e) Using the ARM*
(lntel FPGA Generic Interrupt Controller

For Quartus® Prime 18.1

1 Introduction

This document introduces the ARM* Generic Interrupt Controller (GIC), which is included as part of the ARM
Cortex-A9* MPCORE* processor in the Intel® Cyclone® V SoC family. We do not discuss some of the advanced
features of the GIC in this document; complete information is available in the publication entitled ARM Generic
Interrupt Controller Architectural Specification, which is available from ARM Holdings.

Contents:

* Purpose of the GIC

ARM Exception Processing Architecture

GIC Architecture
* GIC Programmer’s Interface

* Examples of ARM Software Code for the GIC

Intel Corporation - FPGA University Program 1
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER For Quartus® Prime 18.1

2 ARM* Generic Interrupt Controller

As illustrated in Figure 1, the ARM generic interrupt controller (GIC) is a part of the ARM A9 MPCORE proces-
sor. The GIC is connected to the IRQ interrupt signals of all I/O peripheral devices that are capable of generating
interrupts. Most of these devices are normally external to the A9 MPCORE, and some are internal peripherals (such
as timers). The GIC included with the A9 MPCORE processor in the Intel Cyclone V SoC family handles up to
255 sources of interrupts. When a peripheral device sends its IRQ signal to the GIC, then the GIC can forward a
corresponding IRQ signal to one or both of the A9 cores. Software code that is running on the A9 core can then
query the GIC to determine which peripheral device caused the interrupt, and take appropriate action. The procedure
for working with interrupts for the ARM Cortex-A9 and the GIC are described in the following sections.

A9 Core A9 Core
IRQ IRQ
IRQ from peripheral >
IRQ from peripheral Generic Interrupt Controller B IRQ
IRQ from peripheral > IRQ

Internal peripherals, MMU, etc.

Figure 1. The ARM A9 MPCORE processor.

3 Interrupts in the ARM Cortex-A9*

An introduction to ARM processors can be found in the tutorial Introduction to the ARM Processor Using Intel/ARM
Toolchain, which is available on Intel’s FPGA University Program website. As described in that tutorial, the ARM
Cortex-A9 has several main modes of operation, listed below:

* User mode — is the basic mode in which application programs run. This is an unprivileged mode, which has
restricted access to system resources.

* System mode — provides full access to system resources. It can be entered only from one of the exception
modes listed below.

* Supervisor mode — is entered when the processor executes a supervisor call instruction, SVC. It is also entered
on reset or power-up.

2 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER

For Quamm@ Prime 18.1

* Abort mode — is entered if the processor attempts to access a non-legitimate memory location. This can

happen, for example, when performing a word access for an address that is not word-aligned.

* Undefined mode — is entered if the processor attempts to execute an unimplemented instruction.

* IRQ mode — is entered in response to an interrupt request.

* FIQ mode — is entered in response to a fast interrupt request. We do not discuss fast interrupts in this doc-
ument; they are used in some Cortex-A9 systems to provide faster service for more urgent requests. This
document focuses only on IRQ interrupts.

When the processor is first powered on, or reset, it is in the Supervisor mode. This mode is privileged, which
means that it allows the use of all processor instructions and operations. From supervisor mode it is possible to
change into User mode, which is the only non-privileged mode. In User mode certain types of processor operations
and instructions are prohibited. In practice, the Supervisor mode is normally used when the processor is executing
software such as an operating system, whereas other software code may run in the User mode, thereby providing a

level of protection for critical resources.

The operating mode of the processor is indicated in the current processor status register CPSR, as depicted in
Figure 2. The mode bits are defined in Table 1.

31 3029 28

CPSR [N |[Z|C|V

I1|F|T Mode

Condition code flags

Processor mode
ARM or Thumb operation

Interrupt disable bits

Figure 2. The current processor status register (CPSR).

TABLE 1. Mode Bits

CPSR,_y Operating Mode
10000 User

10001 FIQ

10010 IRQ

10011 Supervisor

10111 Abort

11011 Undefined

11111 System

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER For Quartus® Prime 18.1

To manipulate the contents of the CPSR, the processor must be in one of the privileged modes. Figure 3 shows
the general-purpose registers in a Cortex-A9 processor, and illustrates how the registers are related to the processor
mode. In User mode, there are 16 registers, RO — R15, plus the CPSR. These registers are also available in the
System mode, which is not shown in the figure. As indicated in Figure 3, RO — R12, as well as the program counter
R15, are common to all modes except FIQ. But the stack pointer register R13 and the link register R14 are not
common—banked versions of these registers exist for each mode. Thus, the Supervisor mode has a stack pointer
and link register that are used only when the processor is in this mode. Similarly, the other modes, such as IRQ
mode, have their own stack pointers and link registers. The CPSR register is common for all modes, but when the
processor is switched from one mode into another, the current content of the CPSR is copied into the new mode’s
saved processor status register (SPSR). Note that the FIQ mode, which we do not discuss in this document, has the
additional banked registers R8 — R12, as shown in the figure.

User Supervisor Abort Undefined IRQ FIQ
RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
R8 R8 R8 R8 R8 R8_fiq
R9 R9 R9 R9 R9 R9 fig
R10 R10 R10 R10 R10 R10 _fiq
R11 R11 R11 R11 R11 R11_fiq
RI12 RI2 RI2 RI12 RI12 RI2 fig
SP RI13 R13 sve RI13_abt R13 und R13 irq R13 fiq
LR R14 R14 svc R14 abt R14 und R14 irq R14 fiq
PC R15 R15 R15 R15 R15 R15
[cpsr | | cpsr CPSR CPSR CPSR CPSR
SPSR_svc] |SPSR_abt] JSPSR und] |SPSR_irq| |SPSR_fiq

Figure 3. Banked registers in ARM processors.

3.1 IRQ Mode

A Cortex-A9 processor enters IRQ mode in response to receiving an IRQ signal from the GIC. Before such interrupts
can be used, software code has to perform a number of steps:

1. Ensure that IRQ interrupts are disabled in the A9 processor, by setting the IRQ disable bit in the CPSR to 1.
2. Configure the GIC. Interrupts for each I/O peripheral device that is connected to the GIC are identified by a

unique interrupt ID.

4 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER For Quartus® Prime 18.1

3. Configure each I/O peripheral device so that it can send IRQ interrupt requests to the GIC.

4. Enable IRQ interrupts in the A9 processor, by setting the IRQ disable bit in the CPSR to 0.

Examples of software code that perform these steps are given in Sections 5 and 6. Complete examples of interrupt-
driven code are included in the appendices.

4 Programmer’s Interface to the GIC

The GIC includes a number of memory-mapped registers that provide an application programmer’s interface (API).
As illustrated in Figure 4, the GIC architecture is divided into two main parts, called the CPU Interface and the
Distributor. The CPU Interface is responsible for sending IRQ requests received by the Distributor to one or both of
the A9 processors in the MPCORE. The Distributor receives IRQ interrupt signals from I/O peripherals.

Distributor
Interrupt ID >
PPIs - cPU
0-31 <~— SGls
Interface 1 [IRQ
Interrupt ID
SPls 32 - 255
CPU
_| Interrupt ID [=— SGls Interface 0 = IRQ
PPIs " 031

Figure 4. The GIC Architecture.

4.1 GIC CPU Interface

The CPU Interface in the GIC is used to send IRQ signals to the A9 cores. There is one CPU Interface for each
A9 core in the MPCORE. API registers in each CPU Interface are depicted in Figure 5. To make the example more
concrete, we have assigned addresses to these registers, as shown. These addresses correspond to those used in
the document DEI-SoC Computer System with ARM Cortex-A9, which is available from Intel’s FPGA University
Program. The DE1-SoC Computer System is an ARM Cortex-A9 embedded system that can be implemented on
Intel’s DE1-SoC development and education board.

The CPU Interface Control Register (ICCICR) is used to enable forwarding of interrupts from the CPU Interface to
the corresponding A9 core. Setting bit E = 1 in this register enables the sending of interrupts to the A9 core, and
setting E = 0 disables these interrupts.

Intel Corporation - FPGA University Program 5
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER For Quartus® Prime 18.1

The Interrupt Priority Mask Register ICCPMR) is used to set a threshold for the priority-level of interrupts that
will be forwarded by a CPU Interface to an A9 core. Only interrupts that have a priority level greater than the
Priority field in ICCPMR will be sent to an A9 processor by its CPU Interface. Lower priority values represent
higher priority, meaning that level O is the highest priority and level 255 is the lowest. Setting the Priority field in
ICCPMR to the value 0 will prevent any interrupts from being generated by the CPU Interface. The procedure for
setting the priority level of individual interrupts (based on their Interrupt ID) is described in Section 4.2.

The Interrupt Acknowledge Register (ICCIAR) contains the Interrupt ID of the I/O peripheral that has caused an
interrupt. When an A9 processor receives an IRQ signal from the GIC, software code (i.e., the interrupt handler)
running on the processor must read the ICCIAR to determine which I/O peripheral has caused the interrupt.

After the A9 processor has completed the handling of an IRQ interrupt generated by the GIC, the processor must
then clear this interrupt from the CPU Interface. This action is accomplished by writing the appropriate Interrupt ID
into the Interrupt ID field in the End of Interrupt Register (ICCEOIR), depicted in Figure 5. After writing into the
ICCEOIR, the interrupt handler software can then return control to the previously-interrupted main program.

Address 31 e 1019 817 110| Register name
OXFFFEC100 Unused E| ICCICR
O0XFFFEC104 Unused Priority ICCPMR
OXFFFEC10C Unused Interrupt ID ICCIAR
OXFFFEC110 Unused Interrupt ID ICCEOIR

Figure 5. CPU Interface registers.

4.2 GIC Distributor

The Distributor in the GIC can handle 255 sources of interrupts. As indicated in Figure 4, Interrupt IDs in the range
from 32 — 255 correspond to shared peripheral interrupts (SPIs). These interrupts are connected to the IRQ signals
of up to 224 I/O peripherals, and these sources of interrupts are common to (shared by) both CPU Interfaces. The
Distributor also handles private peripherals interrupts (PPIs) for each of the A9 processors, with these interrupts
using IDs in the range from 0 —31. The software generated interrupts (SGIs) are a special type of private interrupt
that are generated by writing to a specific register in the GIC; Interrupt IDs from 0— 15 are used for SGIs. We do not
discuss SGIs further in this document.

API registers in the Distributor are depicted in Figure 6. As described in the previous section, addresses are shown
for each register and these addresses correspond to those used in the DE1-SoC Computer. The Distributor Control
Register (ICDDCR) is used to enable the Distributor. Setting E = 0 in this register disables the Distributor, while
setting E = 1 enables it.

The Interrupt Set Enable Registers ICDISERn) are used to enable the forwarding of each supported interrupt from
the Distributor to the CPU Interface. The n postfix in the name ICDISERn means that multiple registers exist. Refer-

6 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER

For Quamm'® Prime 18.1

Base Address |31 - 2423 - 16|15 o 8176[54[32)10] Register name
OXFFFEDO00OO Unused g| ICDDCR
OXFFFED100 Set-enable bits ICDISERn
Set-enable bits
OXFFFED180 Clear-cnable bits ICDICERn
Clear-enable bits
OXFFFED400 | Priority, offset 3 | Priority, offset 2 | Priority, offset 1 | Priority, offset 0 | ICDIPRn
Priority, offset 3 | Priority, offset 2 | Priority, offset 1 | Priority, offset 0
OXFFFEDS800 | CPUs, offset 3 CPUs, offset 2 CPUgs, offset 1 CPUs, offset 0 ICDIPTRn
CPUs, offset 3 CPUs, offset 2 CPUs, offset 1 CPUs, offset 0
OXFFFEDCO00 | F15| F14 | F13 [F12|F11|F10| F9 | F8 | F7 | F6 | F5 | F4 [F3 | F2 | F1 | FO| ICDICFRn
FI15| F14|F13|F12|F11|F10| FO | F8 | F7 | F6 | F5 | F4 | F3 | F2 | F1 | FO

Figure 6. Distributor registers.

ring to Figure 6, the set-enable bits for the first 32 Interrupt IDs are provided in the register at address OXFFFED100,
the next 32 are provided in the register at the following word address, which is OXFFFED104, and so on. Given a
specific Interrupt ID, N, the address of the register that contains its set-enable bit is given by the integer calculation
address = OXFFFED100 + (N + 32) x 4, and the index of the bit inside this register is given by index = N mod 32.
Writing the value 1 into a set-enable bit enables the forwarding of the corresponding IRQ to the CPU Interface.

In the same way that each supported interrupt can be enabled by using ICDISERn, each interrupt can be disabled
by using the Interrupt Clear Enable Registers (ICDICERn). The method for calculating the address and index for
ICDICERn is the same as that for ICDISERn, except that the base address is OXFFFED180, as shown in Figure 6.
Writing a 1 into a clear-enable bit disables the forwarding of the corresponding interrupt to the CPU Interface.

The Interrupt Priority Registers ICDIPRn) are used to associate a priority level with each individual interrupt. On
reset, these registers are set to 0X00000000, which represents the highest priority. In Figure 6 the base address of
ICDIPRn is OXFFFED400. Each Interrupt ID’s priority field is one byte in size, which means that the register at the
base address holds the priority levels for Interrupt IDs from O to 3. The priority levels for the next four Interrupt IDs
use the register at address OXFFFED404, and so on. Given a specific Interrupt ID, N, the address of the register that
contains its priority field is given by the integer calculation address = OXFFFED400 + (N + 4) x 4, and the index
of the byte inside this register is given by index = N mod 4. Setting the priority field for an Interrupt ID to a larger
number results in lower priority for the corresponding interrupt.

Intel Corporation - FPGA University Program 7
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER For Quartus® Prime 18.1

The Interrupt Processor Targets Registers ICDIPTRn) are used to specify the CPU interfaces to which each interrupt
should be forwarded. As indicated in Figure 6, the CPUs field for each Interrupt ID is one byte in size. This size
is used because some versions of the ARM A9 MPCORE have up to eight A9 cores. A target CPU is selected by
setting its corresponding bit field to 1. Thus, setting the byte at address OXFFFED80O to the value 0x01 would
target Interrupt ID O to CPU 0, setting this same byte to 0x02 would target CPU 1, and setting the byte to the value
0x03 would target both CPU 0 and CPU 1. The scheme for calculating the address of the ICDIPTRn register for a
specific Interrupt ID, and also its byte index, is the same as the one shown above for ICDIPRn.

The Interrupt Configuration Registers (ICDICFRn) are used to specify whether each supported interrupt should be
handled as level- or edge-sensitive by the GIC. As indicated in Figure 6, there is a two-bit field associated with
each Interrupt ID. The least-significant bit in this field is not used. Setting the most-significant bit of this field
to 1 makes the corresponding interrupt signal edge-sensitive, and setting this field to 0 makes it level-sensitive.
When a level-sensitive IRQ signal is asserted by an I/O peripheral it is possible to de-assert this signal if the in-
terrupt has not yet been forwarded from the Distributor to a CPU Interface. However, an edge-triggered IRQ
signal cannot be de-asserted once it has been sampled in the Distributor. Referring to Figure 6, the first 16 In-
terrupt IDs use the ICDICFRn register at address OXFFFEDCOO, the next 16 at address OxXFFFEDCO04, and so
on. Given a specific Interrupt ID, N, the address of the ICDICFRn register is given by the integer calculation ad-
dress = OXFFFEDCOO + (N +16) x 4, and the index of the bit inside this register is given by index = (N mod 16)+1.

8 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER For Quartus® Prime 18.1

5 Example of Assembly Language Code

Figure 7 provides an example of an assembly language subroutine that configures the GIC. This code configures
Interrupt ID 73, as an example, which corresponds to a parallel port connected to pushbutton KEYs in the DE1-SoC
Computer. The code configures only some of the registers in the GIC and uses acceptable default values for other
registers. A complete example of code that uses this subroutine is provided in the Appendix A.

.global CONFIG_GIC

CONFIG_GIC:

PUSH {LR}

MOV RO, #73

MOV R1, #1

BL CONFIG_INTERRUPT

LDR RO, =0xFFFEC100

LDR R1, =0xFFFF

STR R1, [RO, #0x04]

MOV R1, #1

STR R1, [RO]

1LDR RO, =0xFFFEDO0O

STR R1, [RO]

POP {PC}

Figure 7. An example of assembly language code that configures the GIC (Part a).

Intel Corporation - FPGA University Program 9

March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER For Quartus® Prime 18.1

/ *
* Configure registers in the GIC for an individual Interrupt ID
* We configure only the Interrupt Set Enable Registers (ICDISERn) and
* Interrupt Processor Target Registers (ICDIPTRn). The default (reset)
* values are used for other registers in the GIC
* Arguments: RO = Interrupt ID (N), R1 = CPU target
*/
CONFIG_INTERRUPT:
PUSH {R4-R5, LR}
/* Configure Interrupt Set-Enable Registers (ICDISERn).
* reg _offset = (integer_div (N / 32) * 4
+ value = 1 << (N mod 32) x*/
LSR R4, RO, #3 // calculate reg_offset
BIC R4, R4, #3 // R4 = reg _offset
LDR R2, =0xFFFED100
ADD R4, R2, R4 // R4 = address of ICDISER
AND R2, RO, #O0x1F // N mod 32
MOV R5, #1 // enable
LSL R2, R5, R2 // R2 = value
/% Using the register address in R4 and the value in R2 set the
* correct bit in the GIC register */
LDR R3, [R4] // read current register value
ORR R3, R3, R2 // set the enable bit
STR R3, [R4] // store the new register value
/% Configure Interrupt Processor Targets Register (ICDIPTRn)
* req offset = integer_div (N / 4) * 4
* index = N mod 4 */
BIC R4, RO, #3 // R4 = reg _offset
LDR R2, =0xFFFED80O
ADD R4, R2, R4 // R4 = word address of ICDIPTR
AND R2, RO, #0x3 // N mod 4
ADD R4, R2, R4 // R4 = byte address in ICDIPTR
/* Using register address in R4 and the value in R2 write to
* (only) the appropriate byte =*/
STRB R1, [R4]
POP {R4-R5, PC}
Figure 7. An example of assembly language code that configures the GIC (Part b).
10 Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER For Quartus® Prime 18.1

6 Example of C Code

Figure 8 provides an example of a subroutine written in C code that configures the GIC. This code performs the
same operations as the assembly language code shown in Figure 7. A complete program that uses this subroutine is
provided in the Appendix B.

void config_GIC (void) ({
config_interrupt (73, 1);

*((int %) OxXFFFEC104) = OxFFFF;
* ((int *) OxFFFEC100) = 1;
»((int *) OxFFFED000) = 1;

void config_interrupt (int N, int CPU_target) {
int reg_offset, index, value, address;

reg_offset = (N >> 3) & OxFFFFFFFC;
index = N & Ox1F;

value = 0x1 << index;

address = O0xFFFED100 + reg_offset;

* (int +*)address |= value;

Figure 8. An example of C language code that configures the GIC (Part a).

Intel Corporation - FPGA University Program 11
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER For Quartus® Prime 18.1

12

reg_offset =

(N & OxXFFFFFFFC);

index = N & 0x3;
address = OxFFFED800 + reg_offset + index;
* (char *)address = (char)CPU_target;

Figure 8. An example of C code that configures the GIC (Part b).

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER For Quartus® Prime 18.1

Appendix A: Example Assembly Language Program

/* b S b b b b b b b b b b b b b b b b b b b i b g
* This program demonstrates use of interrupts with assembly language code.
* The program responds to interrupts from the pushbutton KEY port in the FPGA.
*
* The interrupt service routine for the pushbutton KEYs indicates which KEY has
* been pressed on the HEX0 display.
**/

.section .vectors, "ax"

B _start // reset vector
B SERVICE_UND // undefined instruction vector
B SERVICE_SVC // software interrrupt vector
B SERVICE_ABT_INST // aborted prefetch vector
B SERVICE_ABT_DATA // aborted data vector
.word 0 // unused vector
B SERVICE_IRQ // IRQ interrupt vector
B SERVICE_FIQ // FIQ interrupt vector
.text
.global _start
_start:
/* Set up stack pointers for IRQ and SVC processor modes #*/
MOV R1, #0b11010010 // interrupts masked, MODE = IRQ
MSR CPSR_c, R1 // change to IRQ mode
LDR SP, =0xFFFFFFFF - 3 // set IRQ stack to A9 onchip memory
/% Change to SVC (supervisor) mode with interrupts disabled =/
MOV R1, #0b11010011 // interrupts masked, MODE = SVC
MSR CPSR, RI1 // change to supervisor mode
LDR SP, =0x3FFFFFFF - 3 // set SVC stack to top of DDR3 memory
BL CONFIG_GIC // configure the ARM GIC
/+ Write to the pushbutton KEY interrupt mask register #*/
LDR RO, =0xFF200050 // pushbutton KEY base address
MOV R1, #0xF // set interrupt mask bits
STR R1, [RO, #0x8] // interrupt mask register (base + 8)
/% Enable IRQ interrupts in the processor #*/
MOV RO, #0b01010011 // IRQ unmasked, MODE = SVC
MSR CPSR_c, RO
IDLE:
B IDLE // main program simply idles

/% Define the exception service routines */

/*——— Undefined instructions —————————=——————————————(—————\—(—(—(———— */
SERVICE_UND:

B SERVICE_UND
/A——— Software INterrupts ——————— = */

SERVICE_SVC:

Intel Corporation - FPGA University Program 13
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER For Quartus® Prime 18.1

B SERVICE_SVC
/*——— Aborted data reads ————————— */
SERVICE_ABT_DATA:

B SERVICE_ABT_DATA
/*——— Aborted instruction fetch ————————————"————————"—(—————————— */
SERVICE_ABT_INST:

B SERVICE_ABT_INST
JA==—= TRQ ——— */
SERVICE_IRQ:

PUSH {RO-R7, LR}

/+ Read the ICCIAR from the CPU Interface */
LDR R4, =0xFFFEC100
LDR R5, [R4, #0x0C] // read from ICCIAR

FPGA_IRQ1_ HANDLER:

CMP R5, #73
UNEXPECTED:
BNE UNEXPECTED // 1f not recognized, stop here
BL KEY_ ISR
EXIT_TIRQ:
/* Write to the End of Interrupt Register (ICCEOIR) #*/
STR R5, [R4, #0x10] // write to ICCEOIR
POP {RO-R7, LR}
SUBS PC, LR, #4
=== FIQ —————— */
SERVICE_FIQ:
B SERVICE_FIQ
.end
/ *
* Configure the Generic Interrupt Controller (GIC)
*/
.global CONFIG_GIC
CONFIG_GIC:
PUSH {LR}
/* To configure the FPGA KEYS interrupt (ID 73):
* 1. set the target to cpul in the ICDIPTRn register
* 2. enable the interrupt in the ICDISERn register */
/* CONFIG_INTERRUPT (int_ID (R0O), CPU _target (R1)); */
MOV RO, #73 // KEY port (Interrupt ID = 73)
MOV R1, #1 // this field is a bit-mask; bit 0 targets cpul
BL CONFIG_INTERRUPT
/* configure the GIC CPU Interface */
14 Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER For Quartus® Prime 18.1

LDR RO, =0xFFFEC100 // base address of CPU Interface

/* Set Interrupt Priority Mask Register (ICCPMR) x/

LDR R1, =0xFFFF // enable interrupts of all priorities levels
STR R1, [RO, #0x04]

/* Set the enable bit in the CPU Interface Control Register (ICCICR).
* This allows interrupts to be forwarded to the CPU(s) #*/

MOV R1, #1

STR R1, [RO]

/+ Set the enable bit in the Distributor Control Register (ICDDCR).
* This enables forwarding of interrupts to the CPU Interface(s) */

LDR RO, =0xFFFEDOOO
STR R1, [RO]
POP {PC}
/ *
* Configure registers in the GIC for an individual Interrupt ID
* We configure only the Interrupt Set Enable Registers (ICDISERn) and
* Interrupt Processor Target Registers (ICDIPTRn). The default (reset)
* values are used for other registers in the GIC
* Arguments: RO = Interrupt ID (N), R1 = CPU target
*/
CONFIG_INTERRUPT:
PUSH {R4-R5, LR}
/* Configure Interrupt Set-Enable Registers (ICDISERn).
* reqg_offset = (integer_div (N / 32) * 4
* value = 1 << (N mod 32) =*/
LSR R4, RO, #3 // calculate reg _offset
BIC R4, R4, #3 // R4 = reqg offset
LDR R2, =0xFFFED100
ADD R4, R2, R4 // R4 = address of ICDISER
AND R2, RO, #O0x1F // N mod 32
MOV R5, #1 // enable
LSL R2, R5, R2 // R2 = value
/+ Using the register address in R4 and the value in R2 set the
* correct bit in the GIC register x/
LDR R3, [R4] // read current register value
ORR R3, R3, R2 // set the enable bit
STR R3, [R4] // store the new register value
/* Configure Interrupt Processor Targets Register (ICDIPTRn)
* req offset = integer_div (N / 4) * 4
* index = N mod 4 %/
BIC R4, RO, #3 // R4 = reg offset
LDR R2, =0xXFFFED800
ADD R4, R2, R4 // R4 = word address of ICDIPTR
AND R2, RO, #0x3 // N mod 4
Intel Corporation - FPGA University Program 15

March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER For Quartus® Prime 18.1

ADD R4, R2, R4 // R4 = byte address in ICDIPTR

/#* Using register address in R4 and the value in R2 write to
* (only) the appropriate byte */
STRB R1, [R4]

POP {R4-R5, PC}

/***
* Pushbutton - Interrupt Service Routine
.
* This routine checks which KEY has been pressed. It writes to HEXO0

**/

.global KEY_ISR

KEY_TISR:
LDR RO, =0xFF200050 // base address of pushbutton KEY port
LDR R1, [RO, #0xC] // read edge capture register
MOV R2, #OxF
STR R2, [RO, #0xC] // clear the interrupt
LDR RO, =0xFF200020 // based address of HEX display
CHECK_KEYO:
MOV R3, #0x1
ANDS R3, R3, R1 // check for KEYO
BEQ CHECK_KEY1
MOV R2, #0b00111111
STR R2, [RO] // display "0"
B END_KEY_TISR
CHECK_KEY1:
MOV R3, #0x2
ANDS R3, R3, R1 // check for KEYI
BEQ CHECK_KEY2
MOV R2, #0b00000110
STR R2, [RO] // display "1"
B END_KEY_TISR
CHECK_KEYZ2:
MOV R3, #0x4
ANDS R3, R3, R1 // check for KEY2
BEQ IS_KEY3
MOV R2, #0b01011011
STR R2, [RO] // display "2"
B END_KEY ISR
IS_KEY3:
MOV R2, #0b01001111
STR R2, [RO] // display "3"
END_KEY_TSR:
BX LR
.end
16 Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER For Quartus® Prime 18.1

Appendix B: Example C Program

void disable_A9_ interrupts(void);
void set_A9 TIRQ stack (void);
void config_GIC (void);

void config_KEYs (void) ;

void enable_A9_interrupts (void);

/* AAAAA A A A A bbb bbb A A A A A A A bbb bbb b A A A A bbb bbb bbb A A A A A bbb bbb A A A A A A A bbb bbb b A dd Ak
* This program demonstrates use of interrupts with C code. The program
*responds
* to interrupts from the pushbutton KEY port in the FPGA.
*
* The interrupt service routine for the KEYs indicates which KEY has been
xpressed
* on the LED display.
7’(*******************/
int main(void) {
disable_A9_interrupts(); // disable interrupts in the A9 processor

set_A9 IRQ stack(); // initialize the stack pointer for IRQ mode
config_GIC(); // configure the general interrupt controller
config KEYs () ; // configure pushbutton KEYs to generate interrupts

enable_A9_interrupts(); // enable interrupts in the A9 processor

while (1) // wait for an interrupt

4

/* setup the KEY interrupts in the FPGA */
void config_KEYs () {
volatile int * KEY_ptr = (int) O0xFF200050; // pushbutton KEY base address

* (KEY_ptr + 2) = 0xF; // enable interrupts for the two KEYs

/% This file:
* 1. defines exception vectors for the A9 processor
* 2. provides code that sets the IRQ mode stack, and that dis/enables
* interrupts
* 3. provides code that initializes the generic interrupt controller
*/
void pushbutton_ISR(void);
void config_interrupt (int, int);

// Define the IRQ exception handler

void __ attribute__ ((interrupt)) __cs3_isr_irg(void) {
// Read the ICCIAR from the CPU Interface in the GIC
int interrupt_ID = x ((int *)O0xFFFEC10C);

if (interrupt_ID == 73) // check if interrupt is from the KEYs
pushbutton_ISR();

Intel Corporation - FPGA University Program 17
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER

For Quartus® Prime 18.1

else
while (1);

*((int) O0xFFFEC110) = interrupt_ID;

}

void _ attribute_ ((interrupt)) _ cs3_reset (void) {
while (1);

}

void __ attribute__ ((interrupt)) __cs3_isr_undef (void) {
while (1);

}

void __attribute__ ((interrupt)) __cs3_isr_swi (void) {
while (1);

}

void __ attribute__ ((interrupt)) _ _cs3_isr_pabort (void) ({
while (1);

}

void _ attribute_ ((interrupt)) _ cs3_isr_dabort (void) {
while (1);

}

void __ _attribute_ ((interrupt)) __cs3_isr_ fiqg(void) {
while (1);

}

void disable_A9_interrupts (void) {
int status = 0b11010011;
asm("msr cpsr, $[ps]" : : [ps]

void set_A9_ TIRQ stack (void) {
int stack, mode;
stack = OxFFFFFFFEF - 7;

mode = 0b11010010;

asm("msr cpsr, %$[ps]" : : [ps]
asm("mov sp, %[psl" : : [ps]

18

"r" (status));

"r" (mode)) ;

'r" (stack));

Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER For Quartus® Prime 18.1

/* go back to SVC mode before executing subroutine return! =/
mode = 0b11010011;

asm("msr cpsr, %$[ps]" : : [ps] "r" (mode));
}
/ *
* Turn on interrupts in the ARM processor
*/

void enable_A9_ interrupts (void) {
int status = 0b01010011;

asm("msr cpsr, %[ps]" : : [ps] "r"(status));
}
/%
* Configure the Generic Interrupt Controller (GIC)
*/

void config_GIC (void) {
config_interrupt (73, 1); // configure the FPGA KEYs interrupt (73)

// Set Interrupt Priority Mask Register (ICCPMR). Enable interrupts of all
// priorities
*((int %) OxFFFEC104) = OxFFFF;

// Set CPU Interface Control Register (ICCICR). Enable signaling of
// Iinterrupts
x((int %) OxFFFEC100) = 1;

// Configure the Distributor Control Register (ICDDCR) to send pending
// interrupts to CPUs
*((int) OxFFFEDO0OOO) = 1;

/ *
* Configure Set Enable Registers (ICDISERn) and Interrupt Processor Target

* Registers (ICDIPTRn). The default (reset) values are used for other registers

* in the GIC.
*/
void config_interrupt (int N, int CPU_target) {
int reg_offset, index, value, address;

/* Configure the Interrupt Set-Enable Registers (ICDISERn).
* reg_offset = (integer_div (N / 32) % 4
* value = 1 << (N mod 32) «*/

reg_offset = (N >> 3) & OxFFFFFFFC;
index = N & Ox1F;

value = 0x1 << index;

address = OxXFFFED100 + reg_offset;

/* Now that we know the register address and value, set the appropriate bit
* (int *)address |= value;

Intel Corporation - FPGA University Program
March 2019

*/

19

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER

For Quartus® Prime 18.1

/* Configure the Interrupt Processor Targets Register (ICDIPTRn)
* reqg_offset integer_div (N / 4) x 4
* I1ndex N mod 4 x/

reg_offset = (N & OxFFEFFFFFC) ;

index =N & 0x3;

address = O0xFFFED800 + reg_offset + index;

/* Now that we know the register address and value, write to (only) the
* appropriate byte x/

* (char x)address

(char) CPU_target;

//****7‘(***7%*7&7&**7’(****7&*7&7&**7’(*7‘(**7&7&7&***7‘(*7‘(*7&'*7&7t**7\"****7&*7&7&**7\"****7&*7&***

*

*

*

Kk Ak ok ko ko ok ok ko kb ok ok ok ok ok b ok kb ok ok ok ok ok ok ok ok ok ok ok sk b ok ok ok b ok b ok ok ok ok ok ok ok ok ok ok

Pushbutton

Th

4

Interrupt Service Routine

—~

[

is routine checks which KEY has been pressed.

void pushbutton_ISR(void) {

20

4

to HEXO

kA A KA A A AAAAA)

writes

/+* KEY base address */
volatile int x KEY_ptr = (int x) OxFF200050;
/+* HEX display base address */
volatile int x HEX3_HEXO_ptr = (int x) OxFF200020;
int press, HEX_bits;
press * (KEY_ptr + 3); // read the pushbutton interrupt register
* (KEY_ptr + 3) = press; // Clear the interrupt
if (press & 0x1) // KEYO
HEX_bits = 0000111111,
else if (press & 0x2) // KEYI
HEX_bits = 0b00000110;
else if (press & 0x4) // KEYZ2
HEX_bits = 0b01011011;
else // press & 0x8, which is KEY3
HEX_bits = 0b01001111;
*HEX3_HEXO_ptr = HEX_bits;

return;

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING THE ARM?#* GENERIC INTERRUPT CONTROLLER For Quartus® Prime 18.1

Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, Enpirion,
MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S.
and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications
in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

Intel Corporation - FPGA University Program 21
March 2019

https://www.altera.com/support/training/university/overview.html

	1 Introduction
	2 ARM* Generic Interrupt Controller
	3 Interrupts in the ARM Cortex-A9*
	3.1 IRQ Mode

	4 Programmer's Interface to the GIC
	4.1 GIC CPU Interface
	4.2 GIC Distributor

	5 Example of Assembly Language Code
	6 Example of C Code

