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Preface

Over the last two or three decades, elliptic curves have been playing an in-
creasingly important role both in number theory and in related fields such as
cryptography. For example, in the 1980s, elliptic curves started being used
in cryptography and elliptic curve techniques were developed for factorization
and primality testing. In the 1980s and 1990s, elliptic curves played an impor-
tant role in the proof of Fermat’s Last Theorem. The goal of the present book
is to develop the theory of elliptic curves assuming only modest backgrounds
in elementary number theory and in groups and fields, approximately what
would be covered in a strong undergraduate or beginning graduate abstract
algebra course. In particular, we do not assume the reader has seen any al-
gebraic geometry. Except for a few isolated sections, which can be omitted
if desired, we do not assume the reader knows Galois theory. We implicitly
use Galois theory for finite fields, but in this case everything can be done
explicitly in terms of the Frobenius map so the general theory is not needed.
The relevant facts are explained in an appendix.

The book provides an introduction to both the cryptographic side and the
number theoretic side of elliptic curves. For this reason, we treat elliptic curves
over finite fields early in the book, namely in Chapter 4. This immediately
leads into the discrete logarithm problem and cryptography in Chapters 5, 6,
and 7. The reader only interested in cryptography can subsequently skip to
Chapters 11 and 13, where the Weil and Tate-Lichtenbaum pairings and hy-
perelliptic curves are discussed. But surely anyone who becomes an expert in
cryptographic applications will have a little curiosity as to how elliptic curves
are used in number theory. Similarly, a non-applications oriented reader could
skip Chapters 5, 6, and 7 and jump straight into the number theory in Chap-
ters 8 and beyond. But the cryptographic applications are interesting and
provide examples for how the theory can be used.

There are several fine books on elliptic curves already in the literature. This
book in no way is intended to replace Silverman’s excellent two volumes [109],
[111], which are the standard references for the number theoretic aspects of
elliptic curves. Instead, the present book covers some of the same material,
plus applications to cryptography, from a more elementary viewpoint. It is
hoped that readers of this book will subsequently find Silverman’s books more
accessible and will appreciate their slightly more advanced approach. The
books by Knapp [61] and Koblitz [64] should be consulted for an approach to
the arithmetic of elliptic curves that is more analytic than either this book or
[109]. For the cryptographic aspects of elliptic curves, there is the recent book
of Blake et al. [12], which gives more details on several algorithms than the

ix
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present book, but contains few proofs. It should be consulted by serious stu-
dents of elliptic curve cryptography. We hope that the present book provides
a good introduction to and explanation of the mathematics used in that book.
The books by Enge [38], Koblitz [66], [65], and Menezes [82] also treat elliptic
curves from a cryptographic viewpoint and can be profitably consulted.

Notation. The symbols Z, Fq, Q, R, C denote the integers, the finite
field with q elements, the rationals, the reals, and the complex numbers,
respectively. We have used Zn (rather than Z/nZ) to denote the integers
mod n. However, when p is a prime and we are working with Zp as a field,
rather than as a group or ring, we use Fp in order to remain consistent with
the notation Fq. Note that Zp does not denote the p-adic integers. This
choice was made for typographic reasons since the integers mod p are used
frequently, while a symbol for the p-adic integers is used only in a few examples
in Chapter 13 (where we use Op). The p-adic rationals are denoted by Qp.
If K is a field, then K denotes an algebraic closure of K. If R is a ring, then
R× denotes the invertible elements of R. When K is a field, K× is therefore
the multiplicative group of nonzero elements of K. Throughout the book,
the letters K and E are generally used to denote a field and an elliptic curve
(except in Chapter 9, where K is used a few times for an elliptic integral).

Acknowledgments. The author thanks Bob Stern of CRC Press for
suggesting that this book be written and for his encouragement, and the
editorial staff at CRC Press for their help during the preparation of the book.
Ed Eikenberg, Jim Owings, Susan Schmoyer, Brian Conrad, and Sam Wagstaff
made many suggestions that greatly improved the manuscript. Of course,
there is always room for more improvement. Please send suggestions and
corrections to the author (lcw@math.umd.edu). Corrections will be listed on
the web site for the book (www.math.umd.edu/∼lcw/ellipticcurves.html).
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Preface to the Second Edition

The main question asked by the reader of a preface to a second edition is
“What is new?” The main additions are the following:

1. A chapter on isogenies.

2. A chapter on hyperelliptic curves, which are becoming prominent in
many situations, especially in cryptography.

3. A discussion of alternative coordinate systems (projective coordinates,
Jacobian coordinates, Edwards coordinates) and related computational
issues.

4. A more complete treatment of the Weil and Tate-Lichtenbaum pairings,
including an elementary definition of the Tate-Lichtenbaum pairing, a
proof of its nondegeneracy, and a proof of the equality of two common
definitions of the Weil pairing.

5. Doud’s analytic method for computing torsion on elliptic curves over Q.

6. Some additional techniques for determining the group of points for an
elliptic curve over a finite field.

7. A discussion of how to do computations with elliptic curves in some
popular computer algebra systems.

8. Several more exercises.

Thanks are due to many people, especially Susan Schmoyer, Juliana Belding,
Tsz Wo Nicholas Sze, Enver Ozdemir, Qiao Zhang,and Koichiro Harada for
helpful suggestions. Several people sent comments and corrections for the first
edition, and we are very thankful for their input. We have incorporated most
of these into the present edition. Of course, we welcome comments and correc-
tions for the present edition (lcw@math.umd.edu). Corrections will be listed
on the web site for the book (www.math.umd.edu/∼lcw/ellipticcurves.html).
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Suggestions to the Reader

This book is intended for at least two audiences. One is computer scientists
and cryptographers who want to learn about elliptic curves. The other is for
mathematicians who want to learn about the number theory and geometry of
elliptic curves. Of course, there is some overlap between the two groups. The
author of course hopes the reader wants to read the whole book. However, for
those who want to start with only some of the chapters, we make the following
suggestions.

Everyone: A basic introduction to the subject is contained in Chapters 1,
2, 3, 4. Everyone should read these.

I. Cryptographic Track: Continue with Chapters 5, 6, 7. Then go to
Chapters 11 and 13.

II. Number Theory Track: Read Chapters 8, 9, 10, 11, 12, 14, 15. Then
go back and read the chapters you skipped since you should know how the
subject is being used in applications.

III. Complex Track: Read Chapters 9 and 10, plus Section 12.1.

xiii
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