
ECE 2045 – Fall 2022

1 | 4

Lab3: ARM Cortex-A Processor Assembly Programming

In this lab, you will use the Intel Monitor Program to develop, compile, load, and run ARM Cortex-
A assembly programs. Refer to the Introduction to the ARM Processor document (available in
the Bb Major References folder) when necessary.

Part I

This part will explore some features of the Intel Monitor Program by using a simple ARM
assembly program shown in Figure 1 on next page. Note that some sample data is included in
this program. The word (4 bytes) at the label RESULT is reserved for storing the result of the
program. The next word, N, specifies the number of entries in the list. The words that follow give
the actual numbers in the list.

1. Create a new folder for this part with a name such as Lab3Part1. Use a text editor (e.g.

notepad or wordpad) to type in the program shown in Figure 1 and save it as part1.s.
Study the program instruction by instruction, and add a comment to each instruction (See the
top of the program for the format). Then answer the following question:
Question #1: What’s the purpose/function of this program? In other words, what does
it try to accomplish given a list of values? Please write your answer as comments on
the top of the program part1.s. under your name.

2. Perform the following:
1) Use the Monitor Program to create a new project in Lab3Part1; When you reach the

Specify a program type window, choose Assembly Program and add part1.s to the
project. Compile and load the program.

2) The Monitor Program will display a disassembled view of the machine code loaded in the
memory, as indicated in Figure 2. The first column shows the addresses of the instructions
and data. Note that the pseudo-instruction LDR R4, =RESULT from the source code has
been implemented by using the instruction, LDR R4, [PC, #88], which loads the 32-bit
address of the label RESULT into register R4. After this instruction has been executed,
the content of register R4 will be 0x0000003C, because this is the address in the memory
of the label RESULT.
Single step through the program by clicking on the icon . Watch how each instruction
changes the data in the processor’s registers.
Question #2: After the program is over, which register contains the result? Please write
your answer as comments on the top of the program part1.s. Go to the memory tab, find
the address of RESULT. Take a picture of the memory tab and circle the RESULT
contents. Include this picture in the zip folder when you submit the project.

3) Change the number (N) of the entries to 10, and the seven given values to the following
10 numbers: -9, 1, 10, -5, 4, 12, -4, 8, 32, 5. Compile and load the program. After the
program is ready to run, set a breakpoint at address 0x00000030 (by clicking on the gray

ECE 2045 – Fall 2022

2 | 4

bar to the left of this address), so that the program will automatically stop executing
whenever the branch instruction at this location is about to be executed.

Then run the program. Observe the contents of register R0 each time the
breakpoint is reached. Does it work correctly? Note: Clicking on the restart icon
will make the program to go back to the beginning. Watch the register’s value when the
negative values are loaded. Question #3: How is the decimal number -5 represented in the
computer? Describe how to manually convert the decimal number -5 to the binary value
shown in the register.

 /* Program for Part 1.
 You may use // or /* & */ for comments.
 Labels must start at column 1 (leftmost)
 Programs must end with .end */

_start:

.text

.global
//code follows

_start

 LDR R4, =RESULT
 LDR R2, [R4, #4]
 ADD R3, R4, #8
 LDR R0, [R3]

LOOP: SUB R2, R2, #1

 CMP R2, #0
 BEQ DONE
 ADD R3, R3, #4
 LDR R1, [R3]
 CMP R0, R1
 BGE LOOP
 MOV R0, R1
 B LOOP

DONE: STR R0, [R4]

END: B END

RESULT: .word 0

N: .word 7
NUMBERS: .word 4,5,3,6,1,8,2
 .end

Figure 1: Assembly language program for Part I.

Part II

Modifying your part1 program so that it uses a subroutine for the function. The subroutine starts
at SUB1. The main program passes the number of entries (i.e. value of N) and the address of

ECE 2045 – Fall 2022

3 | 4

Figure 2: The disassembled view of the program in Figure 1.

the start of the list (i.e. address of NUMBERS) as parameters to the subroutine via registers R0
and R1. The subroutine SUB1 returns the result to the calling program via register R0. Test
your part2 program on the board to verify if the memory location contains the correct value. A
suitable main program is given below.

.text

.global _start
_start: LDR R4, =RESULT

LDR R0, [R4, #4]
ADD R1, R4, #8
BL SUB1 //call subroutine at SUB1
STR R0, [R4]

END: B END //stop here

// Your subroutine starts below
SUB1:

//instructions for SUB1 go here

BX LR // End of the subroutine; goes back

// to the instruction immediately
// after BL

//
RESULT: .word 0
N: .word 7 // number of entries in the list
NUMBERS: .word 4, 5, 3, 6, 1, 8, 2 // the data

.end

ECE 2045 – Fall 2022

4 | 4

Part III

Write an assembly program to display a decimal digit on the 7-segment display HEX0. The other
seven-segment displays HEX5-HEX1 should be blank. Pressing a KEY has the following
behavior:

• KEY 0. sets the display to 0
• KEY 1. increments the displayed number
• KEY 2. decrements the displayed number
• KEY 3. sets the display to be "blank" (You can assign the value -1)

You should also check the range of the number to display on the HEX to make sure it is between
0 and 9. When it is larger than 10 or less than 0, reset it to 9 or 0, respectively.

A template with a HEX subroutine is given in Lab3Part3.s (in the Lab Files folder) for you to
start with. The subroutine assumes the number to show is passed in R0 by the main program.

The assembly code getting_started.s for the getting started example of Lab1 is also provided
for your reference. For example, how to check if a KEY is pressed.

Pre-lab reading for Lab 4:

• Overview of the Generic Interrupt Controller (GIC) of ARM Cortex-A processors

What to submit:

Zip all the three respective project folders for the three parts and submit them in BB. Please
make sure that your part1.s includes your answers to the questions, and that the zip file includes
the picture showing the memory location of RESULT.

