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1. Introduction 
 
Yield losses from wafer fabrication take two forms: line yield and die yield. Line yield 
losses result from physical damage of the wafers due to mishandling, or by mis-
processing of the wafer (e.g., skipping or duplicating a process step, wrong recipe, 
equipment out of control, etc.). Mis-processing is detected either by in-line inspections 
interspersed through the wafer fabrication process or by an electrical parametric test of a 
special test pattern on the wafer. This parametric test is almost always performed just 
before the wafer leaves the fabrication facility to go to the wafer probe area. It is also 
sometimes performed at one or more points within the wafer fabrication process flow. 
 
Many die yield losses are the result of tiny defects. Defects are defined as any physical 
anomaly that causes a circuit to fail. This includes shorts or resistive paths or opens 
caused by particles, excess metal that bridges across steep underlying contours causing 
shorts, photoresist splatters and flakes, weak spots in insulators, pinholes, opens due to 
step coverage problems, scratches, etc. 
 
It is natural to think of defects as being randomly distributed across the wafer surface, 
and to speak about the density of defects on the wafer surface, i.e., the number of circuit 
faults per unit area. If we postulate that a die will not work unless it is completely free of 
defects, then the probability that a die works is the probability that no defects lie within 
its area. Obviously, the larger the die area, the more the chance it includes one or more 
defects, and so the less the probability that the die works. Thus wafers with large die 
printed on them will have a lower die yield than will wafers with small die printed on 
them, if the two types of wafers are made in the same fabrication process and are subject 
to the same density of defects. 
 
To fairly compare die yields of products with different die areas made in different 
factories, it is desirable to find the underlying defect density in each factory. A factory 
with a lower defect density is capable of producing with a higher die yield. 
 
Not all die yield losses are due to defects. Some mis-processing escapes detection at in-
line optical inspections in the fabrication process as well as at parametric test. And some 
types of mis-processing affect only a portion of the dice printed on the wafer. A prevalent 
example is edge loss. The thickness of films deposited on the wafer is often well-
controlled across the central portion of the wafer but poorly controlled near the edge of 
the wafer, resulting in wholesale die yield losses near the edge. Parametric test and in-
line inspections typically are performed on a sample basis and exclude edge die. Hence 
edge losses show up as die yield loss, even though they are not the result of defects. 
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For the moment, we will assume all die yield losses are the result of defects in order to 
develop the theory of defect density models. We will relax this assumption subsequently. 
 
2. The Poisson Model 
 
Suppose the mean number of defects per die is 0. According to the Poisson probability 
distribution function, the probability that a die has k defects is given by 
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The probability the die works is P(0); the expected die yield is therefore 
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If the mean defect density is D0 defects per square centimeter, and the die area is A sq 
cm, then we should take 0 = D0A. We therefore write 
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Equation (2) is called the Poisson die yield model. Given an observed die yield DY, we 
can infer that the underlying defect density in the fab is 
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A very useful feature of the Poisson model is the additivity of defects. If the overall 
defect density D0 is decomposable into defectivity contributions at different steps or 
different mask layers, e.g.,  
 

D0 = D1 + D2 + D3 + … + Dn , 
 
then the yield loss contribution of each step or layer is easily identified, as the overall die 
yield has a product form: 
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Using this product form, one can calculate the yield improvement to be gained from 
reductions in defect density achieved at various steps or layers. For example, if the defect 
density in layer j is reduced from Dj to Dj – Dj, then the new die yield is  
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Empirically, the Poisson yield model has been found to give accurate yield predictions 
for small die (when A   0.25 sq cm) and when the expected number of defects per die is 
low (when D0A < 1.0). In the case of large die areas, it tends to underestimate die yield, 
for reasons that will be explained later. Nonetheless, in almost any situation, it is accurate 
for estimating small changes in die yield as a function of small changes in step-level or 
layer defect densities. 
 
3. The Binomial Model 
 
Suppose the entire wafer has n total defects on it. Let p be the probability that a random 
defect lands on a given die. Assume the defects are independent from each other. 
According to the binomial distribution, the probability that k out of the n defects land on 
the particular die in question is 
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In particular, the probability the die works is 
 

.)1()0( npP      (5) 
 
Suppose the area of the whole wafer is Aw, and suppose the area of the die is A. If the 
defect density is D0, then the expected total number of defects on the wafer is n = D0 Aw, 
while the expected number of defects on the die is D0A. The probability a particular 
defect is located within a given die is just the ratio, i.e.,  
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or p = A / Aw. Substituting into (5), the expected die yield is 
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Typically, the area of the wafer Aw is much larger than the area of the die A. Moreover, 
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For Aw an order of magnitude larger than A, (6) closely approximates (2). Thus the 
Binomial model gives essentially the same numerical answers for die yield as does the 
Poisson model. Since the Poisson model is mathematically more tractable, it is used in 
preference. 
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4. Mixed Distribution Models 
 
Actual data on defects shows that defect and particle densities vary widely from chip to 
chip, from wafer to wafer, and even from lot to lot. In fact, the defects frequently tend to 
cluster together. Because of this, the Poisson model tends to underestimate die yield 
when the expected number of defects per chip is greater than one or when the die area is 
relatively large. (When the defects cluster together in some die, then other die can be 
relatively defect-free, thereby increasing the yield compared to the case when defects are 
more spread out.) 
 
One approach for dealing with this problem is to posit that the defect density D itself 
varies according to a probability distribution f(D). This was first done by B. T. Murphy of 
Bell Labs. The expected die yield in this case is expressed as 
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By definition, the distribution f(D) has mean D0, but beyond that, we don't have much of 
an idea as to what it should look like. If one assumes D is distributed uniformly between 
0 and 2D0, (8) simplifies to 
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If one assumes D is distributed according to a symmetrical triangular distribution 
extending from 0 to 2D0 with peak at D0, it can be shown that (8) simplifies to 
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Equation (9) is commonly referred to as the Murphy model for die yield. Given a die 
yield DY and die size A, one can numerically solve for the implicit mean defect density 
D0 that satisfies (9). 
 
If one assumes D is distributed according to an exponential distribution, i.e., 
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it can be shown that (8) simplifies to 
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which is known as the Seeds model for die yield. A variant of the Seeds model, known as 
the Bose-Einstein model for die yield, is a product form 
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where n is the number of critical mask layers. The idea behind the Bose-Einstein model 
is that most fatal defects are deposited in certain difficult (“critical”) mask layers. For 
example, metal layers are especially prone to the generation of fatal defects. We would 
expect that a device fabricated in a process technology with a given number of critical 
layers (say, four metal layers) will have a lower die yield than a device with the same 
area fabricated in another technology with fewer critical layers (say, two metal layers). 
The Bose-Einstein model can be developed assuming die yield in each critical layer is 
expressed using the Seeds model, and overall die yield is the product of defect-limited 
yields in all the critical layers.  
 
Finally, if f(D) is assumed to be a Gamma distribution, it has been shown that (8) reduces 
to a Negative Binomial model, i.e., 
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where  is called the cluster parameter. If defect data is available, this parameter can be 
estimated from the defect data as 
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Here,  is the mean number of defects per die and  is the standard deviation of the 
number of defects per die. 
 
By suitably choosing the extra parameter , the Negative Binomial model (11) can 
closely approximate any of the other models. For 10 , the Negative Binomial model 
is essentially the same as the Poisson model (2). For  = 5, the Negative Binomial 
closely approximates the Murphy model (9). For  = 1, the Negative Binomial closely 
approximates the Seeds model (10). 
 
A drawback to using the Negative Binomial model for determining defect density is that 
given only a die yield DY and a die area A, it is not clear what value of  to use in order 
to determine the underlying mean defect density D0. If  were somehow given, the mean 
defect density can be easily computed as 
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5. Practical Defect Density Models 
 
For small die sizes A   0.25 sq cm, or for low defect densities AD0 < 1, the simple 
Poisson model (2) is widely used and is accurate. Moreover, if one is only concerned 
about the change in die yield given a change in defect density at one or several process 
steps, an analysis using the Poisson model is sufficiently accurate.  
 
For large die sizes, the Negative Binomial model (11) is the most flexible and potentially 
most accurate model. However, the extra parameter  needs to be determined by 
statistical methods or by estimation from actual defect data. Where such data are not 
available, the Murphy model (9) is frequently used. 
 
 
6. Models Incorporating Both Random and Systematic Yield Losses 
 
Now suppose that in addition to random defects there are losses independent of die size 
that we shall term systematic yield losses. We decompose overall die yield as DY = YSYR, 
where YR is the defect-limited yield and YS is the systematic-limited yield. If we posit a 
simple Poisson Model for defects, we have 
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Using linear regression, we can determine a best fit of the two parameters YS and D0 to 
actual data on DY vs. A if we take logs of both sides of the above equation: 
 
 .lnln 0ADYDY S   (15) 

 
Here, ln YS is the constant and D0 is the coefficient on the independent variable A. We 
can determine these unknown parameters from wafer map data for a single product using 
what is known as the windowing technique. A wafer map presents the yield by die 
position on the wafer. A stacked wafer map, showing the average yield by die position, is 
depicted in Figure 1. For the purposes of this section, assume we have a wafer map for a 
single wafer, i.e., a map showing which dice worked and which dice failed on a given 
wafer. 
 
The windowing technique is explained as follows. The average die yield for the product 
vs. the die area of the product constitutes one data point. Now suppose we group the dice 
printed across the wafer surface into pairs, and pretend that the pair is a single die with 
area 2A. This paired single-die only works if both component dice work. From review of 
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Figure 1. Sample Wafer Map 



8 
 

the wafer map, the die yield of this paired single-die can be identified. This provides a 
second data point. The procedure can be repeated for die groups of size 3, 4, 5, 6, 7, 8, 
etc., providing more data points for the regression. 
 
Just as for the simple Poisson model for defect density, any of the compound defect 
density models could be appended with a systematic-limited yield coefficient YS. In 
practice, a two-parameter model such as the simple Poisson with a systematic-limited 
yield coefficient is typically sufficient for practical purposes. 
 
We remark that the windowing method simply sorts out yield losses into those that are 
independent of die area versus those that are dependent on die area. This is not equivalent 
to a decomposition of yield losses by point-defect mechanisms vs. other mechanisms. For 
example, edge losses will be larger for wafers with larger-sized dice printed on them than 
for wafers with small dice. Thus losses from some of the non-defect mechanisms will be 
included in the D0 parameter rather than in the YS parameter. 
 
 
7. Models with Baseline Random Yield Loss and Systematic Yield Loss 
 
A different and useful decomposition of die yield stems from an SPC-type viewpoint. 
Suppose we posit that the truly random die yield losses all must come from a stable, 
stationary system of chance causes that we classify as baseline defects.  There may be 
occasional excursions (significant additional yield losses from this baseline) when the 
process or equipment drifts out of control, either misprocessing or depositing excessive 
particles. Losses from such excursions, as well as chronic losses that are not randomly 
distributed, are termed systematic yield losses. Systematic yield losses have an 
observable signature. It could be a signature over time (e.g., one or several lots with 
exceptionally poor yields), or a spatial signature (e.g., certain die positions on the wafer 
or certain wafer positions within the lot with much lower than average yields). Edge 
losses are a good example of a systematic yield loss with a spatial signature. 
 
Suppose we abstractly collect all systematic losses into a single term 1-YS and all random 
losses into a single term 1-YR. (YS is known as the systematic limited yield, YR is the 
baseline defect-limited yield.) The overall die yield is DY = YRYS. Improvement of 
baseline yield requires fundamental improvement in the cleanliness of the process and 
equipment. Improvement of systematic yield requires improved process execution and/or 
improved process monitoring and control (to detect excursions from baseline losses and 
react to contain losses from such excursions). Typically, faster progress in yield 
improvement can be made on the systematic side, whereby signatures can be analyzed to 
help determine root causes and engineering projects to mitigate specific systematic yield 
losses can be formulated and carried out. It is therefore helpful to know the YR – YS 
breakdown of overall die yield, as well as the breakdown of 1-YS into its many 
component losses. 
 
Some insight for the decomposition of yield into YR and YS components may be gained by 
viewing a wafer yield histogram in addition to the wafer yield map. An example wafer 
yield histogram is presented in Figure 2. From a large sample of wafers, the number of 
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good die per wafer vs. the number of wafers achieving that yield is plotted. If yield losses 
were solely due to the stable system of chance causes, then by the Central Limit 
Theorem, the histogram should present a normal distribution. But it has a long left tail, 
indicating there are significant excursion losses. The overall histogram reflects a 
juxtaposition of the normal distribution for the baseline losses plus the excursion and 
systematic losses. 
 
If yield losses were solely due to stationary random baseline defects, on the wafer map 
we should see a Poisson distribution of yield losses, which, for a large number of die per 
wafer such as here, should look like a normal distribution. There should be no spatial 
correlation of yield across the wafer. But that is not what we see. Note the poor edge 
yield and the poor yield in the dead center of the wafer; those are clearly systematic 
problems. 
 
Suppose we looked at a wafer map for a wafer that to the best of our knowledge was not 
involved in any excursions. Suppose we focus on the best-observed-yielding die site in 
that map, probably located near the center of this wafer map. We will certainly ignore the 
die sites near the edge that exhibit edge losses, and we will ignore the poor-yielding die 
site in the center of the map in Figure 1, as well as any other die sites exhibiting a spatial 
signature. In Figure 1, the best-yielding die site exhibits a die yield of 54%, and there is 
only one die site achieving this yield. 

For baseline random defects, die yield is well-characterized by a Binomial distribution. 
(Recall that a Poisson model and a Binomial model are equivalent when the number of 
die per wafer is sufficiently large.) For Binomial die yield, the distribution exhibited by 
the wafer histogram should be a normal distribution, if the wafer sample is sufficiently 
large. For such a distribution, a span of 6 should contain (almost) all observations and 
the peak should be centered 3 from the maximum die yield.  
 
However, the overall yield distribution as seen in Figure 2 is a juxtaposition of the 
baseline random defect-limited yield and the systematic mechanisms-limited yield. We 
might expect that excursions add a long left-hand tail, while chronic systematic losses 
(such as edge losses) shift the whole distribution to the left.  
 
We can argue that the only way the best-observed yield is achieved is when no 
systematic losses are present and we are witnessing a point that is at the right-hand edge 
of the (unseen) normal distribution for the baseline random yield. We therefore could 
expect the distance between the mean of the baseline random yield distribution and the 
maximum die yield identified on a stacked wafer map to be approximately of the 
distribution that results from the baseline random defect-limited yield, as long as the 
number of die per wafer is sufficiently large. We can use this observation to estimate YR 
as follows.
 
For a Binomial model with mean YR, the standard deviation of the average yield is given 
by 
 

 mYY RR /)1(  , (16) 
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Figure 2. Example of Yield Histogram 
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where m is the total number of wafers in the stack. If we let MY denote the maximum die 
yield that is observed. The difference between MY and the unknown YR depends on the 
number of die sites that were considered and at how many die sites MY was observed. For 
example, suppose there were 300 die sites considered (die sites subject to edge loss or 
other chronic systematic loss mechanisms are ignored), and suppose MY was observed at 
2 die sites. Using a normal approximation, that would suggest MY occurred at -1(1-
2/300) standard deviations above YR where  denotes the cumulative unit normal density 
function. More generally, if we apply the normal approximation so that the distance from 
YR to MY is -1(1 – l/n), where l is the number of times MY appears on the stacked 
wafer map and n is the number of die sites considered on the stacked wafer map, then we 
estimate MY occurs at YR +k where k = -1(1 – l/n). In particular, if MY were observed 
at 2 out of 88 die sites, that would suggest that MY is two standard deviations above YR, 
and if MY were observed at 1 out of 714 die sites, that would suggest that MY is three 
standard deviations above YR.  
 
Using this approximation, we have 
 

 mYYnlkYMY RRR /)1()/1(1    , (17) 

 
which may be solved using the quadratic formula to find YR. Once YR is determined, we 
can divide it into DY to determine YS.  
 
This binomial-sigma method will result in a smaller systematic mechanism limited yield 
than the YS term computed using the windowing method. The virtue of this approach to 
match maximum-observed-yield is that edge losses and defect excursions are excluded 
from the determination of YR (to the extent that they do not contribute to the die sites 
exhibiting maximum yield). That is, defect losses are sorted out into baseline losses 
present across all die sites on every wafer from losses with a spatial or temporal 
signature. 
 
As an example, the wafer map in Figure 1 provided the average yields by die site over a 
large group of wafers, in this case, 755 wafers. As for candidate die sites, we ignore the 
top three rows of dice, seemingly subject to some systematic mechanism. Starting in the 
fourth row and ignoring die subject to edge loss, we have one row of 15, one row of 17, 
two rows of 19, then 10 rows of 21, 2 rows of 19, one row of 17, one row of 15, one row 
of 13, and one row of 9, ignoring the bottom row subject to edge loss. This makes for a 
total of 372 candidate die sites for observing the maximum die yield. The maximum 
observed die yield is 57%, occurring at only one site out of the 372 candidate die sites. 
Then k = -1(1 – 1/372) = 2.78. Solving (17), we obtain the estimate YR = 51.8%. The 
average die yield is 43.1%, implying YS = 83.2%. 
 
8. Findings of the SMLY Survey 
 
During 2002-2003 the author and Dr. C. Neil Berglund undertook a study sponsored by 
International Sematech of systematic yield loss mechanisms. Yield learning trends, 
prevalent yield loss mechanisms, yield analysis and yield improvement practices were 
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surveyed at fabrication facilities operated by five Sematech member companies, 
including one in Asia, two in Europe and two in the USA. 
 
Yield Learning Trends 
 
The participants in the SMLY survey provided die yields for selected high- and 
moderate-volume devices from the 350nm, 250nm and 180nm technology nodes. Die 
yields were broken down into line yield through die sort (i.e., wafers that survive the die 
sort process to count towards die yield statistics) and the die yield of sorted wafers.  
Figures 3, 4 and 5 display yield loss vs. calendar time for selected devices at the 350nm, 
250nm, and 180nm technology nodes.  Most of these are logic devices, although SRAMs 
and flash memory devices also are represented (yield loss after repair in these cases).  Die 
sizes varied from slightly larger than 0.2 cm2 to more than 2 cm2. 
 
To compensate for differences in die size at the participants, we needed to normalize the 
random yield losses that depend on the die area.  As will be explained below, we found 
over the entire process life for the devices produced at all participants that yield losses 
due to systematic categories were comparable to random defect losses.  We therefore fit 
the following Poisson model to the data provided by the participants to predict their die 
yield for a normalized die size:  
 

Y = Ys * Yr = [ (1 + Y)/2 ] * Yr = [ (1 + Y)/2 ] * exp(-AD0) 
 
where Y is the reported die yield (excluding sort line yield), A is the reported die area, 
and D0 is the derived Poisson defect density.  As may be seen, this model assumes 
exactly half of total die yield losses stem from systematic mechanisms that are 
independent of die area, while the other half are to be explained by a fatal defect density 
D0. 
 
Using the value of D0 derived as above, we predicted the yield loss for a 0.5 cm2 device 
in each process technology reported by the participants as 
 

YL = 1 – SLY * [ (1 + Y)/2 ] * exp(-0.5*D0) 
 

where Y is the reported die yield, SLY is the reported sort line yield and D0 is the defect 
density calculated as above. 

 
As may be seen in the figures, yield loss learning rates are quite comparable across the 
participants.  The slopes of the curves for the various participants at the 350nm node are 
quite parallel, and the curves of the various participants line up remarkably well at the 
250nm node, almost as if all of the data came from a single fab.  At the 180nm node, data 
is more scant, and more disparity seems to be present in the learning rates of the 
participants.  (Although the pace of yield learning may seem to be less at the 180nm 
node, this is only because the time scale is stretched out in Figure 5 compared to that in 
Figures 3 and 4.) One may also observe from these figures that the participants seem to 
be unable to drive yield loss for a 0.5 cm2 device down to 10 percentage points, even at  



13 
 

 

0.1

1
1 

-D
Y 

(A
=0

.5
)*

SL
Y

 
Figure 3. 350nm Yield Loss Curves



14 
 

 

0.1

1
1 

-D
Y(

A=
0.

5)
*S

LY

 
Figure 4. 250nm Yield Loss Curves
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Figure 5. 180nm Yield Loss Curves 



16 
 

process maturity.  Note that the maximum die yield achieved at maturity seems to be 
declining through the generations – more on this point below. 
 
We obtained from the participants their dates for when development of the baseline 
process technology at each node was initiated, when the first wafer start of a salable 
product or product-like test vehicle was made at each node, and when the baseline 
process was qualified for mass production.  Both the time of first wafer-start and the 
elapsed time from first wafer-start until qualification for mass production exhibited 
considerable variation across the participants. Notwithstanding this variation, we sought 
to find the industry-wide trend in the time required from first wafer-start in a technology 
until certain yield loss milestones were achieved.  Table 1 summarizes what might be 
termed “envelope performance,” measuring the elapsed times from when any participant 
made a first-wafer start in a new technology node until any participant reached specific 
yield loss milestones for that node.  
 
 

Table 1 
Elapsed Time to Reach Yield Loss Milestones 

 
Node   Date of      Elapsed time (months) until 
        first                  yield loss was reduced to: 
           wafer-start   50%     40%    30%     20% 
 
350nm  Nov-95   16   17    27      55 
250nm  Apr-97      22   24    45      61 
180nm  May-99   24   31    36      36 
 
 
Note the disturbing trend that the elapsed time to bring yield losses down to 50% and 
40% is steadily increasing across the technology generations. On the bright side, at the 
180nm node, the participants achieved a substantial reduction in the time required to 
reach the 20% yield loss milestone.  
 
To investigate this further, we numerically analyzed the individual yield learning rates of 
the participants, fitting the function 
 

YL(t) = YL(0)* exp (-t) 
 
to the curves depicted in Figures 3, 4, and 5.  Here, t is measured in months and  is the 
average slope of the curve, i.e., the yield learning rate.  We computed  for all curves 
with at least 5 months of data and then averaged them across all devices and participants. 
The results are summarized in Table 2. 
 
The results in Table 2 reveal an encouraging development of accelerated yield learning at 
the 180nm technology node, rising from 4 – 4.5% per month at the 350nm and 250nm 
nodes to 6.5% per month at the 180nm node.  
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Table 2 

Yield loss learning rates at various technology nodes 
 
Node           Rate of Reduction in Yield Loss 
 

  Exponential   Equivalent  
  learning rate  percentage reduction  
        ()   in yield loss per month 
 

            Worst   Best    Average  Worst    Best   Average  
 
350nm    0.015   0.080     0.045     1.5        7.7       4.4 
250nm    0.020   0.049   0.041     2.0  4.8       4.0 
180nm    0.021   0.128     0.067     2.1       12.0  6.5 
   
 
This result seems intriguing in light of the declining die yield at process maturity 
observable in the figures.  To help understand this apparent contradiction, we decided to 
incorporate a larger data set.  The Competitive Semiconductor Manufacturing surveys 
carried out from 1991 through 2000 at the University of California at Berkeley developed 
a large database from semiconductor fabrication companies worldwide that can be used 
to examine yield trends in the industry (Leachman, 2002).  The yield data from the 
SMLY survey was augmented by the CSM data.  The consolidated results are depicted in 
Figure 6, where the overall yield (die yield times sort line yield) for a representative 
group of companies fabricating random digital logic (i.e., exluding memory) process 
technologies is shown for the 500 through 180 nm generations, covering the time frame 
1995 through 2002.  While more advanced process technologies were in production at 
many companies during these surveys, the requirement that the data cover a large portion 
of the entire production life of a technology limits our data to the 180 nm and earlier 
generations. 
 
In every technology generation the yield data from both the CSM and SMLY studies 
shows considerable variation from company to company, not only in its characteristics 
but also in the timing of process introduction.  Because data from 11 different companies 
were available, each covering at least three of the four technology generations covered 
here, attempts to include yield history from all companies in Figure 5 were found to be 
too confusing to expose the trends determined from detailed studies of the data.  Instead, 
for each generation, only three or four companies’ yield histories determined to be 
representative of that generation are shown.  Even tempering conclusions based on the 
large variations observed from company to company, the data exhibits two disturbing 
trends.  First, the yield at initiation of manufacturing has declined sharply in moving from 
the 500 nm generation to the 180 nm generation; and second, the yield at process 
maturity has decreased with each successive process generation.  The improvement in 
learning rates summarized in Table 1 is evident in Figure 6 as well (in the sense that the 
yield learning curves are getting steeper for more recent technologies), but evidently this 
improvement was not enough to make up for the worse starting points and shortened 
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product lives.  By and large, die yield is worse over the entire process life in each 
succeeding generation.  
 
Systematic Mechanisms vs. Random Defect Limited Yield 
 
The methodology introduced in Section 7 was applied to wafer maps furnished by the 
SMLY Survey participants for selected devices. Results are summarized in Table 3. Note 
that, in every case except one 350nm process technology, systematic losses dominate 
baseline random losses, even for mature technologies.  This is not to say losses from mis-
processing outweigh losses from defects; rather, it is to say that once defect excursions 
are separated from baseline contamination and viewed as systematic limiters, then losses 
from these and other systematic mechanisms in aggregate are more serious than baseline 
losses. 
 
 

Table 3 
Systematic and Baseline Random Yields Derived for 

Selected Devices at the SMLY Participants 
 
Company Process Die Size 

(cm2) 
Overall 
Die 
Yield Y 

YS YR D0 
cm-2 

Y/Ymiddle 

A 250 nm 0.75 57% 70% 82% 0.27  85% 
A 250 nm 0.109 84% 87% 97% 0.29 98% 
A 350 nm 0.388 71% 80% 89% 0.31 90% 
B 130 nm 0.65 43% 83% 52% 1.01 85% 
C 350 nm 0.177 88% 89% 98% 0.11 98% 
C 350 nm 0.076 93% 94% 99% 0.19 98% 
D 220 nm 0.56 76% 85% 90% 0.19 96% 
D 180 nm 0.288 36% 55% 66% 1.44 85% 
E 180 nm 0.66 82% 88% 93% 0.12 97% 
E 250 nm 0.414 92% 96% 96% 0.09 99% 
E 350 nm 0.673 94% 98% 96% 0.06 99% 
 
 
The last column of Table 3 expresses the ratio of the overall die yield Y to the average die 
yield in the middle of the wafer Ymiddle; this ratio serves to quantify the magnitudes of the 
edge losses. As may be seen, there is considerable variation in the amount of edge loss. 
 
General trends in systematic yield losses reported by the participants are as follows: 
 

(1) Back-end process steps contributed increasing yield loss as the participants 
transitioned through the 0.35um, 0.25um, and 0.18um technology nodes, both 
in terms of loss from particulate contamination as well as loss from 
malformed structures in the die. 
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(2) Photo-related losses also increased through the technology nodes.  The usage 
of low-k lithography, involving mitigation measures such as optical proximity 
correction, phase-shift masks, tiling, lot-to-lens dedication, etc., increased 
through the generations.  The adequacy of the accuracy in leveling and tilting 
of photo shots decreased.  Missing patterns and islands are an example 
systematic yield loss mechanism.  Such losses are typically intermittent, and 
they may have a spatial signature across the exposure field or across the die. 

 
 
Prevalent Systematic Yield Loss Mechanisms 
 
Edge loss was the dominant systematic mechanism across all participants. This is a 
difficult process integration issue, requiring tuning of photo, etch, deposition and CMP 
recipes. 
 
Patterns or islands intermittently missing from photo shots. This is a leveling issue, 
whereby the topology of the top of the wafer is not level with respect to the lens or a 
reticle enhancement technique issue, whereby OPC makes the photo resolution more 
difficult. This issue was prominent for large die such as microprocessors. 
 
Voids or blisters in very thin films, migration through very thin films, or poisoned vias. 
This issue was prominent for low-power wireless devices. 
 
Lifting of entire films or layers. This problem is sometimes caused by too-aggressive 
cleaning steps. 
 
Particle excursions. While there is a background level of contamination any given device 
experiences, much of the yield loss from contamination was associated with abnormal 
levels of particles. Such abnormal levels may be detectable and therefore losses from 
them can be contained. For this reason, some participants viewed particle excursions as a 
systematic loss. 
 
Types of Spatial Signatures in Systematic Yield Loss 
 
Edge loss was the most common spatial signature among the participants.  This has to do 
with poor topology near the edge of the wafer in terms of incomplete films and/or certain 
films deposited onto the backside of the wafer and susceptible to delamination. Poor edge 
topology may involve deficiencies in lithography, etch, CMP and/or film deposition.   
 
Other commonly-cited signatures on wafer maps for the various devices in the various 
technologies include the following: 
 

 Edge losses heavier at certain angles, e.g., “beards” and “bananas” 
 
 Exposure-field loss signatures (e.g., “checkerboards”) 

 
 Photo-related losses steadily increasing towards the edge of the wafer 
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 Test loss signatures (e.g., whole rows of failed die) 

 
 “Stalactites” and “fingers” (reflecting lifting of films or layers, sometimes caused 

by too-aggressive cleaning steps) 
 

 Center loss, “bull’s eye” 
 

 Doughnuts, concentric rings (sometimes resulting from out-gassing or voids, 
sometimes resulting from improper equipment calibration) 

 
 Lower-yield for first wafer in lot (sometimes resulting from excessive particle 

counts) 
 
 
Evolution of Yield Loss over the Process Life 
 
In the development phase, it is typical that large systematic yield loss mechanisms are 
identified and reduced, including most of the front-end, transistor-related issues.   After 
transfer and during ramp, systematic losses continue to dominate.  As the larger 
mechanisms are mitigated, other systematic losses and random losses are revealed.  
These losses could not be seen until the larger losses were mitigated.  Many systematic 
losses are not discovered until later even though the problems have been present since the 
start of the process life. 
 
Front-end systematic yield problems tend to dominate during development and early 
production, while back-end systematic and random yield problems tend to dominate later 
in the process life.  These back-end losses were always there, but again the early-life 
front-end problems obscured them. 
 
Identifying, Quantifying, and Prioritizing Components of Yield Loss 
 
All participants employed the same general mix of techniques for identification of yield 
losses, summarized as follows.  While this mix was present at all participants, the extent 
of application and the relative sophistication of each technique varied among the 
participants. 
 

(1) In-line inspection.  Optical and digital-image-scanning equipment are used to 
inspect a sample of production lots at various points in the process flow.  A 
sample of wafers is scanned from each selected lot, and wafer order is 
preserved across inspection points so that defects added since last inspection 
point may be noted.  Some or all of the defects on a subset of the inspected 
wafers are reviewed using review stations.  The defects are reviewed and 
classified.  Defects may be particles or they may be malformed structures, 
e.g., missing patterns.  End-of-line wafer yield maps are overlaid on the maps 
of observed defects to establish “kill rates” for in-line observed particulate 
and non-particulate defects.  In-line inspection and review equipment are also 
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used to try to recognize in-line defects or signatures corresponding to yield-
loss signatures revealed by end-of-line test results (see (4) and (5) below). 

 
(2) E-test.  An electrical test is performed at a single in-line point (typically, just 

after first Metal Layer) on a sample of scribe-line structures on the wafer.  A 
more complete test of scribe-line structures is performed at the end of the line.  
These tests provide data on electrical performance that may be correlated with 
die sort yields. 

 
(3) If the device is a memory device or if it has embedded memory with access 

circuitry permitting rastering, low-yield wafers or lots are rastered to identify 
the nature of prominent failures in the memory cells that can be rastered.   

 
(4) Wafer maps.  Die yields by die site position on the wafer are reviewed, 

especially for low-yielding lots and for stacked wafer maps of one or several 
low-yielding lots.  Spatial signatures are researched.  Fail-bin maps are 
similarly analyzed.  Systematic yield losses are estimated for the identified 
signatures. 

 
(5) Yields by wafer position in lot, by wafer quadrant and by rings on the wafer 

are examined for any signatures.  Systematic yield losses are estimated for the 
identified signatures. 

 
(6) Wafers or lots contributing to the signatures identified in (4) or (5) above are 

subjected to a commonality analysis to research potential equipment and 
recipe sources of the yield loss.  Other forms of commonality analysis 
consider temporal characteristics, e.g., queue time between steps, time 
between preventive maintenance and processing, etc.  Most participants 
routinely perform commonality analysis on all lots achieving yields below a 
certain threshold. 

 
(7) Wafers contributing to the signatures identified in (3), (4) or (5) and other 

low-yielding wafers may be subjected to physical failure analysis to establish 
root cause of particular die or cell failures. 

 
(8) The yield impacts from each of the observed mechanisms are tallied from kill 

rates applied to observed defect rates for each inspection point, and from end-
of-line estimated systematic losses by signature.  The relative yield impacts 
from each of the identified mechanisms become the basis for prioritizing yield 
improvement efforts.  Commonality analyses and failure analyses serve to 
facilitate assignment of process engineering staff to the yield problems. 

 
(9) Defect losses are categorized by “baseline” (i.e., appears in every lot) vs.  

“excursion”.  Excursion losses suggest weakness in process control, while 
baseline losses require fundamental process or equipment improvement. 

 
(10) The total “bottom-up” yield loss developed in (8) is compared to actual 

overall yield loss in order to quantify the amount of yield loss not yet 
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explained.  Also, the “bottom-up” yield loss is reduced by the amount to be 
gained from known solutions in-progress, and this adjusted amount is also 
compared to target yield and/or to overall yield loss to quantify the amount of 
yield improvement still needed to be identified. 

 
We wish to emphasize that fabs tend to focus their yield improvement efforts on the 
mechanisms that they are able to confirm as causing yield losses.  By “confirm,” we 
mean they have found physical evidence of the mechanism so that they need not rely 
solely on statistical correlations of engineering data that suggest the presence of the 
mechanism.  (One participant stated this point quite succinctly: “We work on the 
problems that we can see.”)  The nature of their methodology, emphasizing in-line defect 
inspection and end-of-line rastering of memories and/or failure analysis, tends to confirm 
particulate contamination mechanisms more readily than non-particulate mechanisms.  
Non-particulate mechanisms tend to be more difficult to detect with in-line inspection, 
they tend to kill entire memory blocks rendering them un-rasterable, and they are more 
difficult to sleuth in failure analysis laboratories.  We believe this is an important reason 
why systematic mechanism yield losses are perceived as less than defect mechanism 
losses by some participants. 
 
Interface with Non-Manufacturing Departments 
 
Systematic yield losses often were the result of issues with product design, technology 
development and transfer, or product testing.  We therefore reviewed practices of the 
participants in these areas and highlighted systematic yield losses over the technology 
generations stemming from interfaces with the non-manufacturing departments.  Our 
major findings are highlighted below. 
 
Interface with Product Design 
 
At all participants, design rules are set relatively early during technology development, 
and once issued become very difficult to modify or change.  Problems that show up later 
as a result of the design rules are usually resolved by process improvements, not design 
rule changes.  However, increasingly there are manufacturability issues that are identified 
during process introduction and ramp that could be effectively addressed during design.  
As a result all participants have developed a complementary set of (often lengthy) 
“design for manufacturability guidelines” for each new process that is added to as 
information is obtained.  Most participants felt that the designers in their companies 
poorly implemented these guidelines. 
 
We found that numerous mask changes are typically made in the early life of lead 
products in each technology.  Some mask changes are made to correct design flaws, to 
improve reliability or to implement design enhancements, but some are made to address 
specific yield problems identified by detailed failure analysis.  The number of mask 
changes made for yield improvement is increasing over the technology generations. 
 
At some point in the three technology nodes included in this survey, all but one of the 
participants implemented “lot-to-lens” dedication.  This is the practice of running all 
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critical layers on a wafer through the same stepper or scanner.  The reason for doing so is 
that yield was found to improve, and in fact to improve sufficiently to more than offset 
the manufacturing efficiency that results from this practice. However, the participants did 
not report any specific yield loss signature associated with this scheme.  Instead a large 
number of the non-particulate fail bins improved to one degree or another when lot-to-
lens dedication was implemented.  Similar observations were made when a mask was 
replaced or several identical mask sets for the same device were run in the same fab.  
Even though all masks met specifications, yields were found to differ, again usually with 
no specific and unambiguous loss signature.  The conclusion we reach is that there must 
be an increasingly strong yield loss mechanism or mechanisms whose root causes lie 
within the die (or at least within the stepper field).  Furthermore, these yield loss 
mechanisms are evidently not adequately addressed either in the process and mask 
specifications or in the design rules. 
 
Another important trend from the point of view of interface between design and 
manufacturing is the increasing application of resolution enhancement techniques.  At 
some point in the three technology nodes covered by our study, all participating fabs 
implemented optical proximity effect corrections (OPC), phase-shift masks (PSM), and 
the addition to designs of tiling or metal squares to low-density regions (for improved 
post-CMP uniformity of film thicknesses).  We expected that non-optimum 
implementation of these schemes would show up as systematic yield loss contributors 
with their own specific signatures. The schemes that are implemented in the mask, such 
as tiling, OPC and PSM, were defined and specifications created during the process 
development phase.  We heard of only one instance at the participants where the design 
rules and associated algorithms for these schemes were improved for yield impact as the 
process technology matured, even though it might be expected that there would be 
considerable opportunity for optimization resulting from specifically tracking and 
monitoring the yield impact of these schemes. 
 
In fact, the participating fabs rarely highlighted any systematic yield loss mechanisms 
due to process and electrical parameter variations within the die (what we shall term 
“intra-die systematics”).  We believe that this is not because such loss mechanisms were 
not there, but rather because of the methodology they practiced to identify and prioritize 
systematic yield losses.   
 
Fab yield management methodology for systematic mechanism limited yields focuses on 
inter-die and inter-wafer correlations.  The sampling scheme used for parametric 
measurements and in-process control is sufficiently sparse that the measurements are not 
sensitive to many if not all intra-die error contributors.  Similarly, sort yield data is 
inherently a sampling scheme with die periodicity.  Any intra-die correlations will only 
be observed through failure analysis.   
 
As long as the intra-die contributions to yield loss are small, existing fab methodology 
for yield management can address the issue satisfactorily through improving the inter-die 
process control to compensate, and there will be no necessity to separate the intra-die 
from the inter-die contributions.  However it is apparent that the increasing contribution 
of intra-die parameter variations is a major contributor to the decrease in process 
windows and the increase in systematic yield loss observed in recent years.   
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Implementations of OPC, PSM, and tiling were not carried out by the product designers, 
but rather by a separate mask layout department serving as an interface between design 
and manufacturing.  Uniformly, we found that the engineers in both the manufacturing 
lines and design groups that we interviewed were not familiar with the activities of these 
interface departments.  The lack of communication on intra-die systematics between the 
design community and the fabs is an important issue that needs to be addressed if 
increases in systematic yield losses are to be contained. 
 
Interface with Technology Development and Transfer 
 
When many module changes are made at once in a new technology generation, 
integration gets exponentially more difficult.  When the generation change features a 
materials change (e.g., interconnect transitioning from W to Cu), integration also gets 
much more challenging.  To the extent that integration challenges can be paced and 
staggered through the technology generations, this mitigates systematic yield losses.  For 
example, one participant did a half-generation between 250nm and 180nm at which 
interconnect was transitioned from W to Cu.  The participant also changed 
stepper/scanner makes in between technology generations rather than at the generation 
change.  Staggering these changes away from the main technology nodes avoided many 
systematic losses. 
 
We heard about a number of events of systematic yield loss resulting from differences 
between source (development) fab and recipient (production) fab in terms of equipment 
makes and models, settings of equipment constants, calibration of equipment, process 
recipes, resists used, solvents used, etc.  To the extent practical, application of the “copy 
exactly” policy mitigates such problems.  This applies not only to specifications at time 
of transfer but also during development and subsequent to transfer if parallel production 
is pursued.  It also applies to the propagation of “best-known methods” across multiple 
production fabs to standardize process execution and control to mitigate avoidable 
systematic yield losses. 
 
We also heard about events where there were systematic yield crashes resulted from 
seemingly innocuous changes in DI water supply, solvents, cleaning or stripping 
intensities, etc.  Clearly, any change in process chemicals or in application intensity must 
be carefully checked out to guard against systematic yield loss. 
 
It is important to note that with one significant exception the methodology for systematic 
mechanism yield loss practiced by the technology development groups is virtually 
identical to that practiced after transfer to production by the fabs, except that the 
magnitudes of the systematic yield losses are larger.  Signatures are identified and their 
yield loss prioritized, then the root cause of each major signature is determined through 
failure analysis, and finally corrective actions are taken.  As each major yield loss 
contributor is eliminated, other systematic mechanisms become exposed.  Eventually the 
yield reaches a point where transfer to manufacturing occurs and production ramp begins.  
Thereafter the fabs continue to identify and correct remaining systematic yield loss 
mechanisms using similar methodology.   
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The significant exception in yield management methodology that the technology 
development workers have is that they also have control over the intra-die systematics 
through mask layout during process development.  Thus they can address systematic 
yield loss issues not only through the techniques available to the fabs, but also by 
modifying masks such as through modifications to OPC or tiling, or through modifying 
schemes for implementing PSM.  Once the process is transferred to the fabs, however, 
such options for yield loss reduction do not seem to be available.   
 
 
Interface with Product Testing 
 
There were many cases where yield loss excursions were detected that were traceable to 
testing (i.e., die sort) equipment and software.  Examples were reported of probe cards 
not making proper contact, tester problems, and test program errors that resulted in 
erroneously-reported yield loss.  Full-functional fails of this kind typically exhibited a 
spatial signature that was readily detectable (zero wafers, or zero rows or checkerboards 
in the case of parallel testing).  More subtle were timing problems that led to false-fails.  
Generally, test programs were written based on timing assumptions established during 
the early phases of technology development.  Frequently, actual timings revealed after 
start of mass production were shifted to some extent from these assumptions, in some 
cases necessitating modification of the test program to mitigate test marginalities or even 
false fails.  This kind of activity was pursued by product engineers. 
 
Summary of Best Practices 
 
There were many distinctive and effective practices noted across the participants.  In this 
section we have highlighted the ones we found to be most significant. 
 
 

(1) Develop a complete-as-possible “bottom-up” explanation of yield losses, both 
random and systematic.  Average kill rates applied to average numbers of 
added defects observed at in-line inspection points are summed to express 
total yield losses observed by in-line inspection, separately computed for 
baseline defect counts and for excursions.  Yield within each observed spatial 
signature on wafer maps is compared to average yield to develop loss 
associated with that signature.  Yields in all other correlatable signatures (e.g., 
first-wafer-in-lot, particular wafer quadrant, wafer edge) are also compared to 
average yield to develop losses from those signatures.  The bottom-up total of 
losses with known mechanisms is compared to actual total yield loss as well 
as to target loss.  The bottom-up total is also adjusted to exclude loss from 
mechanisms with known solutions in order to track what losses would be left 
after solutions are implemented, once again comparing to actual and target 
overall loss.  Table 6 provides an example “bottom-up” analysis. Figure 7 
illustrates the notion of comparing identified yield losses and identified 
solutions with the yield target. 

 
(2) Use in-line inspection as intensively as possible.  In-line inspection 

equipment, review equipment, operator time, and technician time are always 
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fully utilized in order to gather as much data as possible.  For example, during 
demand downturns, the number of in-line inspection points and the sampling 
rate are increased to gather more information and improve precision.  The 
amount of inspection is set much higher for lead products in new technologies 
than for mature products and technologies. 

 
(3) Adjust in-line inspection to detect defects or signatures of losses found at end-

of-line.  When new signatures or excursions are detected at end-of-line that 
are unrelated to defects observed by in-line inspection, an effort is made to 
adjust in-line inspection recipes and inspection points to be able to detect 
evidence of the loss mechanism in-line.  Often times, adjustment of the 
inspection equipment was made enabling in-line monitoring to “see” such 
losses so they could be more easily traced to root cause as well as enabling 
better containment of the losses.  For example, poisoned vias could be 
detected by re-focusing the inspection equipment to view the bottom of the 
vias rather in lieu of the standard focus to search for surface defects. 

 
Table 7 

Example Bottom-up Analysis of Yield Losses 
 
Mechanism      Average yield loss 
 
E Test         3% 
Missing islands at metal layers (scanner 
   leveling issue)       3% 
Missing islands at implant layers     2% 
Wafer edge losses (voids, peeling)     6% 
Defect excursions (specific source tools identified)    7% 
 
Subtotal, identified systematic mechanisms  21% 
 
 
Contact pattern fails        3.8% 
M1 – M5 pattern fails        3.8% 
Poly 1 pattern fails        1.5% 
Poly 1 particles        0.5% 
STI HDP particles        0.3% 
[long list follows of identified baseline particle mechanisms] 
 
Subtotal, baseline random defects    23% 
 
Total identified yield losses     44% 
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Figure 7. 
Example tracking of yield progress 
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(4)  Perform statistical commonality analyses of lots or wafers with common low-
yield signatures or common low-yield excursions.  Root-cause determinations 
were often accelerated by effective commonality analyses identifying 
common machines or chambers or common temporal characteristics such as 
queue time between steps, time since preventive maintenance, etc. 

 
(4) Find all spatial signatures of yield loss on the wafer maps and/or fail-bin 

maps to help reveal systematic problems.  A variety of analyses should be 
performed in this regard, e.g., yield signature by wafer position in the lot, by 
quadrant of the wafer, by rings of wafer area.  As noted earlier, edge loss is 
perhaps the most predominant form of systematic yield loss.  Studying yields 
in rings across the wafer, and comparing to the topology of the wafer and the 
films deposited on it across those rings, can help to reveal the root causes 
contributing to edge losses. 

 
(5) Perform yield analysis by block within the die.  We were struck by the 

remarkable variation of yield sensitivity across different kinds of devices in 
the same basic technology and across different blocks within the same device, 
e.g., memory cells, access circuitry, random logic blocks, analog blocks, etc.  
In a number of instances, important insight towards the resolution of yield 
problems was gained by assessing the yields of individual blocks within the 
die. 

 
(6) Reduce organizational boundaries and centralize yield responsibility.  We 

encountered a variety of organizational structures across the participants.  In 
general, the fewer the hand-offs and the lesser the division of labor for 
uncovering yield losses, containing them and eliminating them, the better the 
results.  Examples: Defect engineering made a part of device engineering 
and/or integration engineering rather than a part of process engineering.  
Failure analysis made a part of product or device engineering.  We also saw 
great examples of personal interdisciplinary growth, whereby defect engineers 
or integration engineers learned considerable amounts of process and device 
technology on their way to determining root cause of losses and to developing 
effective process control procedures.  These more multi-dimensional 
individuals accelerate yield improvement. 

 
Moreover, we saw cases at the participants where different engineers were 
responsible for different kinds of yield loss (e.g., defectivity vs. systematic 
mechanisms).  The decentralization of yield responsibility seemed to retard 
yield improvement.  Generally, the more integrated the organization and the 
more centralized the responsibility for yield, the better results we saw. 

 
(7) Modify yield modeling efforts to exclude areas with systematic signatures 

when determining defect densities.  As we have argued earlier, typical top-
down yield models are not oriented to separate losses with signatures from 
baseline losses present on every die site on every wafer.  As a result, not all 
losses with spatial signatures are classified as losses stemming from 
systematic mechanisms. This raises the risk of a curtailment of efforts to 
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search for and mitigate systematic mechanisms once the modeled systematic 
losses are eliminated.  Wiser participants excluded areas with systematic 
signatures from their yield models.  For example, one participant made a 3mm 
wafer edge exclusion when calibrating its yield model, i.e., defect density 
calculations were based solely on yields achieved inside the excluded ring.  
As noted earlier, we suggested the alternative of fitting the binomial model to 
the observed YMAX in order to find YS and D0. In general, application of the 
“windowing” scheme should be made only to areas of the wafer known to be 
free of systematic mechanisms.  That is, this scheme should be applied only to 
areas of the wafer and to wafer positions within the lot that exclude spatial 
signatures, subsequently scaling YS to fit the overall yield. 

 
(8) To the extent practical, make technology transfers and parallel production 

reflect “copy exactly” of best-known methods.  To the extent practical, 
stagger (through time) major materials changes and major module changes 
so as to minimize integration challenges and consequent systematic yield 
losses.  We saw numerous cases of systematic yield losses resulting from not 
copying exactly.  We also found that technology nodes featuring more 
dramatic and simultaneous changes experienced more systematic yield loss. 

 
(9) Changes in process chemicals or chemical treatments should be carefully 

screened for systematic yield loss.  We saw several cases where seemingly 
innocuous changes to DI water, solvents, cleaning, or stripping recipes caused 
systematic yield crashes. 

 

Recommendations 
 
Suggestions for Fabrication Management 
 
The bottom-up analysis of yield loss mechanisms described in this report is the primary 
methodology for quantifying yield loss mechanisms and prioritizing yield improvement 
efforts.  This analysis should make a clear separation of the baseline, truly random 
defects (present on every die site and on every wafer, with no apparent spatial or 
temporal signature) from systematic mechanisms.  A tally of bottom-up losses should be 
compared to top-down estimation of losses and to yield targets in order to gauge what 
fraction of total loss has been found and what fraction of needed yield improvement is 
accounted for by known solutions. The top-down estimation should be based on a 
decomposition of overall yield losses into baseline losses with no spatial or temporal 
signature vs. losses with such signatures, i.e., systematic losses. 
 
In-line inspection equipment are traditionally focused to detect particles.  This equipment 
also can be used to detect non-particulate mechanisms, and this should be done so 
whenever practical.  This equipment should always be used up to its capacity to learn as 
much as possible about yield loss mechanisms, both particulate and non-particulate. 
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To the extent practical, transfers of process technology need to follow the “copy exactly” 
principle.  This has implications for R&D organizations (i.e., they need to develop 
technology that can be copied exactly by production fabs, considering the equipment sets 
and equipment settings, gases, and chemicals that they have access to) as well as for 
production fabs (i.e., avoiding unnecessary risks of serious systematic loss mechanisms 
associated with adapting different equipment, chemicals, solvents, etc.). 
 
Yield improvement efforts need to be shared and centralized.  Yield improvement is 
inherently interdisciplinary.  Effective yield engineers always have undergone substantial 
personal growth taking them well beyond their disciplinary training; in short, they need 
to be successful at learning on the job.  Given the difficulty and dynamic nature of 
classifying loss mechanisms into systematic and defect categories, organizations that 
segregate engineers by systematic and defect mechanisms seem less effective. 
 
We found evidence the intra-die loss mechanisms are growing in seriousness.  By and 
large, such mechanisms are not effectively treated by the participants; in most cases, they 
are not even identified.  Devices now may incorporate many IP blocks designed by 
different groups within and/or outside the company.  Yields by block need to be 
analyzed.  Even within a block, yield may vary, due to ineffective resolution 
enhancement techniques or simply because certain aspects of the design are marginally 
incompatible with the capabilities of the process technology.  At present, the participants’ 
yield management methodology for systematic mechanism limited yields focuses on 
inter-die and inter-wafer correlations.  New sampling schemes and measurements for in-
line process control, new statistical analyses, and new testing schemes need to be devised 
and implemented to analyze intra-die loss mechanisms.  Coordination and 
communication between designers, engineering staff implementing resolution 
enhancement techniques, and yield engineering staff also needs improvement. 
 
Suggestions for the IC design community 
 
Given the growing evidence of yield loss from intra-die systematic mechanisms, it is 
useful to ponder what actions the design community might take to alleviate fab yield 
problems.  One obvious action is for the design community to enhance their device 
simulation capability to include not only the conventional inter-die and inter-wafer 
parameter variations to be faced in production, but also to include informed values for 
parameter variations within their chips due to intra-die process issues.  In most cases 
today simulations inherently assume that all parameter variations occur uniformly across 
the die and ignore intra-die variations.  A few leading-edge companies are beginning to 
also model intra-die variations and modify their designs based on the results.  But even in 
these cases the actual parameter variations experienced in production over time as the 
process matures are rarely tracked or included in the design methodology (Berglund, 
2003).  It would appear that there is significant opportunity here for designers to optimize 
IC designs such that they are less sensitive to intra-die parameter variations, thereby 
improving acceptable process windows for these parameters in the fab and reducing any 
associated inter-die and inter-wafer systematic mechanism yield losses. 
 
A second possible action is for the design community to proactively include in their 
methodology the fact that design rules must change over life of a process.  Today the 
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Design for Manufacturing Guidelines issued by fabs are rarely incorporated formally into 
revised design rules.  In fact changes in design rules for a process after initial product 
qualification are difficult and rare.  At the same time the fabs are continually identifying 
and quantifying yield improvement actions that could be taken through IC design.  These 
are documented in their guidelines and could significantly improve yield and mitigate or 
eliminate yield loss mechanisms.  Complementing these actions by proactive design 
community actions through design rule changes, implemented on new designs (and on 
redesigns of existing products when economically justified), seems to have considerable 
potential. 
 
A third and more radical possible action is for the design community to acknowledge that 
yield improvement is no longer the sole responsibility of the fabs, and that expecting to 
achieve yielding integrated circuits simply by following a set of design rules is no longer 
an approach that will result in predictable success.  Instead the design community might 
accept that they are an integral part of the yield improvement methodology throughout 
the process life, and work with the fabs to identify, develop and implement a new 
methodology for attacking the intra-die yield loss mechanisms.  Actions might include 
defining new in-process monitors for intra-die parameter variations and helping relate 
such measurements to both yield and IC design, and modifying designs for improved 
testability and identification of yield loss mechanisms. 
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