
ECE2045 – Fall 2022

1 | 2

Lab 4: Interrupt with Cortex-A9 Processors on DE10

In this lab, you will interface with the generic interrupt controller (GIC) of the ARM Cortex-A9
processor on the DE10 standard board. The document titled Using the ARM Generic Interrupt
Controller, posted to Blackboard, will serve as a good reference source for the provided GIC
configuration code. Additionally, sections 2.10.4 & 3.4 of the DE10-Standard Computer System
Manual describe how to utilize interrupts for the Pushbutton Key Parallel Port.

To help you focus on the core features of interrupts, an example design, called GIC example, is
provided for this lab. You will reuse some of the functions in your project. Modify them as
needed.

Part I: Study the GIC example

• Download GIC_example.zip from Bb and unzip it to a new folder, e.g. Lab4.
• Make a new project in the Monitor program. During the process, add the given C files

(only) to the project. Make sure the top-level file interrupt_example.c appears first on
the list when adding files. Header (.h) files should stay in the project folder or a path
searchable by the compiler. This is required for all projects. When you reach the last
screen illustrated in Figure 1, make sure to choose Exceptions in the Linker Section
Presets drop-down menu.

• Study the provided C functions line by line and how the functions interface with one
another.

• Compile, download, and test the code on the board. Take a picture of the board showing
3 on HEX0.

Figure 1: Choose Exceptions for Linker Section Presets

Part II:

In this part, you will modify the main() function and the pushbutton_ISR() to complete the
specification provided below. To communicate between main() and the ISR, use global
variables. Other functions in the GIC example code remain as provided.

1. In the while (1) loop of the main () function, implement an up/down counter and display
the counter value on the 10 LEDRs. At the beginning, the counter starts from 0 and
counts up or down when a global variable called direction is 0 or 1, respectively. When

ECE2045 – Fall 2022

2 | 2

the counter value reaches the maximum value that can be represented by 10 LEDRs, i.e.
0x3FF, it restarts from 0. When it reaches 0 when counting down, it restarts from 0x3FF.
A global variable called run pauses the counter when run = 0 and resumes the counter
when run = 1. The counter changes behavior depending on which KEY is pressed, as
indicated by the value of a global variable KEY_num.
• KEY_num = 1 (KEY0): The counter value resets to 0 when direction = 0, or 0x3FF

when direction 1.
• KEY_num = 2 (KEY1): The counter switches between running and pausing.
• KEY_num = 3 (KEY2): The counter switches between counting up and down.
• KEY_num = 4 (KEY3): The LEDRs go blank. The counter continues to count.

Pressing any other key will bring the LEDRs back on.

2. Modify the pushbutton_ISR() to add the following functions:
• Assigns the variable KEY_num 1/2/3/4 when KEY0/1/2/3, respectively, is pressed to

let main() know which KEY has been pressed.
• Toggles the run variable when KEY1 is pressed.
• Toggles the direction variable when KEY2 is pressed.

Your pushbutton_ISR() also displays the KEY value on the HEX0, which is the original
function of the GIC_example.

Suggestions: 1.) One of many possible solutions is to use a switch (KEY_num) statement in the
main while (1) loop. Assign case 0 for the common behavior. 2.) Use a delay loop so human
eyes can see the changing value shown on the LEDRs.

What to submit:

The picture from Part I and the entire project folder for Part II.

