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Abstract

As a contribution to IEEE P1363a, we propose a provably secure digital signature

algorithm called the Korean Certi�cate-based Digital Signature Algorithm (KCDSA,

in short) and its elliptic curve variant (EC-KCDSA). We believe that the proposed

signature schemes are more advantageous than DSA/EC-DSA in both security and e�-

ciency. No patent related with KCDSA/EC-KCDSA has been submitted, and there are

no known limitation and disadvantage. This paper describes these signature algorithms

and discusses their security and e�ciency aspects.

1 Introduction

The digital signature technique, a technique for signing and verifying digital documents

in an unforgeable way, is essential for secure transactions over open networks. Digital
signatures can be used in a variety of applications to ensure the integrity of data exchanged

or stored and to prove to the recipient the originator's identity.
The security of most public key cryptosystems widely used in practice is based on two

di�cult problems: the problem of factoring large integers and the problem of �nding discrete

logarithms over �nite �elds. The RSA scheme [17] is designed based on the former problem
and widely used in many applications as a de facto standard. On the other hand, the discrete

logarithm problem is the basis of Di�e-Hellman and ElGamal-type public key systems [5, 6].
Recently, two variants of the ElGamal signature scheme have been standardized in U.S.A
as digital signature standard (DSS) [20] and in Russia as GOST 34.10 (see [11]).

A group of Korean cryptographers, in association with government-supported agen-
cies, has been developing a candidate algorithm for Korean digital signature standard,

which is named KCDSA(standing for Korean Certi�cate-based Digital Signature Algo-
rithm). KCDSA is a variant of ElGamal, similar to DSA and GOST, and it is designed by
incorporating several features from the recent cryptographic research and thus is believed

to be secure and robust. Now, KCDSA is being standardized by the Korean Government.
In this paper we describe the proposed standard for KCDSA and discuss security and

e�ciency aspects considered during the design process. Throughout this paper we will use
the following symbols and notation:

�This is a modi�ed version of the paper authored by Chae Hoon Lim (chlim@future.co.kr) and Pil Joong

Lee (pjl@postech.ac.kr) which is to be presented at the ASIACRYPT'98, October 18-22, 1998.
yThe team consists of Pil Joong Lee(POSTECH), Chae Hoon Lim (Future Systems, Inc.), Sang Jae Moon

(Kyungpook Nat'l Univ.), Dong Ho Won (SungGyunKwan Univ.), Sung Jun Park (KISA), Chung Ryong

Jang (KyungDong Univ.), Shin Gak Kang (ETRI), Eun Jeong Lee (POSTECH), Sang Bae Park (IDIS), Chul

Kim (KwangWoon Univ.), Kyung Seok Lee (KIET), Jae Hyun Baek (ADD), Jong Tae Shin (KISA), Hyo

Sun Hwang (Future Systems, Inc.), Sang Gyoo Sim (POSTECH), etc. The team was supported by ETRI

(Electronics and Telecommunications Research Institute) and KISA (Korea Information Security Agency).
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� a� b : exclusive-or of two bit strings a and b.

� a k b : concatenation of two bit strings a and b.

� Zn = f0; 1; � � � ; n� 1g and Z�
n = fxj1 � x � n� 1 & gcd(x; n) = 1g.

� jAj denotes the bit-length of A for an integer A.

� k 2r S denote that k is chosen at random over the set S.

The rest of this paper is organized as follows. We describe KCDSA parameters and the
detailed algorithm of KCDSA in Section 2 and its elliptic curve variant (EC-KCDSA) in

Section 3. The e�ciency and security aspects of KCDSA are discussed in Sections 4 and 5,
respectively. Finally, we conclude in Section 6.

2 KCDSA

2.1 KCDSA Parameters

KCDSA parameters can be divided into domain parameters and user parameters. By do-
main we mean a group of users who shares the same public parameters (domain parameters).

Domain may consist of a single user if the user uses its own public parameters. User pa-
rameters denote parameters which are speci�c to each user and cannot be shared with

others. These parameters must be established before normal uses of digital signatures by
some trusted authorities and/or by users. KCDSA makes use of the following domain and
user parameters (see Appendix A for a procedure that can be used to generate domain

parameters):

Domain Parameters: p; q; g such that

� p : a large prime such that jpj = 512+ 256i for i = 0; 1; � � � ; 6. That is, the bit-length

of p can vary from 512 bits to 2048 bits with increment by a multiple of 256 bits.

� q : a prime factor of p � 1 such that jqj = 128 + 32j for j = 0; 1; � � � ; 4. That is, the
bit-length of q can vary from 128 bits to 256 bits with increment by a multiple of 32
bits. Further, it is required that (p � 1)=2q should be a prime or at least all of its

prime factors should be greater than q.1

� g : a base element of order q in GF (p), i.e., g 6= 1 and gq = 1 mod p.

User Parameters: x; y; z such that

� x : signer's private signature key such that x 2r Z
�
q .

� y : signer's public veri�cation key computed by y = gx mod p, where x = x�1 mod

q.2

1This restriction on the size of prime factors of (p� 1)=2q is to take precautions against possible attacks

using small order subgroups of Z�p in various applications of KCDSA (see [9] for details).
2Notice that there is essentially no di�erence in the signature algorithm if the secret-public key pair

fx; y = gx mod pg is represented by fx; y = gx mod pg. We simply adopted the above notation to clarify

(to the public unaware of cryptography) that we only need x for a signing purpose. This kind of key pair

may be undesirable if the same key is to be used for other purposes as well (e.g., key exchange or entity

authentication). However, it is a common practice in cryptographic protocol designs that the same key

should not be used for di�erent purposes.
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� z : a hash-value of Cert Data, i.e., z = h(Cert Data). Here Cert Data denotes

the signer's certi�cation data, which should contain at least signer's distinguished
identi�er, public key y and the domain parameters fp; q; gg.

KCDSA is a signature algorithm in which the public key is validated by means of a
certi�cate issued by some trusted authority. The X.509-based certi�cate may be used for

this purpose. In this case, the Cert Data can be simply the formatted certi�cation data
de�ned by X.509.

KCDSA also requires a collision-resistant hash function which produces jqj-bit outputs.
Since q can vary in size from 128 bits to 256 bits with increment by a multiple of 32 bits,
we need a family of hash functions or a hash function which can produce variable length

outputs up to 256 bits.

2.2 The Signature Algorithm

Signature Generation: The signer can generate a signature frksg for a message m as follows:

1. randomly picks an integer k in Z�
q and computes w = gk mod p,

2. computes the �rst part r of the signature as r = h(w),

3. computes e = r � h(zkm) mod q,

4. computes the second part s of the signature as s = x(k � e) mod q, and

5. if s=0, then repeats the above process.3

The computation of w is the most time-consuming operation in the signing process.

However, since the �rst two steps can be performed independent of a speci�c message to
be signed, we may precompute and securely store the pair fr; kg for fast on-line signa-
ture generation. The above signing process can be described in brief by the following two

equations:

r = h(gk mod p) with k 2r Z
�
q ;

s = x(k � r � h(zkm)) mod q:

Signature Veri�cation: On receiving fmkrksg, the veri�er can check the validity of the

signature as follows:

1. �rst checks the validity of the signer's certi�cate, extracts the signer's certi�cation data

Cert Data from the certi�cate and computes the hash value z = h(Cert Data).4

2. checks the size of r and s : 0 � r < 2jqj; 0 < s < q,

3. computes e = r � h(zkm) mod q,

4. computes w0 = ysge mod p, and

3Even in the case of s = 0, there is no possibility of the secret x being disclosed. However, the signature

with s = 0 should not be accepted as valid, since we cannot identify the signer in this case.
4Note that a certi�cate corresponds to a trusted authority's signature for the formatted data containing

all information required to bind the public key and related parameters/attributes to the key owner's identity.

Therefore, the computation of z can be in fact part of the certi�cate validation process by taking Cert Data

as the formatted data to be signed.
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5. �nally checks if r = h(w0).

The pair frksg is a valid signature for m only if all the checks succeed. The above
verifying process can be described in brief by the following equations:

e = r � h(zkm);

r = h(ysge mod p) ?

For comparison, we summarized three signature standards, DSA, GOST and KCDSA,
in Table 1.

Schemes jpj jqj

DSA 512 + 64i (i = 0; 1; � � � ; 8) 160

GOST 512 or 1024 256

KCDSA 512 + 256i (i = 0; 1; � � � ; 6) 128 + 32i (i = 0; 1; � � � ; 4)

Schemes Signature Generation Signature Veri�cation

private key : x 2r Z
�
q public key : y = gx mod p

DSA k 2r Z
�
q

[20] r = (gk mod p) mod q (ys
�1rgs

�1h(m) mod p) mod q = r ?
s = k�1(rx+ h(m)) mod q

GOST k 2r Z
�
q

[11] r = (gk mod p) mod q (y�rh(m)�1gsh(m)�1 mod p) mod q = r ?

s = rx+ kh(m) mod q

private key : x 2r Z
�
q public key : y = gx

�1

mod p

KCDSA k 2r Z
�
q

r = h(gk mod p) h(ysgr�h(zkm) mod p) = r ?
s = x(k � r � h(zkm)) mod q

Table 1: Comparison of DSA, GOST and KCDSA

3 Elliptic Curve KCDSA(EC-KCDSA)

Much attention has been paid to elliptic curve cryptosystems in recent years, due to their
stronger security and higher speed with smaller key size. An elliptic curve variant of KCDSA

(EC-KCDSA for short) was not considered during the standardization process. However, we
have recently worked on an alternative implementation of KCDSA over elliptic curves and

completed a high-level speci�cation of EC-KCDSA. This elliptic curve variant is described
below.

3.1 EC-KCDSA Parameters

The domain parameters of EC-KCDSA mainly consist of parameters to de�ne a �nite �eld

and ones to de�ne an elliptic curve over the �nite �eld. The following parameters need to
be de�ned for elliptic curve KCDSA.

� a prime p and a positive integer m (m � 1) de�ning a �nite �eld GF (pm).
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� a monic irreducible polynomial f(x) of degree m over GF (p) if m > 1.

� coe�cients a; b(2 GF (pm)) de�ning an elliptic curve E over GF (pm), E(GF (pm))

E = Ea;b :

(
Y 2 +XY = X3 + aX2 + b (b 6= 0) if p=2
Y 2 = X3 + aX + b (4a3 + 27b2 6= 0 in GF (pm)) if p > 3.

� a prime q dividing #E(GF (pm)), where #E(GF (pm)) denotes the order of the elliptic
curve E (the total number of points on E(GF (pm))).

� a point G = (gx; gy) in E generating a cyclic subgroup of prime order q.5

In an implementation for a general purpose use, we recommend to choose q as a prime
of at least 160 bit length.

Once domain parameters are determined, each user can generate its own public and
private parameters to join the system. The user parameters of EC-KCDSA consist of the
following:

� a private signature key x chosen at random over Z�
q .

� the public veri�cation key Y computed by Y = xG in E, where x = x�1 mod q.

� the hashed certi�cation data z.

3.2 The Signature Algorithm

The signing and verifying processes in EC-KCDSA are almost the same as those of KCDSA,

except for the change of group operations. That is, the underlying group is changed from
the multiplicative group of a prime �eld into the additive group of elliptic curve points.

Signature Generation: To generate a signature frksg on message m, the signer performs
the following:

1. randomly picks an integer k in Z�
q and computes W = kG = (wx; wy) in E,

2. computes the �rst part r of the signature as r = h(W ) = h(wxkwy),

3. computes e = r � h(zkm) mod q,

4. computes the second part s of the signature as s = x(k � e) mod q, and

5. if s=0, then repeats the above process.

As in KCDSA, the �rst two steps may be performed o�-line for faster real-time signature
generation. The signing process can be described in brief by the following two equations:

r = h(kG) with k 2r Z
�
q ;

s = x(k � r � h(zkm)) mod q:

5Suppose that #E(GF (pm)) = kq for some integer k. According to [9], the e�ective key length may

be reduced from jqj to jqj � jkj bits in some applications of signature schemes. Therefore, considering wide

applications of signature schemes, we strongly recommend that an elliptic curve should be chosen so that

the size of k is as small as possible. Ideally, jqj = j#E(GF (pm))j.
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Note that we do not require conversion of elliptic curve points to integers or vice versa. The

coordinates wx; wy of the pointW will be represented as p-ary strings in GF (pm). However,
we do not care about their representations. We simply concatenate the two coordinates as

they are and hash the resulting string to obtain r. This is another advantage of EC-KCDSA
over EC-DSA[21].

Signature Veri�cation: To verify the signature fmkrksg, the veri�er performs the following:

1. �rst checks the validity of the signer's certi�cate, extracts the signer's certi�cation
data Cert Data from the certi�cate and computes the hash value z = h(Cert Data).

2. checks the size of r and s : 0 � r < 2jqj; 0 < s < q,

3. computes e = r � h(zkm) mod q,

4. computes W 0 = sY + eG in E, and

5. �nally checks if r = h(W 0).

The above verifying process can be described in brief by

e = r � h(zkm) mod q;

r = h(sY + eG) ?

For comparison, we summarized two signature algorithms, EC-DSA[21] and EC-
KCDSA, in Table 2.

Schemes Finite �elds q

EC-DSA GF (p) or GF (2m) q > 2160

EC-KCDSA GF (p), GF (2m) or GF (pm) jqj = 128 + 32i (i = 0; 1; � � � ; 4)

Schemes Signature Generation Signature Veri�cation

private key : x 2r Z
�
q public key : Y = xG

EC-DSA[21] k 2r Z
�
q u1 = s�1r mod q

r = �(kG) mod q u2 = s�1h(m) mod q

s = k�1(rx+ h(m)) mod q �(u1Y + u2G) mod q = r ?

private key : x 2r Z
�
q public key : Y = xG (x = x�1 mod q)

EC-KCDSA k 2r Z
�
q e = r � h(zkm) mod q

r = h(kG) h(sY + eG) = r ?

s = x(k � r � h(zkm)) mod q

Table 2: Comparison of EC-DSA and EC-KCDSA

Note that �() is a function which converts an elliptic curve point to an integer. In case
of an elliptic curve de�ned over GF (p), �((x1; y1)) = x1. In case of GF (2m), since x1 can
be represented as a binary string (sm�1sm�2 � � � s1s0), �((x1; y1)) =

Pm�1
i=0 si2

i.
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4 E�ciency Considerations

KCDSA is designed to avoid the evaluation of multiplicative inverse in normal uses. It is
only needed at the time of key pair generation. For comparison, in DSA a multiplicative

inverse mod q needs to be evaluated each time a signature is generated or veri�ed and in
GOST each time a signature is veri�ed (see Table 1 and Table 2). Evaluating an inverse
mod q would take very little portion in the overall workload of signing/verifying on most

general purpose computers. However, it may be quite expensive in a limited computing
environment such as smart cards (see [16] for various comments on DSS including debates

on the use of inverse). On the other hand, KCDSA needs one more call for a hash function
to digest a message of length jpj during both the signature generation and the veri�cation
process. However, this will not cost much in any environment.

We have implemented various signature schemes in the C language with inline assembly
[10] and measured their timings on 90 MHz Pentium and 200 MHz Pentium Pro. The

result is shown in Table 3.6 As can be expected, KCDSA and DSA show almost the same
performance �gures, but GOST runs about 63 % (� 160

256
) slower than KCDSA/DSA since

it uses a 256-bit prime q. For comparison, we also measured the speed of RSA for the same

size of modulus. Note that signature generation can be substantially speeded up in both
RSA and ElGamal-type schemes: We can use the Chinese Remainder Theorem to speed

up RSA signature generation and the precomputation technique [8] to speed up signature
generation in ElGamal-type schemes. These performance �gures are also shown after `/'
in Sign columns. The table shows that KCDSA/DSA can sign about 6 to 10 times faster

than RSA, while RSA can verify about 12 to 13 times faster than KCDSA/DSA (RSA
veri�cation key: e = 216 + 1).

Compared to usual DL-based signature schemes, we need in general one more compu-
tational step in the elliptic curve variants, i.e., the step of converting an elliptic curve point
to integer during the computation/reconstruction of the �rst part r of the signature. This

conversion step may degrade the performance more or less, depending on the underlying
�nite �eld. For example, it is trivial to convert a point on E(GF (2m)) to integer. However,

in the case of E(GF (pm)) for p > 3 the conversion step may take nontrivial processing
time. One advantage of EC-KCDSA is that there is no need of elliptic curve point to in-
teger conversion. This is thanks to the use of a hash function for the computation of r.

In EC-KCDSA, the two coordinates wx and wy, represented as p-ary strings, are simply
concatenated string by string and the resulting string is hashed to produce the �rst part r

of the signature.

5 Security Considerations

5.1 Security Proof under Random Oracle Model

Recently two variants of ElGamal-like signature schemes have been proven secure against

adaptive attacks for existential forgery under the random oracle model [3], where the hash
function is replaced with an oracle producing a random value for each new query. In the
�rst variant, h(m) is replaced with h(mkr) as in the Schnorr signature scheme. This variant

was proven secure by Pointcheval and Stern [14] at Eurocrypt'96. The other variant is due
to Brickell [4] at Crypto'96, where he claimed that the variant of DSA with r = (gk mod

6We used SHA-1 for hashing with a very short message in all the signature schemes. Multiplicative

inverses were computed using an extended Euclidean algorithm.
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Pentium/90 Pentium Pro/200

Algorithm Lang. Sign Verify Sign Verify

DSA C 289 / 57:8� 359 95.0 / 18.9 117
(jqj = 160) D 148 /29.8 182 47.3 /9.7 58.0

A 64.0 /13.7 79.1 17.5 /3.9 21.7

GOST C 457 / 87.8 559 147 / 28.0 181
(jqj = 256) D 236 /44.3 287 73.4 /14.0 92.3

A 105 /19.1 125 27.2 /5.2 35.3

KCDSA C 287 / 56.2 359 93.3 / 18.0 116

(jqj = 160) D 145 /28.0 185 46.4 /9.0 57.4
A 62.8 /12.4 77.7 17.0 /3.3 20.9

RSA C 1730 / 502� 25.8 568 / 163 8.6
(e = 216 + 1) D 878 / 254 15.8 279 / 83.5 5.3

A 378 / 114 6.0 103 / 33.1 1.7

Notes :

C = C only,

D = C with double digit option ( int64) provided by MSVC,

A = C with partial inline assembly.

� used CRT for signature generation.

� used a precomputated table of 32 KBytes (6� 4 con�g., see [8]).

Table 3: Speed of various DL and IF signature schemes for 1024-bit moduli (in msec)

p) mod q replaced by r = h(gk mod p) is also secure in the random oracle model (see [15]
for its proof by Pointcheval and Vaudenay). We followed the latter approach to ensure the

security of the overall design of KCDSA. From the proof under the random oracle model
we can be assured that KCDSA will be secure provided that the hash function used has no

weakness.

5.2 Security against Parameter Manipulation

There have been published a lot of weaknesses in the design of discrete log-based schemes
due to the use of unsafe parameters (later shown insecure) (e.g., see [13, 2, 1, 19, 9]).
Note that generating public parameters at random so that they do not have any speci�c

structure is very important for security, even with a provably secure scheme (compare the
results from [2] and [14]. see also [18]). KCDSA is designed to be secure against all these

potential weaknesses. The (proposed) standard recommend to use the strongest form of
primes [9], i.e., primes p; q such that (p� 1)=2q is also a prime or at least its prime factors
are all greater than q. It also speci�es a procedure that can be used for generation of such

primes (see Appendix A). The certi�cate produced by this procedure can be used to verify
proper generation of the parameters. Considering current algorithms and technology for

�nding discrete logarithms (see [12]), we recommend to use a modulus p of size 1024 bits
and an auxiliary prime q of 160 bits for moderate security in most applications.

The use of the parameter z = h(Cert Data) as a pre�x message for hashing provides

several advantages without much increase of computational/operational overheads.7

7In the present standard the hashed certi�cation data z is used as part of message (i.e., zkm is treated
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It e�ectively prevents possible manipulations during parameter generation, such as hid-

den collisions in DSS [19], since Cert Data contains p; q; g and y. In addition, the use of
z restricts the collision search in the hash function to a speci�c signer, since each signer

uses his/her own pre�x z to produce a hash code for his/her message. To see its usefulness,
suppose that in the case of using the usual hash code h(m) a collision is found for a speci�c
pair of messages. Also suppose that one message out of the pair is a comfortable message

that anyone can sign without reluctance. Then the collision can be used to any user to
claim that the signature is for the harmful message. Realization of this scenario may be

catastrophic, for example, if there exists some powerful organization willing to invest a huge
amount of money to �nd collisions (the organization might �nd some unpublished weakness
in the hash function which can substantially reduce the time for exhaustive search). Our

new hash mode with an user-speci�c pre�x can e�ectively thwart such a trial of total forgery
unless a serious weakness is found for the hash function.

5.3 Security of EC-KCDSA

EC-KCDSA also preserves most security aspects of KCDSA. In other words, it is provably

secure under some ideal assumption on the hash function used, and the use of the parameter
z = h(Cert Data) e�ectively prevents any potential attack using parameter manipulation.
As noted before, it would be safer to choose an elliptic curve E and a point G so that

j#(E)=qj is as small as possible.
In general, the security of EC-KCDSA with well-chosen parameters (see [22], [23], [24]

and [25]) will be stronger than that of KCDSA if both use the same size of q.

6 Conclusion

We described the proposed digital signature standard for Korean community (KCDSA)
and its elliptic curve variant (EC-KCDSA), and discussed their security and e�ciency as-

pects. The KCDSA algorithm is now close to publication as one of Korean Information
and Communication Standards (KICS) and the EC-KCDSA will also be one of them in the
near future. The signature algorithms are expected to be widely used by commercial and

government sectors in Korea. No patent related with KCDSA/EC-KCDSA has been sub-
mitted. We thus hope this contribution to IEEE P1363a can promote practical applications

of KCDSA/EC-KCDSA in other countries as well.
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as a message to be signed). However, it may be more desirable to separate z from the message to be signed.

For example, we may use z itself as an user-speci�c IV or complete z into one block by zero-padding and

use h(zkpad) as an user-speci�c IV. These variants will be further discussed in the next revision.
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A Domain Parameter Generation for KCDSA

During the KCDSA initialization stage, a trusted authority in each domain has to generate
and publish p; q; g such that

� p is a prime of speci�ed length such that a prime q of speci�ed length divides p � 1
and that all prime factors of (p� 1)=2q are greater than q.

� g is a generator of a subgroup of Z�
p of order q, i.e., g is an element of Zp such that

gq = 1 mod p and g 6= 1. Such a g can be generated by testing g(p�1)=q = 1 mod q

with random 1 < g < p.

As an example, we describe a method for generating primes p; q such that (p� 1)=2q is

also prime. Let PRG(s; n) denote a pseudorandom number generator on input s generating
an n-bit random number, de�ned by:

vi = h(s+ i mod q) for i = 0; 1; � � � ; k � 1;

vk = h(s+ k mod q) mod 2r;

PRG(s; n) = vk k vk�1 k � � � v1 k v0;

where k = n
jqj and r = n mod jqj.

A.1 The Algorithm

The procedure for generating p; q (of size jpj; jqj, respectively) and g is as follows (see also
Figure 1):

1. choose an arbitrary integer s of at least jqj bits.
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2. initialize �ve counters: tCount = rCount = 1, pCount = qCount = gCount = 0.

3. form Seed for PRG as:

w2 = 0x00 k i k j k tCount;

w1 = rCount k pCount;

w0 = qCount k gCount k 0x00;

Seed = s k w2 k w1 k w0;

where i and j are 8 bit numbers such that jpj = 512+256i and jqj = 128+32j, tCount
and gCount are 8 bits long, and pCount, qCount and rCount are 16 bits long. It is
assumed that Seed is automatically updated whenever any counter is changed.

4. generate a random number r of length jpj � jqj � 1 bits as follows:

u = PRG(Seed; jpj � jqj � 1);

r = 2jpj�jqj�2 _ u _ 1;

where _ denotes bitwise-or.

5. test r for primality (e.g., using the Miller-Rabin probabilistic primality test [7, page
379]). If r is prime, go to step 8.

6. increment rCount by 1.

7. If rCount < 2048, go to step 4. Otherwise, go to step 1.

8. set pCount = 1 and qCount = 1.

9. generate a random number q of length jqj bits using the updated Seed as follows:

u = PRG(Seed; jqj);

q = 2jqj�1 _ u _ 1:

10. compute p = 2qr + 1. If jpj < jpj, go to step 12.

11. test q for primality. If q is prime, go to step 14.

12. increment qCount by 1.

13. If qCount < 1024, go to step 9. Otherwise, go to step 15.

14. test p for primality. If p is prime, go to step 19.

15. increment pCount by 1 and set qCount = 1.

16. If pCount < 4096, go to step 9.

17. increment tCount by 1.

18. If tCount < 256, go to step 3. Otherwise, go to step 1.

19. set gCount = 1.
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20. generate a random number u of length jpj bits using the updated Seed as follows:

u = PRG(Seed; jpj):

21. compute g = u(p�1)=q mod p. If g 6= 1, go to step 24.

22. increment gCount by 1.

23. If gCount < 256, go to step 20. Otherwise, go to step 17.8

24. terminate with output p; q; g and Seed.

The Seed output can serve as a certi�cate for proper generation of the parameters p; q
and g. Anyone can check that p; q and g are generated as speci�ed, since Seed contains all

necessary information to verify their proper generation.

A.2 Numerical Example

For example, the following parameters (jpj = 1024; jqj = 160) were generated using the
described algorithm, where we the initial user input s was taken as the �rst 160 bits of the
fractional part of � = 3:14159 � � �. >From the seed, we can see that r = (p�1)=2q was found

by testing 991 random numbers (rCount = 0x3df = 991) and p was found by testing 1192
primes of q (pCount = 0x77c = 1192) and so on. It is easy to verify that these parameters

are generated according to the above procedure.

Seed = 243f6a88 85a308D3 13198a2e 03707344 a4093822

00020101 03df077c 00d10100

p = a2951279 6e6cf682 fd9e3348 24859dfd 93299a22 7d9d6c97 226B9595

1725c3B5 3098ceaa 3e6a0241 d0c30586 61769311 9db2e9bc 2f9cad43

9f17fe3B 8a54f711 820421a0 394218e8 3186641d 00373299 08ab8D2f

97ffb1c7 5afaaba3 5e356ae8 7f83d2f8 d79d031c d814318f e7865810

16a3c871 a159056c 70722a62 cb89694f

q = ada5ff8f 174cab84 0c846634 dede6e81 5ac8f6ef

g = 1b2f2d3b a6551ffd a74ca533 011f1a92 8277d572 67297496 78a42bda

5ba6c181 9cf283ee 14a3fb44 dacbe42b b9720d2d 7137c81e 69cfc7cf

20a41bb1 e117fa7d 9b8d0cb0 73a91e51 15c08db8 60be3633 67a08ac2

b59137c2 0ccf54b9 0dbc2c8c 90958555 d76c0020 2798282a 23cafc54

7c7e7820 cf979902 2d3cde88 52d13753

8The probability of gCount exceeding 255 is negligible (gCount = 1 for almost all cases). For complete-

ness, we simply make the control to go back to step 3 in such an exceptional case (through steps 17, 18,

3).
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++rCount

++qCount

++gCount

++pCount, qCount=1

rCount < 2048 ?

gCount < 256 ?

pCount < 4096 ?

tCount < 256 ?

++tCount

tCount=rCount=1
pCount=qCount
=gCount=0

pCount=qCount=1

gCount=1

yes

no

yes

yes

yes

no

no

yes

no

yes

no

yes

no

no

yes

no

yes

no

Conditions:

tCount, gCount : 8 bits,   pCount, qCount, rCount : 16 bits)(

qCount < 1024 ?

|p| = 512 + 256i (i=0, 1, ..., 6)

|q| = 128 + 32j (j=0, 1, ..., 4)

r = (p-1)/2q : prime

r = PRG(Seed, |p|-|q|-1)

r = prime ?

q = PRG(Seed, |q|)

q = prime ?

p = 2rq + 1

p = prime ?

u = PRG(Seed, |p|)

g = u^{(p-1)/q} mod p

g != 1 ?

output p, q, g, Seed

form Seed

user input s

Seed = s (user input) || 0x00 || i || j || tCount || rCount || pCount || qCount || gCount || 0x00

Figure 1: Flow chart for generation of p; q; g
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