
DECEMBER 2017 | VOL. 60 | NO. 12 | COMMUNICATIONS OF THE ACM 17

news
I

M
A

G
E

 B
Y

 D
A

N
I

E
L

S
2

2
0

/W
I

K
I

M
E

D
I

A
 C

C
 B

Y
-S

A
 3

.0

has run its course. We have added other
forms of parallelism that do not hide the
issue as much for programmers.”

Computing societies have recog-
nized the need to incorporate parallel-
ism as part of a core collegiate comput-
er science curriculum. The ACM and
the IEEE jointly introduced new guide-
lines in 2013, and recommended inte-
grating parallel education throughout
the curriculum. Although these are
only guidelines, and most universities
still tend to teach parallel program-
ming concepts only to more advanced
students, there is a growing push to in-
corporate parallelism in college-level
programming courses from the start.

“In the last 15 years, systems have
gone almost entirely parallel,” Weems
says. “Unless you’re talking about
small embedded systems, everything

W
HEN LEARNING A new
skill, it is often advanta-
geous to start out sim-
ply, and then incorpo-
rate greater complexity

as the learner gains greater experience,
expertise, and familiarity with the sub-
ject at hand.

Indeed, most computer science edu-
cation has followed that line of thinking,
teaching beginning computer science
students to write programs that perform
one instruction at a time, and then move
on to the next instruction. This is known
as sequential programming, and it has
largely been the accepted model of com-
puter science instruction at both the
university and K–12 levels, in contrast
with parallel computing, a model of pro-
gramming where multiple instructions
are processed simultaneously.

“The educational system is, mostly
through inertia, still focused on the
computing paradigm of the 20th centu-
ry, which was one processor executing
instructions one after another, so al-
gorithmic problem-solving was mainly
oriented toward a sequential model,”
explains Charles (Chip) Weems, an as-
sociate professor of computer science
at the University of Massachusetts.

Today, however, nearly all applica-
tions running on smartphones, tab-
lets, and PCs, are powered by multi-
core processors, which are necessary
when working with the large datasets
that drive both consumer applications,
such a Twitter or Facebook feed, as well
as business and commerce-related ap-
plications, such as travel deal sites,
weather applications, and real-time
traffic data. To take full advantage of
these multicore processors, program-
ming applications to process instruc-
tions in parallel—which allows multi-
ple instructions to be processed at the
same time—is required.

Teaching new computer science

students to think and program in par-
allel will not only better prepare them
to code and program these devices, but
also helps to train their minds to think
in abstractions to solve problems, rath-
er than simply in terms of writing code.

“Computer architectures have been
doing parallelism at the instruction level
for decades in a way that the vast major-
ity of programmers can ignore that it’s
there,” says Dan Grossman, a professor
at the Paul G. Allen School of Computer
Science & Engineering at the University
of Washington, and a member of the
ACM steering committee on computing
curricula, which concluded its work in
2013. “If that had remained the only form
of parallelism, there would be a much
weaker argument for teaching parallel-
ism at the undergraduate level. But that
has not remained the dominant form; it

Society | DOI:10.1145/3148760 Keith Kirkpatrick

Parallel Computational
Thinking
Applications must be programmed to process instructions in
parallel to take full advantage of the new multicore processors.

A chart illustrating Amdahl’s Law, which says the speed-up of a program from parallelization
is limited by how much of the program can be parallelized.

Amdahl’s Law

Number of processors

Parallel portion

S
pe

ed
up

50%
75%
90%
95%

20

18

16

14

12

10

8

6

4

2

0

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

http://dx.doi.org/10.1145/3148760

18 COMMUNICATIONS OF THE ACM | DECEMBER 2017 | VOL. 60 | NO. 12

news

you might encounter is a multicore
that’s multithreaded, and nearly every-
thing comes with a graphics processor,
which can be programmed.”

 Moreover, programming in paral-
lel—and training students to think at
a higher level—allows for program-
ming to be more direct and concise,
compared with sequential program-
ming, according to Guy Blelloch, a
professor and Associate Dean for
Undergraduate Programs in the com-
puter science department at Carnegie
Mellon University. “It’s not so much
that parallel code is simpler than se-
quential code, it’s that in the abstrac-
tion of code [it] basically makes [the
problem to solved] simpler and at the
same time makes it parallel.”

Blelloch, who notes that CMU teach-
es parallelism from the start in its In-
tro to Data Structures and Algorithms
Course during the first semester of
sophomore year, says that by teaching
beginning computer science students
to think about problems in terms of
abstractions, they are able to move
beyond a basic understanding of pro-
gramming to get the heart of the mat-
ter of actually solving problems.

“There’s a lot of emphasis on intro
programming on a loop,” Blelloch says.
“And that’s really not that interesting.
Often you just want to be thinking,
‘I want to add five to every element in
this array.’ I could start the loop at the
beginning, but the right way to think

of it is I just want to add five to every
element in the array. By doing the par-
allelism, you’re more focusing on the
underlying ideas, as opposed to getting
stuck in details of loops.”

Another added benefit of parallel-
ism, Weems says, is that when a stu-
dent learns parallel programming, it
“helps them develop a more flexible
approach to problem solving because
there are more algorithmic models
to draw upon.” While there’s also the
added benefit of learning how to break
apart larger problems into simpler
ones, parallelism also requires pro-
grammers to learn to see alternate ab-
stractions of the problem.

“There are situations where a
problem can be decomposed into
subtasks, but various factors result

in still having to choose among algo-
rithmic approaches,” Weems says.
“There are times when communicat-
ing via shared memory is most effec-
tive, while in other cases it’s better
to work locally and communicate via
messages, or to use a combination of
these approaches at different levels of
granularity. [Parallelism] forces pro-
grammers to look more explicitly and
holistically at the interactions that
take place among the data and opera-
tions in solving the problem, by con-
sidering them from more perspectives
than the sequential model.”

Weems, a member of the working
group for the Center for Parallel and
Distributed Computing Curriculum
Development and Educational Re-
sources (CDER), which is funded by
the U.S. National Science Foundation
(NSF), also notes that there is a de-
mand for new programmers who have
parallel programming skills, from gov-
ernment science labs as well as large
technology industry companies.

Some major universities, includ-
ing the University of Massachusetts,
where Weems is a faculty member,
have begun to incorporate parallel-
ism into their curricula, with prom-
ising results. For example, a faculty-
authored paper from Texas State
University highlights the success
of its new curriculum, which was
launched in the 2016–2017 academic
year. According to the paper, parallel

When a student learns
parallelism, it “helps
them develop a more
flexible approach
to problem solving
because there are
more algorithmic
models to draw upon.”

French researchers are
developing a video technology
that will completely bypass
the eyes and project an image
directly into one’s brain.

Essentially, they want to enable
the blind to see again, without ever
having to rely on the human eye.

The researchers have been
partially successful in their quest;
so far, they have found a way to
model how the human retina
captures visual information
using machine vision, a camera,
and a computer.

“We aim at extending this
modeling to the visual cortex”
of the brain, says Serge Picaud,
scientific supervisor at Institut de

la Vision in Paris, France, who is
working with Jose Alain Sahel, the
Institut’s director, to return sight
to those who live in darkness.

Both Picaud and Sahel are part
of a larger, $21.6-million initiative
overseen by the U.S. Defense
Advanced Research Projects
Agency (DARPA), which is looking
to use technology to enable the
blind to see, the deaf to hear, and
the speech-impaired to talk.

Picaud and Sahel hope
their nascent technology will
ultimately work by using a
specially designed machine
vision camera from Chronocam,
which will feed imagery from
the outside world into a pocket

computer. Once processed, the
visual signal will be broadcast to
wireless devices the researchers
plan to implant inside the brain,
which in turn will fire individual
neurons in the brain’s visual
cortex to create sight.

“The implanted devices
containing LED arrays will
deliver light stimuli on the visual
cortex,” Sahel says.

Picaud and Sachel will be
experimenting on animals before
they move into the human brain.

Says Phillip Alvelda, manager
of DARPA’s Neural Engineering
System Design (NESD) program,
“By increasing the capacity of
advanced neural interfaces to

engage more than one million
neurons in parallel, NESD
aims to enable rich, two-way
communication with the brain at
a scale that will help deepen our
understanding of that organ’s
underlying biology, complexity,
and function.”

“Its deeper complexities are
going to remain a mystery for
some time to come,” Alvelda
adds, “but if we’re successful in
delivering rich sensory signals
directly to the brain, NESD will
lay a broad foundation for new
neurological therapies.”

—Joe Dysart is an Internet
speaker and business consultant
based in Manhattan.

Technology

Out of Sight, Into Mind

DECEMBER 2017 | VOL. 60 | NO. 12 | COMMUNICATIONS OF THE ACM 19

news

younger kids, sequential, logical step-
ping is an important foundation for
learning how to think logically.”

Lynn does note that some platforms
may provide some exposure to parallel
programming. “At times however, plat-
forms such as Scratch do allow kids to
get some exposure to parallel program-
ming (such as multiple objects moving
and detecting collision simultaneous-
ly),” Lynn says. “While we may create
projects with parallel programming
concepts embedded, we don’t typically
focus on parallel thinking, as we find it
dilutes the focus on building their se-
quential logic thinking skills.”

Whether at the collegiate or second-
ary level, there are challenges related to
revamping the curriculum to include
parallelism. First, many professors have
not had been exposed to parallelism
on a programming level, particularly if
they were educated before parallel pro-
cessing became mainstream, which oc-
curred about a decade or so ago. There
are also non-technical issues, such as
getting buy-in from other faculty mem-
bers, as well as the challenge of updat-
ing online tutorials and auto-graders,
which must be revamped to deal with
different types of code. Additionally,
textbooks need to be augmented or
amended, as many introductory texts
don’t cover parallelism. “There was one
that mentioned concurrency, but it was
in Chapter 23,” Weems quips.

Blelloch says that the trend, for now,
is to simply add a discussion about par-
allelism to existing coursework. “I think
most departments are taking a some-

computing concepts are introduced
and reiterated via a series of short,
self-contained modules across sever-
al lower division courses. Then, most
concepts are combined into a senior-
level capstone course in multicore
programming. The evaluations con-
ducted during the first year displayed
encouraging results for the early-and-
often approach in terms of learning
outcomes, student interest, and con-
fidence gains in computer science.

Still, some educators are not con-
vinced that introducing parallelism
during introductory or lower-division
computer science courses is necessary
in order to produce well-trained com-
puter programmers of the future.

“We live in a world of multicore de-
vices,” says Mark Guzdial, a professor
in the School of Interactive Comput-
ing at the Georgia Institute of Technol-
ogy. “But I don’t know if we should be
teaching [parallel programming] to ev-
eryone. It may be better off to start with
sequential programming, and then
move on to parallel.”

Whether to teach elements of par-
allelism in early coursework may also
depend on the focus of the coursework,
Grossman says, noting that the key to in-
tegrating parallelism is to limit the com-
plexity of the program itself, by ensuring
that computations and variables are not
highly dependent upon one another
during parallel processing operations.

“The way to get parallelism to work
correctly is to have as fewer shared
variables as you can that can change,”
Grossman says, noting instead of set-
ting up a single variable that may
change its value, it may make more
sense to simply program a second vari-
able that can hold the second value.

“There are different ways to teach
introductory programming without
parallelism that make it harder or
easier to add parallelism later,” Gross-
man adds. “For initial exposure to
programming for younger, pre-college
students, I haven’t seen much focus on
parallelism and I think that’s fine.”

Hansel Lynn owns Silicon Valley-
based theCoderSchool, an afterschool
coding instruction franchise that
works exclusively with children ages 8
to 18. Lynn believes sequential coding
should be taught first. “For kids aged
8–18, we always teach sequential cod-
ing first,” Lynn says. “Especially for

“We live in a world
of multicore devices,
but I don’t know
if we should be
teaching [parallel
programming] to
everyone. It may be
better off to start
with sequential
programming.”

what more conservative approach,” he
says. “They’ve taught this course for
20 years in a particular way and it’s not
very hard to add three weeks at the end
which makes them think in parallel.”

Perhaps the larger question for com-
puter science educators revolves around
selecting the right material to introduce
to beginning computer science students.

“It’s very tempting in computer sci-
ence education to think that we do stu-
dents a service if we introduce ‘x’ from
day one, for various values of ’x’, and
you’re asking about ‘x’ being parallel-
ism,” Grossman says. “I do see value in
that, but I also see value in introducing
security from day one. I see value in intro-
ducing ethics from day one. I also see the
value of introducing performance from
day one. But there’s only one day one.

“Everyone who crafts a curriculum
has to make choices about what they
introduce from the beginning as the
default way to think about a program,
compared with what they push off until
later,” Grossman says. “Trade-offs are
trade-offs, and people can spend their
lives studying pedagogy.”

Further Reading

Grossman, M., Aziz, M., Chi, H.,
Tibrewal, A., Imam, S., and Sarkar, V.
Pedagogy and tools for teaching parallel
computing at the sophomore undergraduate
level, Journal of Parallel and Distributed
Computing, Volume 105 Issue C,
July 2017, pp. 18-30
http://dl.acm.org/citation.cfm?id=3085740

Burtscher, M., Peng, W., Qasem, A.,
Shi, H., Tamir, D., and Thiry, H.
Integrating Parallel Computing into the
Undergraduate Curriculum at Texas State
University: Experiences from the First Year
http://bit.ly/2tl7rpe

Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science
The Joint Task Force on Computing
Curricular: Association for Computing
Machinery IEEE Computer Society
December 20, 2013
http://www.acm.org/education/CS2013-
final-report.pdf

Video:

Parallel Computing Explained:
https://www.youtube.com/
watch?v=q7sgzDH1cR8

Keith Kirkpatrick is principal of 4K Research &
Consulting, LLC, based in Lynbrook, NY.

© 2017 ACM 0001-0782/17/12 $15.00

