Two's Complement

- To get the Two's complement of a binary value
 - ▶ 1.) Invert the bits
 - ▶ i.e. 010010 -> 101101
 - > Make sure there is an extra bit available for the sign of the number!
 - > 2.) Add +1
 - ▶ i.e. 101101 + 1 -> 101110

Two's Complement - Conversion to Decimal

Unsigned conversion was just adding together the power of twos

$$2^7 \ 2^4 \ 2^1 2^0$$

010010011 = $2^7 + 2^4 + 2^1 + 2^0 = 147$

- Two's Complement just needs a slight tweak for the sign bit
 - ▶ Sign bit (MSB) becomes -2ⁿ⁻¹

Two's Complement - Conversion to Decimal (Option #2)

3

Can take the two's complement and then convert as well -2⁸ 2⁷ 2⁴ 2¹2⁰

- ||00|00|| = -|09|
- Two's Complement
 - Invert 110010011 -> 001101100
 - Add 1 -> 001101101

```
2^{6}2^{5} 2^{3}2^{2} 2^{0}

00||0||0| = 2^{6} + 2^{5} + 2^{3} + 2^{2} + 2^{0} =

64 + 32 + 8 + 4 + 1 = 109

Put negative sign back -109
```


Two's Complement – Decimal to binary

- Easiest way is to treat as positive number and then perform two's complement
- I.) Get magnitude

> 2.) Convert to binary

$$32 = 2^5 = 0100000$$

Leave a bit for the sign bit!

▶ 3.) Perform Two's complement

invert add-one 0100000 -> 101111 -> = 1100000 = -2⁶ + 2⁵ = -64 + 32 = -32

