Q = kP .

In cryptographic applications, N is often prime, in which case, d = 1 or
N . If d = N , we have a trivial relation (the coefficients of both P and Q are
multiples of N), so we start over. If d = 1, we obtain k.

Example 5.3
Let G = E(F1093), where E is the elliptic curve given by y2 = x3 + x + 1.
We’ll use s = 3. Let P = (0, 1) and Q = (413, 959). It can be shown that the
order of P is 1067. We want to find k such that kP = Q. Let

P0 = 3P + 5Q, M0 = 4P + 3Q, M1 = 9P + 17Q, M2 = 19P + 6Q.

Let f : E(F1093) → E(F1093) be defined by

f(x, y) = (x, y) + Mi if x ≡ i (mod 3).

Here the number x is regarded as an integer 0 ≤ x < 1093 and is then reduced
mod 3. For example,

f(P0) = P0 + M2 = (727, 589),

since P0 = (326, 69) and 326 ≡ 2 (mod 3).
We can define f(∞) = ∞ if we want. However, if we encounter f(∞), we

have found a relation of the form aP + bQ = ∞ and can find k easily (if the
relation isn’t something trivial like 1067P +2134Q = ∞). Therefore, we don’t
worry about ∞.
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150 CHAPTER 5 THE DISCRETE LOGARITHM PROBLEM

If we compute P0, P1 = f(P0), P2 = f(P1), . . . , we obtain

P0 = (326, 69), P1 = (727, 589), P2 = (560, 365), P3 = (1070, 260),
P4 = (473, 903), P5 = (1006, 951), P6 = (523, 938), . . . ,

P57 = (895, 337), P58 = (1006, 951), P59 = (523, 938), . . . .

Therefore, the sequence starts repeating at P5 = P58.
If we keep track of the coefficients of P and Q in the calculations, we find

that
P5 = 88P + 46Q and P58 = 685P + 620Q.

Therefore,
∞ = P58 − P5 = 597P + 574Q.

Since P has order 1067, we calculate

−574−1597 ≡ 499 (mod 1067).

Therefore, Q = 499P , so k = 499.
We stored all of the points P0, P1, . . . , P58 until we found a match. Instead,

let’s repeat the computation, but compute the pairs (Pi, P2i) and store nothing
except the current pair. We then find that for i = 53 there is the match
P53 = P106. This yields

620P + 557Q = P53 = P106 = 1217P + 1131Q.

Therefore, 597P + 574Q = ∞, which yields k = 499, as before.

Pollard’s λ method uses a function f as in the ρ method, but several
random starting points P

(1)
0 , . . . , P

(r)
0 are used. We then get sequences defined

by
P

(�)
i+1 = f(P (�)

i ), 1 ≤ � ≤ r, i = 0, 1, 2, . . . .

These can be computed by several computers in parallel. Points satisfying
certain conditions are called distinguished and are reported to a central com-
puter. When a match is found among the inputs from the various computers,
we have a relation that should allow us to solve the discrete log problem, as
in the ρ method. When there is a match between two sequences, these two
sequences will always match from that point on. We only need to look at
distinguished points because distinguished points should occur soon after a
match occurs.

When there are only two random starting points, we have two random
walks. Eventually they will have a point in common, and therefore they will
coincide thereafter. The picture of this process resembles the Greek letter λ,
hence the name.

Sometimes the λ method is described in terms of kangaroos jumping around
a field (this is the random walk). A variant of the λ method with two random
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walks records every 10th point, for example, in the first sequence and then
checks whether the second sequence matches any of these points. In this case,
the first sequence is called a tame kangaroo, and the second is called a wild
kangaroo. The idea is to use the tame kangaroo to catch the wild kangaroo.

The λ method is expected to find a match in at most a constant times
√

N
steps. If it is run in parallel with many starting points, the running time can
be improved significantly.

Finally, we should point out a difference between the baby step, giant step
method and the ρ and λ methods. The baby step, giant step method is de-
terministic, which means that it is guaranteed to finish within the predicted
time of a constant times

√
N . On the other hand, the ρ and λ methods are

probabilistic, which means that there is a very high probability that they
will finish within the predicted time, but this is not guaranteed.

5.2.3 The Pohlig-Hellman Method

As before, P,Q are elements in a group G and we want to find an integer
k with Q = kP . We also know the order N of P and we know the prime
factorization

N =
∏

i

qei
i

of N . The idea of Pohlig-Hellman is to find k (mod qei
i ) for each i, then use

the Chinese Remainder theorem to combine these and obtain k (mod N).
Let q be a prime, and let qe be the exact power of q dividing N . Write k

in its base q expansion as

k = k0 + k1q + k2q
2 + · · ·

with 0 ≤ ki < q. We’ll evaluate k (mod qe) by successively determining
k0, k1, . . . , ke−1. The procedure is as follows.

1. Compute T =
{

j
(

N
q P

)
| 0 ≤ j ≤ q − 1

}
.

2. Compute N
q Q. This will be an element k0

(
N
q P

)
of T .

3. If e = 1, stop. Otherwise, continue.

4. Let Q1 = Q − k0P .

5. Compute N
q2 Q1. This will be an element k1

(
N
q P

)
of T .

6. If e = 2, stop. Otherwise, continue.

7. Suppose we have computed k0, k1, . . . , kr−1, and Q1, . . . , Qr−1.
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8. Let Qr = Qr−1 − kr−1q
r−1P .

9. Determine kr such that N
qr+1 Qr = kr

(
N
q P

)
.

10. If r = e − 1, stop. Otherwise, return to step (7).

Then
k ≡ k0 + k1q + · + ke−1q

e−1 (mod qe).

Why does this work? We have

N

q
Q =

N

q
(k0 + k1q + · · · )P

= k0
N

q
P + (k1 + k2q + · · · )NP = k0

N

q
P,

since NP = ∞. Therefore, step (2) finds k0. Then

Q1 = Q − k0P = (k1q + k2q
2 + · · · )P,

so

N

q2
Q1 = (k1 + k2q + · · · )N

q
P

= k1
N

q
P + (k2 + k3q + · · · )NP = k1

N

q
P.

Therefore, we find k1. Similarly, the method produces k2, k3, . . . . We have
to stop after r = e − 1 since N/qe+1 is no longer an integer, and we cannot
multiply Qe by the noninteger N/qe+1. Besides, we do not need to continue
because we now know k mod qe.

Example 5.4
Let G = E(F599), where E is the elliptic curve given by y2 = x3 + 1. Let
P = (60, 19) and Q = (277, 239). The methods of Section 4.3.3 can be used
to show that P has order N = 600. We want to solve Q = kP for k. The
prime factorization of N is

600 = 23 · 3 · 52.

We’ll compute k mod 8, mod 3, and mod 25, then recombine to obtain k mod
600 (the Chinese Remainder Theorem allows us to do this).

k mod 8. We compute T = {∞, (598, 0)}. Since

(N/2)Q = ∞ = 0 ·
(

N

2
P

)
,
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we have k0 = 0. Therefore,

Q1 = Q − 0P = Q.

Since (N/4)Q1 = 150Q1 = (598, 0) = 1 · N
2 P , we have k1 = 1. Therefore,

Q2 = Q1 − 1 · 2 · P = (35, 243).

Since (N/8)Q2 = 75Q2 = ∞ = 0 · N
2 P , we have k2 = 0. Therefore,

k = 0 + 1 · 2 + 0 · 4 + · · · ≡ 2 (mod 8).

k mod 3. We have T = {∞, (0, 1), (0, 598)}. Since

(N/3)Q = (0, 598) = 2 · N

3
P,

we have k0 = 2. Therefore,

k ≡ 2 (mod 3).

k mod 25. We have

T = {∞, (84, 179), (491, 134), (491, 465), (84, 420)}.

Since (N/5)Q = (84, 179), we have k0 = 1. Then

Q1 = Q − 1 · P = (130, 129).

Since (N/25)Q1 = (491, 465), we have k1 = 3. Therefore,

k = 1 + 3 · 5 + · · · ≡ 16 (mod 25).

We now have the simultaneous congruences⎧⎨
⎩

x ≡ 2 (mod 8)
x ≡ 2 (mod 3)
x ≡ 16 (mod 25)

.

These combine to yield k ≡ 266 (mod 600), so k = 266.

The Pohlig-Hellman method works well if all of the prime numbers dividing
N are small. However, if q is a large prime dividing N , then it is difficult to
list the elements of T , which contains q elements. We could try to find the ki

without listing the elements; however, finding ki is a discrete log problem in
the group generated by (N/q)P , which has order q. If q is of the same order of
magnitude as N (for example, q = N or q = N/2), then the Pohlig-Hellman
method is of little use. For this reason, if a cryptographic system is based on
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discrete logs, the order of the group should be chosen so it contains a large
prime factor.

If N contains some small prime factors, then the Pohlig-Hellman method
can be used to obtain partial information on the value of k, namely a congru-
ence modulo a product of these small prime factors. In certain cryptographic
situations, this could be undesirable. Therefore, the group G is often chosen
to be of large prime order. This can be accomplished by starting with a group
that has a large prime q in its order. Pick a random point P1 and compute
its order. With high probability (at least 1 − 1/q; cf. Remark 5.2), the order
of P1 is divisible by q, so in a few tries, we can find such a point P1. Write
the order of P1 as qm. Then P = mP1 will have order q. As long as q is
sufficiently large, discrete log problems in the cyclic group generated by P
will resist the Pohlig-Hellman attack.

5.3 Attacks with Pairings

One strategy for attacking a discrete logarithm problem is to reduce it to an
easier discrete logarithm problem. This can often be done with pairings such
as the Weil pairing or the Tate-Lichtenbaum pairing, which reduce a discrete
logarithm problem on an elliptic curve to one in the multiplicative group of a
finite field.

5.3.1 The MOV Attack

The MOV attack, named after Menezes, Okamoto, and Vanstone [80], uses
the Weil pairing to convert a discrete log problem in E(Fq) to one in F×

qm .
Since discrete log problems in finite fields can be attacked by index calculus
methods, they can be solved faster than elliptic curve discrete log problems, as
long as the field Fqm is not much larger than Fq. For supersingular curves, we
can usually take m = 2, so discrete logarithms can be computed more easily
for these curves than for arbitrary elliptic curves. This is unfortunate from a
cryptographic standpoint since an attractive feature of supersingular curves
is that calculations can often be done quickly on them (see Section 4.6).

Recall that for an elliptic curve E defined over Fq, we let E[N ] denote the
set of points of order dividing N with coordinates in the algebraic closure. If
gcd(q,N) = 1 and S, T ∈ E[N ], then the Weil pairing eN (S, T ) is an Nth root
of unity and can be computed fairly quickly. The pairing is bilinear, and if
{S, T} is a basis for E[N ], then eN (S, T ) is a primitive Nth root of unity. For
any S, eN (S, S) = 1. For more properties of the Weil pairing, see Sections 3.3
and 11.2.
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Let E be an elliptic curve over Fq. Let P,Q ∈ E(Fq). Let N be the order
of P . Assume that

gcd(N, q) = 1.

We want to find k such that Q = kP . First, it’s worthwhile to check that k
exists.

LEMMA 5.1
There exists k such that Q = kP if and only if NQ = ∞ and the Weil paring
eN (P,Q) = 1.

PROOF If Q = kP , then NQ = kNP = ∞. Also,

eN (P,Q) = eN (P,P )k = 1k = 1.

Conversely, if NQ = ∞, then Q ∈ E[N ]. Since gcd(N, q) = 1, we have
E[N ] 	 ZN ⊕ ZN , by Theorem 3.2. Choose a point R such that {P, R} is a
basis of E[N ]. Then

Q = aP + bR

for some integers a, b. By Corollary 3.10, eN (P,R) = ζ is a primitive Nth
root of unity. Therefore, if eN (P,Q) = 1, we have

1 = eN (P,Q) = eN (P,P )aeN (P,R)b = ζb.

This implies that b ≡ 0 (mod N), so bR = ∞. Therefore, Q = aP , as desired.

The idea used to prove the lemma yields the MOV attack on discrete logs
for elliptic curves. Choose m so that

E[N ] ⊆ E(Fqm).

Since all the points of E[N ] have coordinates in Fq = ∪j≥1Fqj , such an m
exists. By Corollary 3.11, the group µN of Nth roots of unity is contained in
Fqm . All of our calculations will be done in Fqm . The algorithm is as follows.

1. Choose a random point T ∈ E(Fqm).

2. Compute the order M of T .

3. Let d = gcd(M,N), and let T1 = (M/d)T . Then T1 has order d, which
divides N , so T1 ∈ E[N ].

4. Compute ζ1 = eN (P, T1) and ζ2 = eN (Q,T1). Then both ζ1 and ζ2 are
in µd ⊆ F×

qm .

5. Solve the discrete log problem ζ2 = ζk
1 in F×

qm . This will give k (mod d).
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6. Repeat with random points T until the least common multiple of the
various d’s obtained is N . This determines k (mod N).

REMARK 5.2 At first, it might seem that d = 1 will occur very often.
However, the opposite is true because of the structure of E(Fqm). Recall that

E(Fqm) 	 Zn1 ⊕ Zn2

for some integers n1, n2 with n1|n2 (possibly, n1 = 1, in which case the group
is cyclic). Then N |n2, since n2 is the largest possible order of an element
of the group. Let B1, B2 be points of orders n1, n2, respectively, such that
B1, B2 generate E(Fqm). Then T = a1B1 + a2B2. Let �e be a prime power
dividing N . Then �f |n2 with f ≥ e. If � � a2, then �f divides M , the order of
T . Therefore, �e|d = gcd(M,N). Since the probability that � � a2 is 1 − 1/�,
the probability is at least this high that the full power �e is in d. After a few
choices of T , this should be the case. (Note that our probability estimates
are low, since we never included the possible contribution of the a1B1 term.)
Therefore, a few iterations of the algorithm should yield k.

Potentially, the integer m could be large, in which case the discrete log
problem in the group F×

qm , which has order qm − 1, is just as hard as the
original discrete log problem in the smaller group E(Fq), which has order
approximately q, by Hasse’s theorem. However, for supersingular curves, we
can usually take m = 2, as the next result shows.

Let E be an elliptic curve over Fq, where q is a power of the prime number
p. Then

#E(Fq) = q + 1 − a

for some integer a. The curve E is called supersingular if a ≡ 0 (mod p).
Corollary 4.32 says that this is equivalent to a = 0 when q = p ≥ 5.

PROPOSITION 5.3
Let E be an elliptic curve over Fq and suppose a = q + 1−#E(Fq) = 0. Let

N be a positive integer. If there exists a point P ∈ E(Fq) of order N , then
E[N ] ⊆ E(Fq2).

PROOF The Frobenius endomorphism φq satisfies φ2
q −aφq + q = 0. Since

a = 0, this reduces to
φ2

q = −q.

Let S ∈ E[N ]. Since #E(Fq) = q + 1, and since there exists a point of order
N , we have N |q + 1, or −q ≡ 1 (mod N). Therefore

φ2
q(S) = −qS = 1 · S.
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By Lemma 4.5, S ∈ E(Fq2), as claimed.

Therefore, discrete log problems over Fq for supersingular curves with a = 0
can be reduced to discrete log calculations in F×

q2 . These are much easier.
When E is supersingular but a �= 0, the above ideas work, but possibly

m = 3, 4, or 6 (see [80] and Exercise 5.12). This is still small enough to speed
up discrete log computations.

5.3.2 The Frey-Rück Attack

Frey and Rück showed that in some situations, the Tate-Lichtenbaum pair-
ing τn can be used to solve discrete logarithm problems (see [41] and also
[40]). First, we need the following.

LEMMA 5.4
Let � be a prime with �|q − 1, �|#E(Fq), and �2 � #E(Fq). Let P be a

generator of E(Fq)[�]. Then τ�(P,P ) is a primitive �th root of unity.

PROOF If τ�(P,P ) = 1, then τ�(uP, P ) = 1u = 1 for all u ∈ Z. Since
τ� is nondegenerate, P ∈ �E(Fq). Write P = �P1. Then �2P1 = �P = ∞.
Since �2 � #E(Fq), there are no points of order �2. Therefore P1 must have
order 1 or �. In particular, P = �P1 = ∞, which is a contradiction. Therefore
τ�(P,P ) �= 1, so it must be a primitive �th root of unity.

Let E(Fq) and P be as in the lemma, and suppose Q = kP . Compute

τ�(P,Q) = τ�(P,P )k.

Since τ�(P,P ) is a primitive �th root of unity, this determines k (mod �). We
have therefore reduced the discrete log problem to one in the multiplicative
group of the finite field Fq. Such discrete log problems are usually easier to
solve.

Therefore, to choose a situation where the discrete log problem is hard, we
should choose a situation where there is a point of order �, where � is a large
prime, and such that � � q−1. In fact, we should arrange that qm �≡ 1 (mod �)
for small values of m.

Suppose E(Fq) has a point of order n, but n � q − 1. We can extend our
field to Fqm so that n|qm − 1. Then the Tate-Lichtenbaum pairing can be
used. However, the following proposition from [9] shows, at least in the case
n is prime, that the Weil pairing also can be used.

PROPOSITION 5.5
Let E be an elliptic curve over Fq. Let � be a prime such that �|#E(Fq),
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E[�] �⊆ E(Fq), and � � q(q − 1). Then

E[�] ⊆ E(Fqm) if and only if qm ≡ 1 (mod �).

PROOF If E[�] ⊆ E(Fqm), then µ� ⊆ Fqm by Corollary 3.11, hence qm ≡ 1
(mod �).

Conversely, suppose qm ≡ 1 (mod �). Let P ∈ E(Fq) have order � and let
Q ∈ E[�] with Q �∈ E(Fq). We claim that P and Q are independent points of
order �. If not, then uP = vQ for some integers u, v �≡ 0 (mod �). Multiplying
by v−1 (mod �), we find that Q = v−1uP ∈ E(Fq), which is a contradiction.
Therefore {P,Q} is a basis for E[�].

Let φq be the Frobenius map. The action of φq on the basis {P,Q} of
E[�] gives us a matrix (φq)�, as in Section 3.1. Since P ∈ E(Fq), we have
φq(P ) = P . Let φq(Q) = bP + dQ. Then

(φq)� =
(

1 b
0 d

)
.

From Theorem 4.10, we know that

Trace((φq)�) ≡ a = q + 1 − #E(Fq) (mod �).

Since #E(Fq) ≡ 0 (mod �) by assumption, we have

1 + d ≡ q + 1 (mod �),

so d ≡ q (mod �). An easy induction shows that

(
1 b
0 q

)m

=
(

1 b qm−1
q−1

0 qm

)
.

Since q �≡ 1 (mod �), by assumption, we have

φm
q = 1 on E[�] ⇐⇒ (φq)m

� ≡ I (mod �) ⇐⇒ qm ≡ 1 (mod �).

Since E[�] ⊆ E(Fqm) if and only if φm
q = 1 on E[�], by Lemma 4.5, this proves

the proposition.

If we have E[n] ⊆ E(Fqm), then we can use the MOV attack or we can
use the Tate-Lichtenbaum pairing to reduce discrete log problems in E(Fqm)
to discrete log problems in F×

qm . The Tate-Lichtenbaum pairing is generally
faster (see [44]). In both cases, we pick arbitrary points R and compute their
pairings with P and kP . With high probability (as in Section 5.3.1), we obtain
k after using only a few values of R.
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5.4 Anomalous Curves

The reason the MOV attack works is that it is possible to use the Weil
pairing. In order to avoid this, it was suggested that elliptic curves E over Fq

with
#E(Fq) = q

be used. Such curves are called anomalous. Unfortunately, the discrete log
problem for the group E(Fq) can be solved quickly. However, as we’ll see be-
low, anomalous curves are potentially useful when considered over extensions
of Fq, since they permit a speed-up in certain calculations in E(Fq).

The Weil pairing is not defined on E[p] (or, if we defined it, it would be
trivial since E[p] is cyclic and also since there are no nontrivial pth roots of
unity in characteristic p; however, see [10] for a way to use a Weil pairing in
this situation). Therefore, it was hoped that this would be a good way to
avoid the MOV attack. However, it turns out that there is a different attack
for anomalous curves that works even faster for these curves than the MOV
attack works for supersingular curves.

In the following, we show how to compute discrete logs in the case q = p.
Procedures for doing this have been developed in [95], [102], and [115]. Similar
ideas work for subgroups of p-power order in E(Fq) when q is a power of p
(but in Proposition 5.6 we would need to lift E to a curve defined over a larger
ring than Z).

Warning: The property of being anomalous depends on the base field.
If E is anomalous over Fq, it is not necessarily anomalous over any Fqn for
n ≥ 2. See Exercises 5.5 and 5.6. This is in contrast to supersingularity,
which is independent of the base field and is really a property of the curve
over the algebraic closure (since supersingular means that there are no points
of order p with coordinates in the algebraic closure of the base field).

The first thing we need to do is lift the curve E and the points P,Q to an
elliptic curve over Z.

PROPOSITION 5.6

Let E be an elliptic curve over Fp and let P,Q ∈ E(Fp). We assume
E is in Weierstrass form y2 = x3 + Ax + B. Then there exist integers
Ã, B̃, x1, x2, y1, y2 and an elliptic curve Ẽ given by

y2 = x3 + Ãx + B̃

such that P̃ = (x1, y1), Q̃ = (x2, y2) ∈ Ẽ(Q) and such that

A ≡ Ã, B ≡ B̃, P ≡ P̃ , Q ≡ Q̃ (mod p).
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PROOF Choose integers x1 and x2 such that x1, x2 (mod p) give the x-
coordinates of P,Q. First, assume that x1 �≡ x2 (mod p). Choose an integer
y1 such that P̃ = (x1, y1) reduces to P mod p. Now choose y2 such that

y2
2 ≡ y2

1 (mod x2 − x1) and (x2, y2) ≡ Q (mod p).

This is possible by the Chinese Remainder Theorem, since gcd(p, x2−x1) = 1
by assumption.

Consider the simultaneous equations

y2
1 = x3

1 + Ãx1 + B̃

y2
2 = x3

2 + Ãx2 + B̃.

We can solve these for Ã, B̃:

Ã =
y2
2 − y2

1

x2 − x1
− x3

2 − x3
1

x2 − x1
, B̃ = y2

1 − x3
1 − Ãx1.

Since y2
2 − y2

1 is divisible by x2 − x1, and since x1, x2, y1, y2 are integers, it
follows that Ã, and therefore B̃, are integers. The points P̃ and Q̃ lie on the
curve Ẽ we obtain.

If x1 ≡ x2 (mod p), then P = ±Q. In this case, take x1 = x2. Then
choose y1 that reduces mod p to the y-coordinate of P . Choose an integer
Ã ≡ A (mod p) and let B̃ = y2

1 − x3
1 − Ãx1. Then P̃ = (x1, y1) lies on Ẽ. Let

Q̃ = ±P̃ . Then Q̃ reduces to ±P = Q mod p.
Finally, 4Ã3+27B̃2 ≡ 4A3+27B2 �≡ 0 (mod p), since E is an elliptic curve.

It follows that 4Ã3 + 27B̃2 �= 0. Therefore Ẽ is an elliptic curve.

REMARK 5.7 If we start with Q = kP for some integer k, it is very
unlikely that this relation still holds on Ẽ. In fact, usually P̃ and Q̃ are
independent points. However, if they are dependent, so aP̃ = bQ̃ for some
nonzero integers a, b, then aP = bQ, which allows us to find k (unless bP =
∞). The amazing thing about the case of anomalous curves is that even when
P̃ and Q̃ are independent, we can extract enough information to find k.

Let a/b �= 0 be a rational number, where a, b are relatively prime integers.
Write a/b = pra1/b1 with p � a1b1. Define the p-adic valuation to be

vp(a/b) = r.

For example,

v2(7/40) = −3, v5(50/3) = 2, v7(1/2) = 0.

Define vp(0) = +∞ (so vp(0) > n for every integer n).
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Let Ẽ be an elliptic curve over Z given by y2 = x3 + Ãx + B̃. Let r ≥ 1 be
an integer. Define

Ẽr = {(x, y) ∈ Ẽ(Q) | vp(x) ≤ −2r, vp(y) ≤ −3r} ∪ {∞}.
These are the points such that x has at least p2r in its denominator and y
has at least p3r in its denominator. These should be thought of as the points
that are close to ∞ mod powers of p (that is, p-adically close to ∞).

THEOREM 5.8
Let Ẽ be given by y2 = x3 + Ãx + B̃, with Ã, B̃ ∈ Z. Let p be prime and let

r be a positive integer. Then

1. Ẽr is a subgroup of Ẽ(Q).

2. If (x, y) ∈ Ẽ(Q), then vp(x) < 0 if and only if vp(y) < 0. In this case,
there exists an integer r ≥ 1 such that vp(x) = −2r, vp(y) = −3r.

3. The map

λr : Ẽr/Ẽ5r → Zp4r

(x, y) �→ p−rx/y (mod p4r)
∞ �→ 0

is an injective homomorphism (where Zp4r is a group under addition).

4. If (x, y) ∈ Ẽr but (x, y) �∈ Ẽr+1, then λr(x, y) �≡ 0 (mod p).

This will be proved in Section 8.1. The map λr should be regarded as a
logarithm for the group Ẽr/Ẽr+1 since it changes the law of composition in
the group to addition in Zp4r , just as the classical logarithm changes the com-
position law in the multiplicative group of positive real numbers to addition
in R.

We need one more fact, which is contained in Corollary 2.33: the reduction
mod p map

redp : Ẽ(Q) −→ Ẽ (mod p)

(x, y) �→ (x, y) (mod p) when (x, y) �∈ Ẽ1

Ẽ1 → {∞}
is a homomorphism. The kernel of redp is Ẽ1.

We are now ready for a theoretical version of the algorithm. We start with
an elliptic curve E over Fp in Weierstrass form, and we have points P and
Q on E. We want to find an integer k such that Q = kP (assume k �= 0).
The crucial assumption is that E is anomalous, so #E(Fp) = p. Perform the
following steps.
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1. Lift E,P,Q to Z to obtain Ẽ, P̃ , Q̃, as in Proposition 5.6.

2. Let P̃1 = pP̃ , Q̃1 = pQ̃. Note that P̃1, Q̃1 ∈ Ẽ1 since redp(pP̃ ) =
p · redp(P̃ ) = ∞ (this is where we use the fact that E is anomalous).

3. If P̃1 ∈ Ẽ2, choose new Ẽ, P̃ , Q̃ and try again. Otherwise, let �1 =
λ1(P̃1) and �2 = λ1(Q̃1). We have k ≡ �2/�1 (mod p).

Why does this work? Let K̃ = kP̃ − Q̃. We have

∞ = kP − Q = redp(kP̃ − Q̃) = redp(K̃).

Therefore K̃ ∈ Ẽ1, so λ1(K̃) is defined and

λ1(pK̃) = pλ1(K̃) ≡ 0 (mod p).

Therefore,

k�1 − �2 = λ1(kP̃1 − Q̃1) = λ1(kpP̃ − pQ̃) = λ1(pK̃) ≡ 0 (mod p).

This means that k ≡ �2/�1 (mod p), as claimed.
Note that the assumption that E is anomalous is crucial. If E(Fp) has

order N , we need to multiply by N to put P̃ , Q̃ into Ẽ1, where λ1 is defined.
The difference K̃ = kP̃ − Q̃ gets multiplied by N , also. When N is a multiple
of p, we have λ1(NK̃) ≡ 0 (mod p), so the contribution from K̃ disappears
from our calculations.

If we try to implement the above algorithm, we soon encounter difficulties.
If p is a large prime, the point P̃1 has coordinates whose numerators and
denominators are too large to work with. For example, the numerator and
denominator of the x-coordinate usually have approximately p2 digits (see
Section 8.3). However, we are only looking for x/y (mod p). As we shall see,
it suffices to work with numbers mod p2. (It is also possible to use the “dual
numbers” Fp[ε], where ε2 = 0; see [10].)

Let’s try calculating on Ẽ (mod p2). When we compute (x, y) = P̃1 = pP̃ ,
we run into problems. Since P̃1 ∈ Ẽ2, we have p2 in the denominator of x, so
P̃1 is already at ∞ mod p2. Therefore, we cannot obtain information directly
from calculating λ1(P̃1). Instead, we calculate (p − 1)P̃ (mod p2), then add
it to P̃ , keeping track of p in denominators.

The procedure is the following.

1. Lift E,P,Q to Z to obtain Ẽ, P̃ = (x1, y1), Q̃ = (x2, y2), as in Proposi-
tion 5.6.

2. Calculate
P̃2 = (p − 1)P̃ ≡ (x′, y′) (mod p2).

The rational numbers in the calculation of P̃2 should not have p in their
denominators, so the denominators can be inverted mod p2 to obtain
integers x′, y′.
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3. Calculate Q̃2 = (p − 1)Q̃ ≡ (x′′, y′′) (mod p2).

4. Compute

m1 = p
y′ − y1

x′ − x1
, m2 = p

y′′ − y2

x′′ − x2
.

5. If vp(m2) < 0 or vp(m1) < 0, then try another Ẽ. Otherwise, Q = kP ,
where k ≡ m1/m2 (mod p).

Example 5.5
Let E be the elliptic curve given by y2 = x3+108x+4 over F853. Let P = (0, 2)
and Q = (563, 755). It can be shown that 853P = ∞. Since 853 is prime, the
order of P is 853, so 853|#E(F853). Hasse’s theorem implies that #E(F853) =
853, as in Section 4.3.3. Therefore, E is anomalous. Proposition 5.6 yields

Ẽ : y2 = x3 + 7522715x + 4, P̃ = (0, 2), Q̃ = (563, 66436).

We have

P̃2 = 852P̃ ≡ (159511, 58855) (mod 8532)
Q̃2 = 852Q̃ ≡ (256463, 645819) (mod 8532).

Note that even with a prime as small as 853, writing P̃2 without reducing
mod 8533 would require more than 100 thousand digits. We now calculate

m1 = 853
58855 − 2
159511 − 0

=
58853
187

and m2 = 853
645819 − 66436
256463 − 563

=
58853
187

.

Therefore, k ≡ m1/m2 ≡ 234 (mod 853).

Let’s prove this algorithm works (the proof consists mostly of keeping track
of powers of p, and can be skipped without much loss). The following notation
is useful. We write O(pk) to represent a rational number of the form pkz with
vp(z) ≥ 0. Therefore, if a, b ∈ Z and k > 0, then a = b + O(pk) simply
means that a ≡ b (mod pk). But we are allowing rational numbers and we
are allowing negative k. For example,

1
49

=
23
98

+ O(7−1)

since
23
98

=
1
49

+
1
7

3
2
.

The following rule is useful:

a

b + O(pk)
=

a

b
+ O(pk) when vp(b) = 0, vp(a) ≥ 0, and k > 0.
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To prove it, simply rewrite the difference a
b+pkz

− a
b . (Technical point: This

actually should say that a/(b + O(pk)) can be changed to (a/b) + O(pk). The
problem with “=” is that the right side sometimes cannot be changed back
to the left side; for example, let the right side be 0 with a = −pk.)

Write P̃2 = (p− 1)P̃ = (u, v), with u, v ∈ Q (this is not yet mod p2). Then

u = x′ + O(p2), v = y′ + O(p2).

Let
(x, y) = P̃1 = pP̃ = P̃ + P̃2 = (x1, y1) + (u, v).

Then

x =
(

v − y1

u − x1

)2

− u − x1 =
(

y′ − y1 + O(p2)
x′ − x1 + O(p2)

)2

− u − x1.

We have P̃1 ∈ Ẽ1 and usually we have P̃1 �∈ Ẽ2. This means that x′ − x1

is a multiple of p, but not of p2 (note: y′ �≡ y1 (mod p) since otherwise
(p − 1)P = P , which is not the case). We’ll assume this is the case. Then

y′ − y1 + O(p2)
x′ − x1 + O(p2)

=
1
p

(
y′ − y1 + O(p2)

x′−x1
p + O(p)

)

=
1
p

(
y′ − y1

x′−x1
p

+ O(p)

)

=
1
p
m1 + O(p0).

Note that vp(m1) = 0. Since vp(u) ≥ 0 and vp(x1) ≥ 0, we obtain

x =
(

1
p
m1 + O(p0)

)2

− u − x1 =
m2

1

p2
+ O(p−1).

Similarly, the y-coordinate of P̃1 satisfies

y = −m3
1

p3
+ O(p−2).

Therefore,

�1 = λ1(P̃1) = λ1(x, y) = p−1 x

y
= − 1

m1
+ O(p) ≡ − 1

m1
(mod p).

Similarly,

�2 = λ1(Q̃1) ≡ − 1
m2

(mod p).

© 2008 by Taylor & Francis Group, LLC



SECTION 5.5 OTHER ATTACKS 165

If vp(m2) < 0, then Q̃1 ∈ Ẽ2 by Theorem 5.8, hence either P̃1 ∈ Ẽ2 or k = 0.
We are assuming these cases do not happen, and therefore the congruence
just obtained makes sense. Therefore,

k ≡ �2
�1

≡ m1

m2
(mod p),

as claimed. This shows that the algorithm works.
Anomalous curves are attractive from a computational viewpoint since cal-

culating an integer multiple of a point in E(Fq) can be done efficiently. In
designing a cryptosystem, one therefore starts with an anomalous curve E
over a small finite field Fq and works in E(Fqk) for a large k. Usually it is
best to work with the subgroup generated by a point whose order � is a large
prime number. In particular, � will be much larger than p, hence not equal
to p. Therefore, the above attack on anomalous curves does not apply to the
present situation.

Let E be an elliptic curve over Fq such that #E(Fq) = q. Then the trace
of the Frobenius φq is a = 1, so

φ2
q − φq + q = 0.

This means that q = φq − φ2
q. Therefore

q(x, y) = (xq, yq) + (xq2
,−yq2

) for all (x, y) ∈ E(Fq).

The calculation of xq, for example, can be done quickly in a finite field. There-
fore, the expense of multiplying by q is little more than the expense of one
addition of points. The standard method of computing q(x, y) (see Section 2.2)
involves more point additions (except when q = 2; but see Exercise 5.8). To
calculate k(x, y) for some integer k, expand k = k0 + k1q + k2q

2 + · · · in base
q. Compute kiP for each i, then compute qikiP . Finally, add these together
to obtain kP .

5.5 Other Attacks

For arbitrary elliptic curves, Baby Step/Giant Step and the Pollard ρ and
λ methods seem to be the best algorithms. There are a few cases where index
calculus techniques can be used in the jacobians of higher genus curves to
solve discrete logarithm problems on certain elliptic curves, but it is not clear
how generally their methods apply. See [45], [46], [79]. See also [113] for a
discussion of some other index calculus ideas and elliptic curves.

An interesting approach due to Silverman [112] is called the xedni calcu-
lus. Suppose we want to find k such that Q = kP on a curve E over Fp.
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Proposition 5.6 shows that we can lift E, P , and Q to an elliptic curve Ẽ
over Z with points P̃ and Q̃. If we can find k′ with Q̃ = k′P̃ , then Q = k′P .
However, it is usually the case that P̃ and Q̃ are independent, so no k′ ex-
ists. Silverman’s idea was to start with several (up to 9) points of the form
aiP + biQ and lift them to a curve over Q. This is possible: Choose a lift
to Z for each of the points. Write down an arbitrary cubic curve containing
lifts of the points. The fact that a point lies on the curve gives a linear equa-
tion in the coefficients of the cubic equation. Use linear algebra to solve for
these coefficients. This curve can then be converted to Weierstrass form (see
Section 2.5.2). Since most curves over Q tend to have at most 2 independent
points, the hope was that there would be relations among the lifted points.
These could then be reduced mod p to obtain relations between P and Q, thus
solving the discrete log problem. Unfortunately, the curves obtained tend to
have many independent points and no relations. Certain modifications that
should induce the curve to have fewer independent points do not seem to
work. For an analysis of the algorithm and why it probably is not successful,
see [55].

Exercises

5.1 Suppose G is a subgroup of order N of the points on an elliptic curve over
a field. Show that the following algorithm finds k such that kP = Q:

(a) Fix an integer m ≥ √
N .

(b) Compute and store a list of the x-coordinates of iP for 0 ≤ i ≤ m/2.

(c) Compute the points Q − jmP for j = 0, 1, 2, · · · ,m − 1 until the
x-coordinate of one of them matches an element from the stored
list.

(d) Decide whether Q − jmP = iP or = −iP .

(e) If ±iP = Q− jmP , we have Q = kP with k ≡ ±i + jm (mod N).

This requires a little less computation and half as much storage as the
baby step, giant step algorithm in the text. It is essentially the same as
the method used in Section 4.3.4 to find the order of E(Fq).

5.2 Let G be the additive group Zn. Explain why the discrete logarithm
problem for G means solving ka ≡ b (mod n) for k and describe how
this can be solved quickly. This shows that the difficulty of a discrete
logarithm problem depends on the group.

5.3 Let E be the elliptic curve y2 = x3 + 3 over F7.
(a) Show that 4(1, 2) = (4, 5) on E.
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(b) Show that the method of the proof of Proposition 5.6, with P = (1, 2)
and Q = (4, 5), produces the points P̃ = (1, 2) and Q̃ = (4, 5) on
Ẽ : y2 = x3 − 14x + 17 (which is defined over Q).
(c) Show that 2(1, 2) = (1,−2) and 3(1, 2) = ∞ on Ẽ mod 73.
(d) Show that there is no integer k such that k(1, 2) = (4, 5) on Ẽ.
This shows that lifting a discrete log problem mod p to one on an elliptic
curve over Q does not necessarily yield a discrete log problem that has
a solution.

5.4 Let G be a group and let p be a prime. Suppose we have a fast algorithm
for solving the discrete log problem for elements of order p (that is,
given g ∈ G of order p and h = gk, there is a fast way to find k). Show
that there is a fast algorithm for solving the discrete log problem for
elements of order a power of p. (This is essentially what the Pohlig-
Hellman method does. Since Pohlig-Hellman works with small primes,
the fast algorithm for elements of order p in this case is simply brute
force search.)

5.5 Let p ≥ 7 be prime. Show that if E is an elliptic curve over Fp such
that E(Fp) contains a point of order p, then #E(Fp) = p.

5.6 Show that if E is anomalous over Fq then it is not anomalous over Fq2 .

5.7 Show that if E is anomalous over F2 then it is anomalous over F16.

5.8 Suppose E is anomalous over F2, so φ2
2 − φ2 + 2 = 0. Show that

(a) 4 = −φ3
2 − φ2

2

(b) 8 = −φ3
2 + φ5

2

(c) 16 = φ4
2 − φ8

2

These equations were discovered by Koblitz [63], who pointed out that
multiplication by each of 2, 4, 8, 16 in E(Q) can be accomplished by
applying suitable powers of φ2 (this is finite field arithmetic and is fast)
and then performing only one point addition. This is faster than suc-
cessive doubling for 4, 8, and 16.

5.9 Let E be defined over Fq.

(a) Show that a map from E(Fq) to itself is injective if and only if it
is surjective.

(b) Show that if E(Fq) has no point of order n, then E(Fq)/nE(Fq) =
0 (in which case, the Tate-Lichtenbaum pairing is trivial).

5.10 (a) Let ψ be a homomorphism from a finite group G to itself. Show
that the index of ψ(G) in G equals the order of the kernel of ψ.
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168 CHAPTER 5 THE DISCRETE LOGARITHM PROBLEM

(b) Let E be defined over Fq and let n ≥ 1. Show that E(Fq)[n] and
E(Fq)/nE(Fq) have the same order. (When n|q − 1, this can be
proved from the nondegeneracy of the Tate-Lichtenbaum pairing;
see Lemma 11.28. The point of the present exercise is to prove it
without using this fact.)

5.11 This exercise gives a way to attack discrete logarithms using the Tate-
Lichtenbaum pairing, even when there is a point of order �2 in E(Fq)
(cf. Lemma 5.4). Assume � is a prime such that �|#E(Fq) and �|q − 1,
and suppose that the �-power torsion in E(Fq) is cyclic of order �i, with
i ≥ 1. Let Pi have order �i and let P have order �.

(a) Show that τ�(P,Pi) is a primitive �th root of unity.

(b) Suppose Q = kP . Show how to use (a) to reduce the problem of
finding k to a discrete logarithm problem in F×

q .

(c) Let N = #E(Fq). Let R be a random point in E(Fq). Explain
why (N/�i)R is very likely to be a point of order �i. This shows
that finding a suitable point Pi is not difficult.

5.12 Let E be defined by y2 + y = x3 + x over F2. Exercise 4.7 showed that
#E(F2) = 5, so E is supersingular and φ2

2 + 2φ2 + 2 = 0.

(a) Show that φ4
2 = −4.

(b) Show that E[5] ⊆ E(F16).

(c) Show that #E(F4) = 5 and #E(F16) = 25.

This example shows that Proposition 5.3 can fail when a �= 0.
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