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Algorithmic advances take advantage of the 
structure of massive biological data landscape.

BY BONNIE BERGER, NOAH M. DANIELS, AND Y. WILLIAM YU

COMPUTATIONAL BIOLOGISTS ANSWER  biological and 
biomedical questions by using computation in support 
of—or in place of—laboratory procedures, hoping to 
obtain more accurate answers at a greatly reduced 
cost. The past two decades have seen unprecedented 
technological progress with regard to generating 
biological data; next-generation sequencing, mass 
spectrometry, microarrays, cryo-electron microscopy, 
and other high-throughput approaches have led to an 
explosion of data. However, this explosion is a mixed 
blessing. On the one hand, the scale and scope of data 
should allow new insights into genetic and infectious 
diseases, cancer, basic biology, and even human 
migration patterns. On the other hand, researchers are 
generating datasets so massive that it has become
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 key insights
 ˽ There is a lot of commonality in 

sequences and other biological data—
even more redundancy than in a text file 
of the English language.

 ˽ This means we can take advantage of 
compression algorithms that exploit 
that commonality and represent many 
sequences by only a few bits.

 ˽ Of course, we are dealing with a massive 
amount of data so that compression 
becomes important for efficiency.

 ˽ We highlight recent research that 
capitalizes on structural properties  
of biological data—low metric entropy 
and fractal dimension—to allow us  
to design algorithms that run in sublinear 
time and space.
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difficult to analyze them to discover 
patterns that give clues to the underly-
ing biological processes.

Certainly, computers are getting 
faster and more economical; the 
amount of processing available per 
dollar of computer hardware is more or 
less doubling every year or two; a simi-
lar claim can be made about storage 
capacity (Figure 1).

In 2002, when the first human ge-
nome was sequenced, the growth in 
computing power was still match-
ing the growth rate of genomic data. 
However, the sequencing technology 
used for the Human Genome Project—
Sanger sequencing—was supplanted 
around 2004, with the advent of what 

is now known as next-generation se-
quencing. The material costs to se-
quence a genome have plummeted 
in the past decade, to the point where 
a whole human genome can be se-
quenced for less than US$1,000. As a 
result, the amount of genomic data 
available to researchers is increasing 
by a factor of 10 every year.

This growth in data poses significant 
challenges for researchers.25 Currently, 
many biological “omics” applications 
require us to store, access, and analyze 
large libraries of data. One approach to 
solving these challenges is to embrace 
cloud computing. Google, Inc. and the 
Broad Institute have collaborated to 
bring the GATK (Genome Analysis Tool-

kit) to the Google cloud (https://cloud.
google.com/genomics/gatk). Amazon 
Web Services are also commonly used 
for computational biology research and 
enterprise (for example, DNAnexus).31 
However, while cloud computing frees 
researchers from maintaining their 
own datacenters and provides cost- 
saving benefits when computing re-
sources are not needed continuously, 
it is no panacea. First and foremost, 
the computer systems that make up 
those cloud datacenters are themselves 
bound by improvements in semicon-
ductor technology and Moore’s Law. 
Thus, cloud computing does not truly 
address the problem posed by the faster-
than-Moore’s-Law exponential growth 
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tion, and interaction of DNA, RNA, and 
proteins. Much of this data is amena-
ble to standard Big Data analysis meth-
ods; however, in this article we focus 
on examples of biological data that ex-
hibit additional exploitable structure 
for creating scalable algorithms.

Sequence data, either nucleotide 
sequences (using a four-letter alpha-
bet representing the four DNA or RNA 
bases) or protein sequences (using a 
20-letter alphabet representing the 20 
standard amino acids) are obtained in 
several ways. For both protein and RNA 
sequence data, mass spectrometry, 
which can determine protein sequence 
and interactions and RNA-seq, which 
can determine RNA sequence and abun-
dance allow scientists to also infer the 
expression of the gene to which it might 
translate play central roles. However, 
with the advent of next-generation se-
quencing (NGS) technologies, the great-
est volume of sequence data available is 
that of DNA. To better understand the 
structure of NGS sequence data, we will 
expand on NGS methodologies.

At the dawn of the genomic era, 
Sanger sequencing was the most widely 
used method for reading a genome. 
More recently, however, NGS approach-
es, beginning with Illumina’s “sequenc-
ing by synthesis,” have enabled vastly 
greater throughput due to massive par-
allelism, low cost, and simple sample 
preparation. Illumina sequencing and 
other NGS approaches such as SOLiD, 
Ion Torrent, and 454 pyrosequencing do 
not read a single DNA molecule end-to-
end as one could read through a bound 
book. Instead, in shotgun sequencing, 
DNA molecules are chopped into many 
small fragments; from these fragments 
we generate reads from one or both ends 
(Figure 2a). These reads must be put to-
gether in the correct order to piece to-
gether an entire genome. Current reads 
typically range from 50 to 200 bases 
long, though longer reads are available 
with some technologies (for example, 
PacBio). Because no sequencing tech-
nology is completely infallible, sequenc-
ing machines also provide a quality score 
(or measure of the confidence in the 
DNA base called) associated with each 
position. Thus, an NGS read is a string 
of DNA letters, coupled with a string of 
ASCII characters that encode the quality 
of the base call. A sequencing run will 
produce many overlapping reads.

in omics data. Moreover, in the face of 
disease outbreaks such as the 2014 Ebo-
la virus epidemic in West Africa, analysis 
resources are needed at often-remote 
field sites. While it is now possible to 
bring sequencing equipment and limit-
ed computing resources to remote sites, 
Internet connectivity is still highly con-
strained; accessing cloud resources for 
analytics may not be possible.

Computer scientists routinely ex-
ploit the structure of various data in 
order to reduce time or space complex-
ity. In computational biology, this ap-
proach has implicitly served research-
ers well. Now-classical approaches 
such as principal component analysis 
(PCA) reduce the dimensionality of 
data in order to simplify analysis and 
uncover salient features.3 As another 
example, clever indexing techniques 
such as the Burrows-Wheeler Trans-
form (BWT) take advantage of aspects 
of sequence structure3 to speed up 
computation and save storage. This 
article focuses on cutting-edge algo-

rithmic advances for dealing with the 
growth in biological data by explicitly 
taking advantage of its unique struc-
ture; algorithms for gaining novel bio-
logical insights are not its focus.

Types of Biological Data
In the central dogma of molecular bi-
ology, DNA is transcribed into RNA, 
which is translated by the ribosome 
into polypeptide chains, sequences of 
amino acids, which singly or in com-
plexes are known as proteins. Proteins 
fold into sophisticated, low-energy 
structures, which function as cellular 
machines; the DNA sequence deter-
mines the amino acid sequence, which 
in turn determines the folded structure 
of a protein. This structure ultimately 
determines a protein’s function within 
the cell. Certain kinds of RNA also func-
tion as cellular machines. Methods 
have been developed to gather biologi-
cal data from every level of this process, 
resulting in a massive influx of data on 
sequence, abundance, structure, func-

Figure 1. (a) Moore’s and (b) Kryder’s laws contrasted with genomic sequence data.
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While measuring abundance to gen-
erate gene expression data (for more in-
formation, see the Source Material that 
accompanies this article in the ACM 
Digital Library) lends itself to cluster 
analysis and probabilistic approaches, 
the high dimensionality and noise in 
the data present significant challeng-
es. Principal Component Analysis has 
shown promise in reducing the dimen-
sionality of gene expression data. Such 
data and its challenges have been the 
focus of other articles,3 and thus will be 
only lightly touched upon here.

As mentioned earlier, function fol-
lows form, so in addition to sequence 
and expression, structure plays an im-
portant role in biological data science. 
However, we are not interested in only 
RNA and protein structures; small chem-
ical compounds represent an additional 
source of relevant structural data, as 
they often interact with their larger RNA 
and protein brethren. Physical struc-
tures of molecules can be determined 
by X-ray crystallography, NMR, electron 
microscopy, and other techniques. Once 
determined, there are a variety of ways 
of representing these structures, from 
labeled graphs of molecular bonds to 
summaries of protein domains. These 
representations can then be stored in 
databases such as Pub-Chem or the Pro-
tein Data Bank, and are often searched 
through, for example, for potential small 
molecule agonists for protein targets. 
Importantly, as we will expand upon 
later, interesting biomolecules tend to 
be sparse and non-randomly distributed 
in many representational spaces, which 
can be used for accelerating the afore-
mentioned searches.

When examining more complex 
phenomena than single proteins or 
compounds, we often look to synthe-
size things together into a systems-
level understanding of biology. To that 
end, we frequently use networks to rep-
resent biological data, such as the ge-
netic and physical interactions among 
proteins, as well as those in metabolic 
pathways.3 While standard network 
science tools have been employed in 
these analyses—for example, several 
approaches make use of diffusion or 
random walks to explore the topology 
of networks9,11—they are often paired 
with more specific biological data, as 
seen in IsoRank32 and IsoRankN’s21 
use of conserved biological function 

in addition to random walks for global 
multiple network alignment. Other 
tools solve other biological problems, 
such as MONGOOSE,10 which analyzes 
metabolic networks. However, given its 
breadth, biological network science is 
beyond the scope of this article.

Challenges with Biological Data
Given DNA or RNA reads from NGS 
technologies, the first task is to as-
semble those fragments of sequence 

into contiguous sequences. The as-
sembly problem is analogous to the 
problem of reconstructing a book with 
all its pages torn out. De novo assem-
bly is beyond the scope of this article, 
but is possible because the sequence 
is covered by many overlapping reads;3 
for this task, the de Bruijn graph data 
structure is commonly used.6 Often, 
however, a reference genome (or in the 
case of RNA, transcriptome) is available 
for the organism being sequenced; the 

Figure 2. The next-generation sequencing (NGS) pipeline.

1

2
SNP

A

T

A

T

T A

T

A

T

G

C

G

C

C

G

C

G

C

G

C

G

C

GA

A

T

A

T

T A

T

A

T

C

G

C

G

T

A

C

G

C

GA

∼100 bp ∼100 bp

Read ∼100 bases (bp)
from one or both ends

cut many times
at random
(Shotgun)

Raw Reads Mapped Reads

to reference

GATK or
Samtools

Bowtie2 
or BWA

Variant Calls
102……A
146……C
278……G
343……T

452……A
713……C
843……G
901……T

(a)  ‘Shotgun’ sequencing breaks DNA molecules into many short fragments, which are read from 
one or both ends in the form of reads, and relies on high coverage to produce a statistically likely 
representation of a whole genome.

(b)  Single-nucleotide polymorphisms, or SNPs, are the simplest type of genomic 
variant, and form the bulk of ‘variant-calling’ analysis.

(c)  The NGS downstream analysis pipeline. Shotgun reads are mapped to a reference genome with tools 
such as BWA, Bowtie, or CORA. The resulting genomic sequence is analyzed for variants with tools 
such as GATK or Samtools. This allows relationships between genes and diseases to be uncovered.
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fly, respectively. These genomes are 
enabling cross-species inference, for 
example about genes and regulatory re-
gions, and thus insights into function 
and evolution.3 Again, the sheer enor-
mity of sequencing data is problematic 
for storage, access, and analysis.

Given a sequenced genome, the 
next natural questions ask what genes 
(genomic regions that code for pro-
teins) are present, what structure each 
resulting protein takes, and what bio-
logical function it performs. Identify-
ing likely genes is a well-studied prob-
lem3 beyond the scope of this article. 
However, determining evolutionary 
relationships, structure, and function 
is at the heart of current research in 
computational biology. Since some 
organisms (known as model organ-
isms) are better studied than others, 
and evolution is known to conserve 
sequence, structure, and function, a 
powerful approach to determine these 
attributes is to search for similar se-
quences about which more is known. 
This so-called homology search entails 
searching for approximate matches 
in databases of known gene or pro-
tein sequences. The homology search 
problem was believed to be solved pre-
viously; Basic Local Alignment Search 
Tool (BLAST)3 has been the standard 
tool for performing homology (similar-
ity) search on databases of nucleotide 
and protein sequences. BLAST takes a 
“seed-and-extend” approach; it looks 
for small, k-mer matches that might 
lead to longer matches, and greedily 
extends them, ultimately producing a 
sequence alignment between a query 
and each potential database hit. How-
ever, BLAST’s running time scales lin-
early with the size of the database be-
ing searched, which is problematic as 
sequence databases continue to grow 
at a faster rate than Moore’s Law.

On a potentially even larger scale 
is the growth of metagenomic data. 
Metagenomics is the study of the many 
genomes (bacterial, fungal, and even 
viral) that make up a particular envi-
ronment. Such an environment could 
be soil from a particular region (which 
can lead to the discovery of new antibi-
otics14), or it could be the human gut, 
whose microbiome has been linked to 
human-health concerns including Au-
tism Spectrum Disorder,23 Crohn’s Dis-
ease, and obesity.

establishment of a human reference 
genome was indeed the purpose of the 
Human Genome Project.

When a reference sequence is avail-
able, NGS reads can be mapped onto 
this reference (Figure 2c). Continuing 
the book analogy, it is much easier to re-
construct a book with all its pages torn 
out when one has another (perhaps im-
perfect) copy of that book to match pag-
es to. Mapping allows the differences 
between the newly sequenced genome 
and the reference to be analyzed; these 
differences, or variants, may include 
single-nucleotide polymorphisms 
(SNPs, which are the genetic analogue 
to bit-flips, see Figure 2b), insertions or 
deletions, or larger-scale changes in the 
genome. Determining the differences 
between an individual genome and a 
reference is known as variant calling. 
While reference-based read mapping is 
a fundamentally simpler problem than 
de novo assembly, it is still computa-
tionally complex, as gigabytes or tera-
bytes of reads must each be mapped 
onto the reference genome, which can 
range from millions (for bacteria) to 
billions (for mammals) of base pairs. 
As an example, the ICGC-TCGA Pan 
Cancer Analysis of Whole Genomes 
(PCAWG)36 brings together more than 
500 top cancer researchers from about 
80 institutions in a coordinated man-
ner with the goal of mapping the entire 
mutational landscape of 37 common 
cancer types. Currently, each sample 
requires seven hours to download even 
on an institutional connection. Im-
portantly, researchers do not trust the 
provided mapping, and thus they redo 
mappings. The time spent on mapping 
is about 50% of the overall time spent 
on the sequence analysis pipeline. As 
read mapping is typically the most cost-
ly step in NGS analysis pipelines (for 
example, GATK), any improvement to 
existing mappers will immediately ac-
celerate sequence analysis studies on 
large read datasets.

Driven by the plummeting costs of 
next-generation sequencing, the 1000 
Genomes Project1 is pursuing a broad 
catalog of human variation; instead of 
producing a single reference genome 
for a species, many complete genomes 
are catalogued. Likewise, WormBase 
and FlyBase are cataloguing many dif-
ferent species and strains of the Cae-
norhabditis worm and Drosophila fruit 

When examining 
more complex 
phenomena than 
single proteins 
or compounds, 
we often look to 
synthesize things 
together into a 
systems-level 
understanding of 
biology. To that  
end, we often  
use networks  
to represent 
biological data. 



AUGUST 2016  |   VOL.  59  |   NO.  8  |   COMMUNICATIONS OF THE ACM     77

review articles

Metagenomics fundamentally asks 
what organisms are present, and, in 
the case of a microbiome such as the 
gut, what metabolic functions it can 
accomplish as a whole. One way of ad-
dressing this problem is to attempt to 
map NGS reads from a metagenomic 
sample onto a set of reference ge-
nomes that are expected to be present. 
This is exactly the read-mapping prob-
lem discussed early, but with many 
reference genomes, compounding the 
computational requirements. A sec-
ond way is to perform homology search 
on a protein sequence database; exact 
or nearly exact matches imply the pres-
ence of a species, while more distant 
hits may still give clues to function. For 
this task, BLASTX2 is commonly used 
to translate nucleotide reads into their 
possible protein sequences, and search 
for them in a protein database. The dif-
ficulty is the datasets required to shine 
any light on these questions, namely 
from “shotgun” metagenomics, are 
gigantic and vastly more complex than 
standard genomic datasets. The mas-
sive data results in major identification 
challenges for certain bacterial, as well 
as viral, species, and genera.19 

The computational study of drugs 
and their targets based on chemical 
structure and function is known as 
chemogenomics.5 In the fields of drug 
discovery and drug repurposing, the 
prediction of biologically active com-
pounds is an important task. Compu-
tational high-throughput screening 
eliminates many compounds from la-
borious wet-lab consideration, but even 
computational screening can be time 
consuming.

Chemogenomics typically relies 
on comparing chemical graph struc-
tures to identify similar molecules and 
binding sites. Furthermore, compar-
ing chemical graph structures typi-
cally involves computing the maximal 
common subgraph (MCS), an NP-hard 
problem. However, there are an in-
creasing number of such chemical 
compounds to search; the NCBI’s Pub-
Chem database has grown from 31 mil-
lion compounds in January 2011 to 68 
million in July 2015.

The continued ability to store, 
search, and analyze these growing da-
tasets hinges on clever algorithms that 
take advantage of the structure of, and 
redundancy present in, the data. In-

deed, these growing datasets “threaten 
to make the arising problems compu-
tationally infeasible.”3

State-of-the-Art Approaches 
to Meet These Challenges
Techniques for reference-based read 
mapping typically rely on algorithmic ap-
proaches such as the Burrows-Wheeler 
transform (BWT), which provides efficient 
string compression through a reversible 
transformation, while the FM-index data 
structure is a compressed substring index, 
based on the BWT, which provides effi-
cient storage as well as fast search.3 BWA 
(Burrows-Wheeler Aligner) uses the BWT, 
while the Bowtie2 mapper further relies on 
the FM-index for efficient mapping of NGS 
reads.3 The Genome Multitool (GEM) 
mapper24 also uses an FM-index coupled 
with dynamic programming in a com-
pressed representation of the reference 
genome, in order to prune the search 
space when mapping reads to a reference 
genome. Masai33 and mrsFAST15 use an 
“approximate seed” approach to index 
the space of possible matches, likewise 
pruning the search space; however, the 
bulk of its runtime is spent on the extend 
phase. State-of-the-art mapper mrsFAST-
Ultra achieves improvements in efficien-
cy based on machine architecture rather 
than leveraging redundancy in the data it-
self with near-perfect sensitivity, but only 
for the case where there are no insertions 
and deletions (indels).16 Even with these 
approaches, read mapping remains a sig-
nificant bottleneck in genomic research.3

Compressing reads for storage is 
necessary should researchers wish to 
apply more advanced mapping tools or 
other analysis in the future.4 As stated 
earlier, NGS reads consist of a sequence 

string and associated quality scores, 
the latter of which generally uses more 
space when compressed. By taking ad-
vantage of biological structure, both 
parts of NGS reads can be better com-
pressed. Unlike some other approach-
es to compressing quality scores in the 
literature,4,26 Quartz39 takes advantage 
of the fact that midsize l-mers can in 
many cases almost uniquely identify 
locations in the genome, bounding 
the likelihood that a quality score is 
informative and allowing for lossy 
compression of uninformative scores. 
Because Quartz’s lossy compression 
injects information from the distribu-
tion of l-mers in the target genome, it 
demonstrates not only improved com-
pression over competing approaches, 
but slightly improves the accuracy of 
downstream variant-calling.39 Simi-
larly, for the sequence component of 
the read, Mince27 takes advantage of se-
quence redundancy by grouping simi-
lar reads (those that share a common 
short—15bp—substring) together into 
buckets, allowing that common sub-
string to be removed and treated as 
the bucket label, so that each read in 
the compressed representation com-
prises only its unique differences from 
the bucket label. This approach al-
lows a general-purpose compressor to 
achieve better compression. SCALCE3 
also relies on a “boosting” scheme, 
reordering reads in such a way that a 
general-purpose compressor achieves 
improved compression.

Recent advances in metagenomic 
search tools have relied on two improve-
ments over BLASTX: indexing and al-
phabet reduction. RapSearch240 relies 
on alphabet reduction and a collision-

Chemogenomics: Computational study of drugs and their targets based on chemical 
structure and function.

Metagenomics: Study of the many genomes that make up a particular environment.

Shotgun sequencing: Modern genomic sequencing, which chops DNA into many  
short pieces

Homology search: Determining the function, structure, or identity of a gene sequence by 
locating similar sequences within an annotated database.

Transcriptome: Transcribed RNA from a genome, which results in protein production.

BLAST: Standard biological sequence similarity search tool.

Definitions
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computation is performed on one hu-
man genome, and a researcher wishes 
to perform the same computation on 
another human genome, most of the 
work has already been done.22 When 
dealing with redundant data, cluster-
ing comes to mind. While cluster-based 
search is well studied,20 conventional 
wisdom holds that it provides a constant 
factor speed-up over exhaustive search.

Beyond redundancy, however, an-
other attribute of large biological da-
tasets stands out. Far fewer biological 
sequences exist than could be enumer-
ated, but even more so, those that exist 
tend to be highly similar to many oth-
ers. Thanks to evolution, only those 
genes that exhibit useful biological 
function survive, and most random 
sequences of amino acids would not 
be expected to form stable structures. 
Since two human genomes differ on 
average by only 0.1%, a collection of 
1,000 human genomes contains less 
than twice the unique information of 
a single genome.22 Thus, not only does 
biological data exhibit redundancy, it 
also tends not to inhabit anywhere near 
the entire feasible space (Figure 3). It 
seems that physical laws—in this case, 
evolution—constrain the data to a par-
ticular subspace of the Cartesian space.

One key insight related to redun-
dancy is that such datasets exhibit low 
metric entropy.38 That is, for a given 
cluster radius rc and a database D, the 
number k of clusters needed to cover 
D is bounded by Nrc (D), the metric en-
tropy, which is relatively small com-
pared to |D|, the number of entries in 
the database (Figure 3). In contrast, 
if the points were uniformly distrib-
uted about the Cartesian space, Nrc (D) 
would be larger.

A second key insight is the biologi-
cal datasets have low fractal dimen-
sion.38 That is, within some range of 
radii r1 and r2 about an arbitrary point 
in the database D, the fractal dimen-
sion d is d = (log(n2/n1)

(log (r2/r1) , where n1 and n2 
are the number of points within r1 and 
r2 respectively (Figure 3).

Cluster-based search, as exempli-
fied by “compressive omics”—the use 
of compression to accelerate analy-
sis—can perform approximate search 
within a radius r of a query q on a da-
tabase D with fractal dimension d and 
metric entropy k at the scale rc in time 
proportional to

free hash table. The alphabet reduction, 
as it is reversible, can be thought of as 
a form of lossless compression; a 20-let-
ter amino acid alphabet is mapped onto 
a smaller alphabet, with offsets stored 
to recover the original sequence in the 
full alphabet. The hash table provides 
an efficient index of the database to 
be searched. DIAMOND7 also relies on 
alphabet reduction, but uses “shaped 
seeds”—essentially, k-mers of length 
15–24 with wildcards at 9–12 specific 
positions—instead of simple k-mer 
seeds to index the database. DIAMOND 
demonstrates search performance 
three to four orders of magnitude faster 
than BLASTX, but still linear in the size 
of the database being searched.

Recent work on gene expression 
has explored additional ways to exploit 
the high-dimensional structure of the 
data. SPARCLE (SPArse ReCovery 
of Linear combinations of Expres-
sion)28 brings ideas from compressed 
sensing8 to gene expression analysis. 

Another recent and novel approach 
to exploiting the structure of gene 
expression space is Parti (Pareto task 
inference),17 which describes a set of 
data as a polytope, and infers the spe-
cific tasks represented by vertices of 
that polytope from the features most 
highly enriched at those vertices.

The most widely used chemogenom-
ics search is the Small Molecule Sub-
graph Detector (SMSD),29 which applies 
one of several MCS algorithms based on 
the size and complexity of the graphs in 
question. Notably, large chemical com-
pound databases, such as PubCHEM, 
cannot be searched on a laptop com-
puter with current tools such as SMSD.

Structure of Biological Data
Fortunately, biological data has unique 
structure, which we later take advantage 
of to perform search that scales sublin-
early in the size of the database.38 The 
first critical observation is that much 
biological data is highly redundant; if a 

Figure 3. Cartoon depiction of points in an arbitrary high-dimensional space, as might arise  
from genomes generated by mutation and selection during the course of evolution. 

Although high dimensional locally, at the global scale of covering spheres, the data cloud looks 
nearly 1-dimensional, which enables entropy scaling of similarity search. Clusters cover the data 
points but do not cover unoccupied regions of space. The green triangle represents a query, with two 
concentric search radii (red circles) around it. Thanks to low fractal dimension, the large circle does 
not contain vastly more points than the small circle.
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output size

metric entropy
scaling factor

where BD(q, r) refers to the set of points 
in D contained within a ball of radius r 
about a point q.

Given this formalization, the ratio 
(|D|)

k  provides an estimate of the speed-
up factor for the coarse search compo-
nent compared to a full linear search. 
The time complexity of the fine search 
is exponential in the fractal dimension 
d, which can be estimated globally by 
sampling the local fractal dimension 
over a dataset. The accompanying table 
provides the fractal dimension d sam-
pled at typical query radii, as well as 
the ratio (|D|)

k
, for nucleotide sequence, 

protein sequence, protein structure, 
and chemical compound databases.

Biological datasets exhibit redun-
dancy, and are constrained to subspaces 
by physical laws; that is, the vast major-
ity of enumerable sequences and struc-
tures do not exist because they are not 
advantageous (or at least, have not been 
selected for by evolution). This combi-
nation results in low fractal dimension 
and low metric entropy relative to the 
size of the dataset, which suggests that 
“compressive omics” will provide the 
ability for computation to scale sublin-
early with massively growing data.

The Age of Compressive Algorithms
We are entering the age of compressive 
algorithms, which make use of this 
completely different paradigm for the 
structure of biological data. Seeking to 
take advantage of the redundancy in-
herent in genomic sequence data, Loh, 
Baym and Berger22 introduced com-
pressive genomics, an approach that re-
lies on compressing data in such a way 
that the desired computation (such as 
BLAST search) can be performed in the 
compressed representation. Compres-
sive genomics is based on the concept 
of compressive acceleration, which re-
lies on a two-stage search, referred 
to as coarse and fine search. Coarse 
search is performed only on the coarse, 
or representative, subsequences that 
represent unique data. Any represen-
tative sequence within some threshold 
of the query is then expanded into all 
similar sequences it represents; the 
fine search is over this (typically small) 

subset of the original database. This 
approach provides orders-of-magni-
tude runtime improvements to BLAST 
nucleotide22 and protein12 search; 
these runtime improvements increase 
as databases grow.

The CORA read mapper37 applies a 
mid-size l-mer based read-compression 
approach with a compressive indexing 
of the reference genome (referred to as 
a homology table). CORA, like caBLAST 
(compressively accelerated BLAST)22 and 
caBLASTP,12 accelerates existing tools 
(in this case, read mappers including 
BWA or Bowtie2) by allowing them to op-
erate in a compressed space, and relies 
on a coarse and a fine phase. In contrast, 
short seed-clustering schemes, such 
as those used in Masai33 and MrsFAST,3 
conceptually differ from CORA in that 
those schemes aim to accelerate only 
the seed-to-reference matching step. 
Thus, there is a subsequent seed-exten-
sion step, which is substantially more 
costly and still needs to be performed 
for each read and mapping individually, 
even when seeds are clustered. Through 
its l-mer based read compression 
model, CORA is able to accelerate and 
achieve asymptotically sublinear scaling 
for both the seed-matching and seed-
extension steps within coarse-mapping, 
which comprises the major bulk of the 
read-mapping computation. Tradition-
ally, k-mers refer to short substrings of 
fixed length (often, but not necessar-
ily, a power of two) used as “seeds” for 
longer sequence matches. CORA uses 
much longer k-mers (for example, 33–64 
nucleotides long), and links each one to 
its neighbors within a small Hamming 
or Levenshtein distance. The term l-mer 
distinguishes these substrings from typ-
ically short k-mers.

In the area of metagenomic search, 

the recently released MICA38 dem-
onstrates the compressive-acceler-
ation approach of caBLAST22 and 
caBLASTP12 is largely orthogonal to 
alphabet-reduction and indexing ap-
proaches. MICA applies the compres-
sive-acceleration framework to the 
state-of-the-art DIAMOND,7 using it 
for its “coarse search” phase and a 
user’s choice of DIAMOND or BLASTX 
for its “fine search” phase; MICA dem-
onstrates nearly order-of-magnitude 
run-time gains over the highly opti-
mized DIAMOND, comparable to that 
of caBLASTP over BLASTP.

Compressive genomics22 has been 
generalized and adapted to non- 
sequence spaces as well, and coined 
“compressive omics.” One such ex-
ample is chemogenomics. Applying a 
compressive acceleration approach, 
Ammolite38 accelerates SMSD search 
by an average of 150x on the PubChem 
database. Another example is esFrag-
Bag,38 which clusters proteins based 
on the cosine distance or Euclidean 
distance of their bag-of-words vectors, 
further accelerating FragBag’s running 
time by an average of 10x.

The compressive omics approach 
can, in some cases, come at the cost 
of accuracy. However, these cases are 
well defined. Compressive omics never 
results in false positives (with respect 
to the naïve search technique being 
accelerated), because the fine search 
phase applies the same comparison to 
the candidates as the naïve approach. 
Furthermore, when the distance func-
tion used for comparisons is a metric—
more specifically, when it obeys the 
triangle inequality—false negatives will 
also never occur. Yet, in practice, non-
metric distance functions are used, 
such as E-values in BLAST or cosine 

Metric-entropy ratio (ratio of clusters to entries in database) and fractal dimension at  
typical search radii for four datasets.

Dataset Metric-entropy ratio Fractal dimension

Nucleotide sequences (NCBI NT) 7:1 1.5

Protein sequences (NCBI NR) 5:1 1.6

Protein structure (PDB) 10:1 2.5

Chemical structure (PubChem) 11:1 0.2

Metric-entropy ratio gives an estimate of the acceleration of coarse search with respect to 
naïve search, and as long as fractal dimension is low, coarse search should dominate total 
search time. NCBI’s non-redundant ‘NR’ protein and ‘NT’ nucleotide sequence databases are 
from June 2015. Protein Data Bank (PDB) is from July 2015. PubChem is from October 2013.



80    COMMUNICATIONS OF THE ACM    |   AUGUST 2016  |   VOL.  59  |   NO.  8

review articles

Information Storage and Retrieval 7, 5 (1971) 217–240.
21. Liao, C.-S., Lu, K., Baym, M., Singh, R. and Berger, B. 

IsoRankN: Spectral methods for global alignment of 
multiple protein networks. Bioinformatics 12 (2009), 
i253–i258.

22. Loh, P.-R., Baym, M., and Berger, B. Compressive 
genomics. Nature Biotechnology 30, 7 (2012), 627–630.

23. MacFabe, D.F. Short-chain fatty acid fermentation 
products of the gut microbiome: Implications in 
autism spectrum disorders. Microbial Ecology in 
Health and Disease 23 (2012).

24. Marco-Sola, S., Sammeth, M., Guigó, R. and Ribeca, 
P. The gem mapper: Fast, accurate and versatile 
alignment by filtration. Nature Methods 9, 12 (2012), 
1185–1188.

25. Marx, V. Biology: The big challenges of big data. Nature 
498, 7453 (2013), 255–260.

26. Ochoa, I., Asnani, H., Bharadia, D., Chowdhury, M., 
Weissman, T. and Yona, G. QualComp: A new lossy 
compressor for quality scores based on rate distortion 
theory. BMC bioinformatics 14, 1 (2013), 187.

27. Patro, R. and Kingsford, C. Data-dependent bucketing 
improves reference-free compression of sequencing 
reads. Bioinformatics (2015).

28. Prat, Y., Fromer, M., Linial, N. and Linial, M. Recovering 
key biological constituents through sparse 
representation of gene expression. Bioinformatics 5 
(2011), 655–661.

29. Rahman, S.A., Bashton, M., Holliday, G.L., Schrader, R. 
and Thornton, J.M. Small molecule subgraph detector 
(SMSD) toolkit. J. Cheminformatics 1, 1 (2009), 1–13.

30. Rubinfeld, R. and Shapira, A. Sublinear time 
algorithms. SIAM J. Discrete Mathematics 25, 4 
(2011), 1562–1588.

31. Schatz, M.C., Langmead, B. and Salzberg, S.L. 
Cloud computing and the DNA data race. Nature 
Biotechnology 28, 7 (2010), 691–693.

32. Singh, R., Xu, J. and Berger, B. Global alignment of 
multiple protein interaction networks with application 
to functional orthology detection. In Proceedings of 
the National Academy of Sciences 105, 35 (2008), 
12763–12768.

33. Siragusa, E., Weese, D. and Reinert, K. Fast and 
accurate read mapping with approximate seeds and 
multiple backtracking. Nucleic Acids Research 41, 7 
(2013), e78.

34. Stephens, Z.D. et al. Big data: Astronomical or 
genomical? PLoS Biol. 13, 7 (2015), e1002195. 

35. Uhlmann, J.K. Satisfying general proximity/similarity 
queries with metric trees. Information Processing 
Letters 40, 4 (1991), 175–179.

36. Weinstein, J.N. et al. The cancer genome atlas pan-
cancer analysis project. Nature Genetics 45, 10 (2013), 
1113–1120.

37. Yorukoglu, D., Yu, Y.W., Peng, J. and Berger, B. 
Compressive mapping for next-generation sequencing 
Nature Biotechnology 4 (2016), 374–376.

38. Yu, Y.W., Daniels, N., Danko, D.C. and Berger, B. 
Entropy-scaling search of massive biological data. Cell 
Systems 1, 2 (2015), 130–140.

39. Yu, Y.W., Yorukoglu, D., Peng, J. and Berger, B. Quality 
score compression improves genotyping accuracy. 
Nature Biotechnology 33, 3 (2015), 240–243.

40. Zhao, Y., Tang, H. and Ye, Y. RAPSearch2: A fast and 
memory-efficient protein similarity search tool for 
next-generation sequencing data. Bioinformatics 28, 1 
(2012), 125–126.

Bonnie Berger (bab@mit.edu) is a professor in CSAIL 
and the Department of Mathematics and EECS at 
Massachusetts Institute of Technology, Cambridge, MA.

Noah M. Daniels (ndaniels@mit.edu) is a postdoctoral 
associate in CSAIL and Department of Mathematics, 
Massachusetts Institute of Technology, Cambridge, MA.

Y. William Yu (ywy@mit.edu) is a graduate student in 
CSAIL and Department of Mathematics, Massachusetts 
Institute of Technology, Cambridge, MA.

Copyright held by authors.

distance in esFragBag, and thus false 
negatives can occur. Fortunately, these 
error rates are low, and recall better 
than 90% has been demonstrated.12,22,38

Conclusion
The explosion of biological data, largely 
due to technological advances such as 
next-generation sequencing, presents 
us with challenges as well as opportu-
nities. The promise of unlocking the 
secrets of diseases such as cancer, obe-
sity, Alzheimer’s, autism spectrum dis-
order, and many others, as well as bet-
ter understanding the basic science of 
biology, relies on researchers’ ability to 
analyze the growing flood of genomic, 
metagenomic, structural, and interac-
tome data.

The approach of compressive accel-
eration,22 and its demonstrated abil-
ity to scale with the metric entropy of 
the data,38 while providing orthogonal 
benefits to many other useful index-
ing techniques, is an important tool 
for coping with the deluge of data. The 
extension of this compressive accelera-
tion approach to metagenomics, NGS 
read mapping,37 and chemogenomics 
suggests its flexibility. Likewise, com-
pressive storage for these applications 
can be shown to scale with the informa-
tion-theoretic entropy of the dataset.38

The field of computational biology 
must continue to innovate, but also to 
incorporate the best ideas from other 
areas of computer science. For example, 
the compressive acceleration approach 
bears similarity to a metric ball tree, 
first described in the database com-
munity over 20 years ago;35 however, the 
latter does not allow one to analyze per-
formance guarantees in terms of metric 
entropy and fractal dimension. Other 
ideas from image processing, compu-
tational geometry,18 sublinear-time al-
gorithms,30 and other areas outside of 
biology are likely to bear fruit. It is also 
likely that algorithmic ideas developed 
within computational biology will be-
come useful in other fields experienc-
ing a data deluge, such as astronomy or 
social networks.34

Biological data science is unique for 
two primary reasons: biology itself—
even molecular biology—predates the 
information age, and “nothing in biol-
ogy makes sense except in light of evo-
lution.”13 Not only have biologists de-
veloped a diverse array of experimental 

techniques, but the data derives from 
astoundingly complex processes that 
themselves are driven by evolution. It is 
through the development of algorithms 
that leverage the structure of biological 
data that we can make sense of biology 
in light of evolution.
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