
Jan 2021

1

Embedded Systems & IOT: Photon Labs
James Peyton Jones. James.peyton-jones@villanova.edu
Professor, Electrical & Computer Engineering, Villanova, PA 19085.

Contents
Introduction ..3

1. Getting Started – Lab1a (onboard LED) ..4

1.1 Simple Digital Output – Lab1b (external LED) ..5

1.2 Simple Digital Input – Lab1c (push-button input) ..5

1.3 Simple Digital Input - Lab1d (reflective light sensor) ...6

2. ‘Analog’ Input / Output ..7

2.1 ADC Input and PWM Output – Lab2a (pot-controlled LED & Motor) ..7

2.2 PWM, Servo, and Tone Outputs – Lab2b (pot-controlled LED, Servo, Tone) ...8

2.3 PWM, Servo, and Tone Signals – Lab2c (oscilloscope waveform analysis) ..9

3. Robot Control Project .. 10

3.1 Part1: A function to ‘drive’ the robot motors fwd/back at specified speed .. 10

3.2 Part2: Calling your ‘drive’ function for Line-following robot control .. 11

4. Dealing with Events & Interrupts .. 12

4.1 A first attempt: The need for interrupts – Lab4a (toggling flashing on/off) .. 12

4.2 Using a hardware interrupt – Lab4b (easier toggling of flashing on/off) .. 12

4.3 Using timer interrupts – Lab4c (dimmable flashing of LED1) .. 13

5. Communicating with the cloud ... 14

Only use Chrome as your browser in this lab! Obscure problems can occur with other browsers. 14

5.1 Reading Photon variables from the cloud – Lab5a (uses http GET) .. 14

5.2 Calling Photon functions from the cloud – Lab5b (uses PUT) ... 15

5.3 Publishing Photon Events to the cloud – Lab5c (using publish) .. 16

5.4 Going beyond Particle Cloud – Lab5d (using IFTTT) .. 16

6. Serial Communications .. 17

6.1 Using a UART– Lab6a (talking to a friend) ... 17

6.2 UART Signals – Lab6b (oscilloscope waveform analysis) .. 19

7. Register Bit Manipulation .. 20

mailto:James.peyton-jones@villanova.edu

Jan 2021

2

7.1 Programming GPIO Registers Directly – Lab7 (Lab1c revisited) .. 20

8. Finite State Machines .. 21

8.1 A first FSM– Lab7a (Vending Machine) ... 21

9. APPENDIX... 22

9.1 Photon Pinout .. 22

9.2 Oscilloscope overview ... 22

9.3 Particle Build (Web-based IDE) .. 23

Jan 2021

3

Introduction
The ParticleIO Photon is a low-cost ($19), yet remarkably powerful embedded target which includes a 32-bit ARM-
M3 120 MHz processor, with 128 KB RAM and 1 MB flash memory. It has on-board wifi, and USB communications
as well as 18 General Purpose Input/Output (GPIO) pins and standard interface drivers including I2C, I2S, 2xSPI,
UART, CAN, 8xADC, 2xDAC and 9xTimer/PWM. As such it is a cutting edge device for cyber-physical system designs
linked to the Internet of Things (IOT). This series of lab exercises are designed to use the device as a platform to
learn how to build embedded systems, and to learn how they work.

The labs are designed around a small breadboard shown in Fig. 1 below which includes:

• Two (active high) 0 – 3.3V pushbutton inputs.
• One (blue) 0 – 3.3V potentiometer input.
• One Open Collector (ie. active low) Reflective Light Sensor (RLS)
• Two (active high) LED outputs, one onboard (D7), one external.
• One buzzer output
• One external transistor drive (used for example to drive a small dc motor also included in the kit).

Note: The board uses the following wire color coding:
• Red (Left side) = 5V; Red (Right side) = 3.3V ← CARE! Not to confuse or connect these together!!!
• Black = 0V Ground reference.
• White = Inputs to the Photon
• Yellow = Outputs from the Photon

Fig. 1: Photon breadboard

3.3V Power rail

Ground rail
5V Power rail

Ground rail

Push-button: BTN0 (white)

Push-button: BTN1 (white)

Potentiometer (white)

LED1 (yellow)

Transistor base (yellow)

Buzzer

Reflective
Light Sensor

(white)

LED0 (D7)
The Photon pinout
is shown in the
Appendix

Jan 2021

4

1. Getting Started – Lab1a (onboard LED)
Many of the steps required to set up a Particle user account, and to configure the photon have already been
completed for you. The aim of this section is to prove everything works by getting a simple program to flash an
LED compiled and running on your device !

1. Install Particle Dev, and Integrated Development Environment (IDE) for editing programs and flashing them
to the photon via the cloud. You can download the IDE from here (ignore that it says it is discontinued):
https://www.particle.io/products/development-tools/particle-desktop-ide
- OR use the web-based IDE called Particle Build – see instructions in Appendix

2. From your start menu, start Particle Dev which brings up the Integrated Development Environment (IDE).

3. Under the rightmost menu-bar item, select Particle>LoginToParticleCloud and enter your account details:

Email address: <your VU email address> … eg. username@villanova.edu
Password: photonXX ….where XX denotes the number of your device, eg. 50, 51, etc.

Your email address should then appear in the bottom ‘status’ strip of your IDE window => logged in ok.

4. Under the rightmost menu-bar item, select Particle>SelectDevice which brings up a list of devices ‘owned’
by the account. In this case you own only one device, previously named as photonXX. Click on it. The
device name should appear in the bottom ‘status’ strip with a colored dot which matches the device’s LED.

5. Click on the StartNewProject icon , then name your project Lab1a and specify an appropriate parent
directory on your machine for the project files to be saved.

6. A new project directory called Lab1a should then appear underneath the parent directory. A Lab1a.md file
describing all the files within the project may also open automatically, but you can File>CloseTab, or Ctrl+W
to close it.

7. In the Project directory tree pane, click on the /src sub-directory and then click on the Lab1a.ino file in order
to edit the Lab1a.ino code template for your program that has been created for you. Fill in your details in
the header comment section at the top, and then edit the remainder as follows:

#define LED0 D7 // now we can call pin D7 by the more meaningful name ‘LED0’

void setup() {
 pinMode(LED0, OUTPUT); // sets LED0 pin D7 mode to Output
}

void loop() {
 digitalWrite(LED0, HIGH); // turn LED0 on
 delay(1000); // wait 1 second
 digitalWrite(LED0, LOW); // turn LED0 off
 delay(1000); // wait 1 second
}

8. Always File>Save or Ctrl+s to save your program, then click the CompileInCloud icon to send your saved
file to the cloud for compilation. You can watch progress in the bottom ‘status’ strip of your IDE window.

9. If successful a *.bin compiled executable should appear in your /src directory. If not successful, a list of
errors will be shown. Try deliberately inserting an error (eg. missing semicolon, or misspelling), save, and
recompile to see this…

https://www.particle.io/products/development-tools/particle-desktop-ide

Jan 2021

5

10. Your program is now ready to be flashed to your photon. Check your photon is powered on and connected
to the network (ie. ‘breathing cyan’ on the central led, and in the bottom status strip of your IDE). Click the
Compile&UploadCode icon to recompile and flash your code to your device. Your photon may ‘blink
magenta’ while flashing is in progress, and once complete will immediately start executing your program !

11. Modify your code to make the LED flash more quickly (eg. every 1/5 second), re-compile, and re-flash to see
your modified code execute on the device. [Use this new flash-rate for subsequent exercises, eg. Lab1b].

12. Optional challenge: How could you modify your loop() code, to achieve the same result only with half the
lines of code – ie. get it to flash with only two, rather than four, lines of code within the main loop ?

13. Check you program has a well-documented ‘header’ and nicely-aligned meaningful comments (see grading
rubric in appendix). Demonstrate your program to your instructor (sign-off), change the file extension to
*.cpp and submit it to Blackboard as a *.cpp file – (this allows Blackboard to display submitted files).

1.1 Simple Digital Output – Lab1b (external LED)
Embedded systems are fundamentally digital, so it is important to be able to input and output digital/logic
signals. You are already doing this by writing to the onboard LED0 on pin D7. The aim of this lab is to extend
this by writing to an external LED1 on your board.

1. Read the firmware documentation for the following functions: pinMode(); digitalWrite()
https://docs.particle.io/reference/device-os/firmware/photon/#input-output
https://docs.particle.io/reference/device-os/firmware/photon/#digitalwrite-

2. Create a new project using File>NewWindow. Then click StartNewProject (), and name the new project
Lab1b. In the Project directory tree pane, select the /src/ Lab1b.ino file for editing and copy/paste your
solution from Lab1a as the start point for this exercise.

3. Modify the previous program so that it also flashes an external LED1 connected to pin D0 at a 200 ms rate.
Your external LED1 and the onboard LED0 should turn on and off together.

4. Use another jumper wire to connect pin D0 output to the LED1 input (yellow wire on the left side of the
board). Then compile, flash and test your program.

5. Check you program has a well-documented ‘header’ and nicely-aligned meaningful comments.
Demonstrate your program to your instructor (sign-off), and submit it to Blackboard as a *.cpp file.

1.2 Simple Digital Input – Lab1c (push-button input)
Embedded systems often use digital inputs from push-buttons to control the operation of the system (like the
buttons on a digital watch for example). The aim of this lab is to read a pushbutton input and use it to control
when flashing occurs.

1. Read the firmware documentation for the following functions: pinMode(); digitalRead()
https://docs.particle.io/reference/device-os/firmware/photon/#digitalread-

2. Create a new project using File>NewWindow. Then click StartNewProject (), and name the new project
Lab1c. In the Project directory tree pane, select the /src/ Lab1c.ino file for editing and copy/paste your
solution from Lab1b as the start point for this exercise.

https://docs.particle.io/reference/device-os/firmware/photon/#input-output
https://docs.particle.io/reference/device-os/firmware/photon/#digitalwrite-
https://docs.particle.io/reference/device-os/firmware/photon/#digitalread-

Jan 2021

6

3. Assuming a push-button BTN1 will be connected to pin A1, modify your code so that LED0 and LED1 will
flash as before, but only if BTN1 is pressed (and held pressed-down).
• Read the push-button status into a variable called flashEnabled and only execute your LED flashing code

if this flag is ‘set’ true, (ie. if its value is logic 1).
• Note BTN1 is active-high (ie. goes high when pressed). When not pressed the signal is not driven…
• You therefore need to configure the BTN1 input with an appropriate input pull-up or pull-down resistor .
• You may be tempted to use a while (flashEnabled) loop. Why is this a bad idea? – see notes p. 25

4. Connect the white output from the ‘lower’ push-button1 on your protoboard to pin A1, and ensure that
output pin D0 is still connected to the (yellow) input of LED1. Compile, flash, and test your program.

5. Check you program has a well-documented ‘header’ and nicely-aligned meaningful comments.
Demonstrate your program to your instructor (sign-off), and submit it to Blackboard as a *.cpp file.

1.3 Simple Digital Input - Lab1d (reflective light sensor)
Pushbuttons are not the only digital inputs. Other sensors / alarms may also provide digital inputs to your
system. The aim of this lab is to enable flashing when either BTN1 is pressed or when an (active low) Reflective
Light Sensor (RLS) detects the presence of an object.

1. Study the RLS circuit diagram below and (optionally) read the RLS datasheet posted on Blackboard.

2. Create a new project using File>NewWindow. Then click StartNewProject (), and name the new project
Lab1d. In the Project directory tree pane, select the /src/ Lab1d.ino file for editing and copy/paste your
solution from Lab1c as the start point for this exercise.

3. Assuming the RLS will be connected to pin A4, modify your code so that LED0 and LED1 will flash either if
BTN1 is pressed (as before), or if the sensor detects a nearby object.
• Note: the RLS has an Open-Collector output which can only pull low when it detects reflected light. You

therefore need to set the input pull-up or pull-down mode accordingly
• Read the RLS sensor status into a variable called RLSval and modify your logic so that the LED flashing

code only executes your LED flashing code if BTN1 is pressed or RLSval indicates an object is present.

4. Connect the white output from the Reflective Light Sensor to pin A4, and ensure that output pin D0 is still
connected to the (yellow) input of LED1. Compile, flash, and test your program. The LEDs should flash if you
put your hand close to the sensor (within an inch or so) or if you press BTN1.

5. Check you program has a well-documented ‘header’ and nicely-aligned meaningful comments.
Demonstrate your program to your instructor (sign-off), and submit it to Blackboard as a *.cpp file.

Fig. 2: Reflective Light Sensor (RLS) Circuit

100Ω

 LED
(always

Phototransistor
(‘on’ if it sees
reflected light))

Open
Collector

3.3V

Jan 2021

7

2. ‘Analog’ Input / Output
Digital I/O is great for turning things on/off, or measuring if things are on/off, but many sensors output an
analog signal. Also it is often useful to be able to turn things partially on, like a dimmed light or a motor that is
not running at full speed. While a true analog output is possible using a DAC, a good approximation can be
achieved using a Pulse-Width-Modulated (PWM) output signal.

2.1 ADC Input and PWM Output – Lab2a (pot-controlled LED & Motor)
The aim of this lab is to use an Analog-to-Digital Converter (ADC) to read the voltage from a potentiometer, and
use it to control the brightness of an external LED, and the speed of a small dc motor, by regulating the duty
cycle of a PWM output signal – see Fig. 3.

1. Read the firmware documentation for the following functions: analogRead(); analogWrite()
https://docs.particle.io/reference/device-os/firmware/photon/#analogread-adc-
https://docs.particle.io/reference/device-os/firmware/photon/#analogwrite-pwm-

2. Create a new project using File>NewWindow. Then click StartNewProject (), and name the new project
Lab2a. In the Project directory tree pane, select the /src/Lab2a.ino file to edit your program.

3. Assuming pin A5 is going to be used as an ADC and that LED1 is connected to pin D0, write a program so
that the brightness of LED1 is controlled by the voltage measured by the ADC.
• Note that you do not need to set the pinMode for analog inputs, but you must do so for PWM outputs.
• Read the value from the ADC into a variable named adcVal, and then use this value to control the PWM

duty cycle.
• Note that the maximum output from analogRead is 4095, but the maximum input to analogWrite is 255,

so you will need scale your adcVal before you output it to LED1.

4. Connect the white output signal from the square blue potentiometer on your protoboard to pin A5 of the
photon, and connect output pin D0 to the (yellow) input to the LED1. Compile, flash, and test your program.
Try turning the potentiometer with a screwdriver. Does the LED change brightness?

5. Make a tiny edit to your program in order to drive the on-board LED (pin D7), rather than pin D0. Re-
compile, flash and test. Does it still work? Can you explain what is happening? Revert back to using D0, but
add a comment to your program explaining why you use D0 rather than D7.

6. The PWM digital output can drive more than one small load, providing the total current load is less than ±25
mA. However this is insufficient to drive something bigger, like a motor. To deal with this issue, connect
your PWM output D0 to both the LED (as before) and the (yellow) base of the transistor on your board.
Then connect a motor between +5V power (on the left side of your board) and the collector of the transistor
(ie. put the motor in parallel with the flyback diode on the left side of your board as show in Fig. 3).

7. Try turning the potentiometer with a screwdriver. Does the motor change speed?

8. Check you program has a well-documented ‘header’ and nicely-aligned meaningful comments.
Demonstrate your program to your instructor (sign-off), and submit it to Blackboard as a *.cpp file.

https://docs.particle.io/reference/device-os/firmware/photon/#analogread-adc-
https://docs.particle.io/reference/device-os/firmware/photon/#analogwrite-pwm-

Jan 2021

8

Fig.3: Circuit diagram for Lab2xx

2.2 PWM, Servo, and Tone Outputs – Lab2b (pot-controlled LED, Servo, Tone)
The aim of this lab is to use the potentiometer input to control not only the LED brightness, but also the angular
position of a small servo motor, as well as the frequency or tone of a buzzer.

1. Read the firmware documentation for the tone() function, as well as the functions within the Servo class:
https://docs.particle.io/reference/device-os/firmware/photon/#tone-
https://docs.particle.io/reference/device-os/firmware/photon/#servo

2. Create a new project using File>NewWindow. Then click StartNewProject (), and name the new project
Lab2b. In the Project directory tree pane, select the /src/Lab2b.ino file for editing and copy/paste your
solution from Lab2a as the start point for this exercise.

3. First modify your program so that it controls the tone / frequency of the buzzer on your board (as well as the
brightness of LED1), assuming the BUZZER is connected to pin A7 (also labeled as WKP).
• You should call the tone function in such a way that the tone sounds continuously.
• Note that the output from analogRead is in the range 0 – 4095, and the range of frequencies accepted by

the tone() function is 20 Hz – 20 kHz, so you may need to scale/shift your adcVal before sending it to the
BUZZER.

4. Use another jumper wire to connect the A7 / WKP output pin to the Buzzer input (on the left side of the
board). Also ensure the potentiometer is still connected to A5. Then compile, flash and test your program.
Does the frequency and LED brightness change together as you turn the potentiometer?

Motor

Transistor

+5V power

Potentiometer

0V Ground

 1KΩ

LED1

3.3V

220Ω

PHOTON

0V Ground

D0 A5
Vin

Flyback
diode

https://docs.particle.io/reference/device-os/firmware/photon/#servo

Jan 2021

9

5. Now further modify your program so that it controls the angular position of a servo motor (as well as the
brightness of LED1 and the tone of the BUZZER!), assuming the SERVO is connected to pin D2.
• You will need to declare a Servo object called myServo and attach it to the SERVO pin.
• Note that the output from analogRead is in the range 0 – 4095, and the range of angles accepted by the

myServo.write() function is 0 – 180 degrees, so you will need to scale your adcVal before sending it to the
SERVO.

6. Borrow a servo motor from the instructor, and carefully connect it to your board:
• First connect the Brown servo motor wire to the Black/Ground of your breadboard
• Then connect the Red servo motor wire to the 5V line on the Left side of your breadboard.
• Finally connect the Yellow servo motor wire to the SERVO output pin D2

7. Compile, flash and test your program. Do the servo position, frequency and LED brightness all change
together as you turn the potentiometer?

8. Check you program has a well-documented ‘header’ and nicely-aligned meaningful comments.
Demonstrate your program to your instructor (sign-off), and submit it to Blackboard as a *.cpp file.

2.3 PWM, Servo, and Tone Signals – Lab2c (oscilloscope waveform analysis)
The aim of this lab is to use the Oscilloscope to compare and contrast the square wave signals that are
generated by PWM, Servo and Tone functions in your lab2b solution. These signals are ultimately defined by
their period, high-pulse-width, and duty cycle, but they differ according to which of these parameters act as
variables, and which remain constant. You will report your results in a Word document. A brief review of
oscilloscope controls can be found in the Appendix.

Please ensure this project is entirely your own work. If you need help, ask an instructor. Do not ask for, or
give any help to a classmate.

It is not possible to run this lab as originally intended since it requires use of oscilloscopes etc. Instead,
download the Lab2c Oscilloscope results from the Blackboard > Lab Assignments folder and continue as if you
had made these measurements yourself. You will need to read the instructions so you understand how these
results were obtained, and then use them to write and submit a report as detailed below.

1. Check that potentiometer is connected to input pin A5, and that output D0 is connected to LED1. Then
compile, and flash your lab2b solution and check that the LED1 brightness changes as you turn the
potentiometer. [It is not necessary to have the servo and buzzer connected, providing the BUZZER tone
signal is being outputted on pin A7 / WKP, and that the SERVO signal is being outputted on pin D2],

2. Write a section of your report for each type of signal (PWM, Servo, Tone) as described below. In each case:
• Observe the signal on the oscilloscope, and describe how it changes as you turn the potentiometer.
• Clearly state what is the primary variable that changes as you turn the potentiometer
• …and also state what other signal-defining parameters Do Not change (significantly) in this case.
• Take at least two photo’s / screen-capture snapshots to illustrate your description (paste in your report)
• …and use oscilloscope cursors to take quantitative measurements of these waveform snapshots.
More specific instructions are provided below…

Jan 2021

10

3. PWM: Connect Channel1 of the oscilloscope to the LED1 / PWM output on pin D0, [and connect the
oscilloscope ground to the ground of your breadboard]. Hit Autoscale on the oscilloscope, and then fine-
tune the display so that:
• The x-axis time-scale is 1ms / division.
• The y-axis scale is 2V / division
• The rising edge of the waveform is nicely lined up with the display grid
• The ground level of the waveform is nicely lined up with the display grid
Now describe / measure your waveform as specified in Step #2 above. In this case, for example, your two
snapshots might include a relatively low duty cycle, and a relatively high duty cycle. Your quantitative
measurements should include all measurements necessary to compute the precise duty cycle in each case.
Do not simply rely on the oscilloscope’s ability to compute the duty cycle for you.

4. SERVO: Now also turn on Channel2 of the oscilloscope, and hook it up to the SERVO output signal on pin D2.
Use the same x- and y-axis scales as before, but this time set the oscilloscope to Trigger using Channel2 as
the Source. Describe / measure your waveform as specified in Step #2 above. Also contrast your results
with those obtained for the PWM signal (still shown on Channel1).

5. TONE: Now move the Channel2 probe to the BUZZER tone output on pin A7 / WKP. Use the same x- and y-
axis scales as before, but reset the Trigger so it uses Channel1 as the Source. The waveform may appear to
be a bit jumpy (because in this case the two counter-timers are running independently) so you may find it
helpful to freeze / unfreeze the display by pressing the Run / Stop button on the oscilloscope.
Describe / measure your waveform as specified in Step #2 above. Also contrast your results with those
obtained for the PWM signal (still shown on Channel1).

6. Write brief introduction and conclusion sections of your report, outlining the purpose of this work, the main
results obtained, and any other practical details or additional observations. Submit on Blackboard.

3. Robot Control Project
The aim of this project is to apply the techniques learned in Section 1, and Section 2, to control a small mobile
robot. In particular you will interface the Photon to a TB6612 H-bridge driver to control the speed and direction
of the Left and Right motors of the robot in order to steer it as desired. Please ensure this project is entirely
your own work. If you need help, ask an instructor. Do not ask for, or give any help to a classmate.

3.1 Part1: A function to ‘drive’ the robot motors fwd/back at specified speed
1. Create a new project using File>NewWindow. Then click StartNewProject (), and name the new project

Robot1. In the Project directory tree pane, select the /src/Robot1.ino file to edit your program.

2. Read the TB6612 H-bridge datasheet which is posted on Blackboard. You will have to extract the
information you need (ignore the rest). Note STBY is permanently wired High.

3. Use the following pin definitions and connections for your program (below). Remember to initialize pins
within setup() using pinMode() as necessary:
• D1: LeftMotorPWM (PWMA) • D3, D4: LeftMotorControls (In1A, In2A)
• D2: RightMotorPWM (PWMB) • D5, D6: RightMotorControls (In1B, In2B)
• Ground • 5V Power ← Care! This is the Left side power of your breadboard!

Jan 2021

11

4. Now write a function drive(int LeftSpd, int RightSpd) where the two arguments, leftSpeed and rightSpeed
should set the left and right motor speeds and their direction according to the specified speed arguments,
ie. Positive values mean the corresponding motor should rotate forwards and negative values should mean
it rotates backward. [Setting the motors to drive at identical speeds will make the robot go straight. Setting
one faster than the other will cause it to turn…]

5. Check your function and setup code to your instructor, before proceeding to Part 2 where you will call your
drive function to get the robot to do smart things! [No need to submit to Blackboard yet].

3.2 Part2: Calling your ‘drive’ function for Line-following robot control
The robot is equipped with a down-facing Reflective Light Sensor (RLS) like the one you have on your
breadboard. The aim is now to use this RLS to design a robot that will follow a black line painted on a white
surface, using the RLS to differentiate between the black and white surfaces.

1. Continue to develop your code from Part1. Use the same pin definitions and connections as before, but add
the following:
• A4: Reflective Light Sensor input (White) • A5: Potentiometer input

2. In the main loop of your program, write code for your robot controller as follows:

• Use analogRead() to read the reflected light intensity into a variable called RLSval, and compare this to
the ADCval read from the potentiometer input. If the RLSval is less than ADCval, then the RLS is
considered to be seeing a white floor. Otherwise, it is considered to be seeing the black line. You can
adjust the black / white decision threshold by adjusting the potentiometer !.

• For debugging purposes, LED0 (D7) should be lit whenever the RLS sees the black line, and LED1 (D0)
should be lit whenever the RLS sees the white floor.

• If the RLS sees a white floor, the robot should move forwards while turning left (to seek out the
black/white edge of the line). If it sees a black floor, it should move forwards while turning right (again
to find the black/white transition). In this way the robot will always follow black/white line edge.

• To achieve these forward-moving turns, call your drive() function to set each motor to have a nominal
baseSpeed of 25% but add a diffSpeed of 5% to one motor, and subtract it from the other in order to
turn in the desired direction while continuing to move forwards.

3. Compile and flash your program to the Photon before connecting it to the robot.

We will try to schedule times for you to test your robot in CEER-206, Tues 6:30-7:30 pm, or Thur 5:00-
7:30pm, but if not you can show your code to your instructor who can verify if it would work or not. If you
are not able to test your code in person we may be able to do so for you and send you a video of the results.

4. Disconnect power from your photon. Then connect your board to the robot as indicated in part 1, step #3
and part2 step #1. Connect the Ground first, and the 5V power last. The Photon should re-boot, connect,
and then start executing your program as soon as you supply the 5V power. To power-off either pull out the
5V line, or double click the battery ‘on/off’ button. Please do not disconnect the robot USB lead.

5. Disconnect power from your photon. Then connect your board to the robot as indicated in step #2.
Connect the Ground first, and the 5V power last. The Photon should re-boot, connect, and then start
executing your program as soon as you supply the 5V power.

Jan 2021

12

6. Hold the robot with its wheels just off the ground, first with the sensor over white ground, and then over
the black line. Use the potentiometer to adjust the RLS threshold so that the robot reliably detects the black
/ white surfaces, as indicated by your LED’s. Then place the robot on the ground and watch it go !

7. To power-off either pull out the 5V line, or double click the battery ‘on/off’ button. Please do not
disconnect the robot USB lead.

8. Check you program has a well-documented ‘header’ and nicely-aligned meaningful comments.
Demonstrate your program to your instructor (sign-off), and submit it to Blackboard as a *.cpp file.

4. Dealing with Events & Interrupts

4.1 A first attempt: The need for interrupts – Lab4a (toggling flashing on/off)
In Section 1.2 (Lab1c) you wrote a program which flashed both LED’s when BTN1 was pressed (and held on).
Now we want to modify the program so that pressing (and releasing) BTN1 toggles the flashing behavior of the
LED’s on or off. To do this you will need to detect the 0 → 1 event that occurs as the button is pressed.

1. Create a new project using File>NewWindow. Then click StartNewProject (), and name the new project
Lab4a. In the Project directory tree pane, select the /src/Lab4a.ino file for editing and copy/paste your
solution from Lab1c as the start point for this exercise.

2. Modify your program to toggle the flashing behavior on/off when BTN1 is pressed momentarily:

• In order to catch when BTN1 goes from 0 to 1 you will have to declare two new variables, btn1Status
and btn1PrevStatus, initializing them appropriately.

• Each time loop() is called you should use these variables to read / poll the current status of BTN1, and
compare it with its previous status the last time around.

• If this comparison shows that a 0 → 1 event has occurred then toggle the value of flashEnabled. The
flashing of your LED’s should then respond as desired without any further code modification.

3. Make sure your external LED1 is connected to D0 with a jumper wire. Then compile, flash, and test your
program. Does it behave as desired? Does it always capture the button-press if pressed only very briefly?
Include your observations as a comment within the ‘Description’ section of your program header.

4. Check the rest of your program is well-documented with nicely-aligned meaningful comments.
Demonstrate your program to your instructor (sign-off), and submit it to Blackboard as a *.cpp file.

4.2 Using a hardware interrupt – Lab4b (easier toggling of flashing on/off)
The aim of this program is to write a much more effective / elegant program to do the same thing as the
previous program, only this time using a hardware interrupt and associated Interrupt Service Routine (ISR).

1. Read the firmware documentation for the following functions: attachInterrupt();
https://docs.particle.io/reference/device-os/firmware/photon/#attachinterrupt-

2. Create a new project using File>NewWindow. Then click StartNewProject (), and name the new project
Lab4b. In the Project directory tree pane, select the /src/Lab4b.ino file for editing and copy/paste your
solution from Lab4a as the start point for this exercise.

Jan 2021

13

3. Modify your program as follows:
• Write a very brief function void toggleFlashEnabled() to be used later as an interrupt handler when

BTN1 is pressed. The function should simply toggle the value of flashEnabled when it is called.

• Also add the keyword volatile to your declaration of int flashEnabled to warn the compiler that your
toggleFlashEnabled interrupt handler could modify the contents of flashEnabled at any moment.

• In the setup() function attach your toggleFlashEnabled function to a Rising edge interrupt on BTN1.
Pressing the button will then automatically cause your interrupt handler to be called !

• You no longer need to poll the btn1Status in your main program loop. Both the code and variables used
when trying to catch the 0 → 1 event are no longer needed!

• Your main program loop() function can now revert to something closer to the original program you
developed in Lab1c.

4. Make sure your external LED1 is connected to D0 with a jumper wire. Then compile, flash, and test your
program. Does it behave as desired? Does it always capture the button-press if pressed only very briefly?
Include your observations as a comment within the ‘Description’ section of your program header.

5. Check the rest of your program is well-documented with nicely-aligned meaningful comments.
Demonstrate your program to your instructor (sign-off), and submit it to Blackboard as a *.cpp file.

4.3 Using timer interrupts – Lab4c (dimmable flashing of LED1)
Ok, so now our main program loop() is busy flashing the LED, while BTN1 can be used to turn flashing on / off.
Suppose now we want to flash LED0, while simultaneously using the potentiometer to control the brightness of
the external LED1 to make it dimmable (as we did in Section 2.1, Lab2a).

The problem is the program cannot respond to the potentiometer during the delay() period which is needed for
the LED timing. The aim of this program is to use the onboard timer-counters to generate timing events /
interrupts to resolve this problem.

1. Read the firmware documentation for instantiating a Timer object by calling its timer() constructor to
generate timing events, and to callback a user-specified interrupt service routine when these timing events
are triggered. Also read about the timer.start() and timer.stop() functions:
https://docs.particle.io/reference/device-os/firmware/photon/#software-timers

2. Create a new project using File>NewWindow. Then click StartNewProject (), and name the new project
Lab4c. In the Project directory tree pane, select the /src/Lab4c.ino file for editing and copy/paste your
solution from Lab4a as the start point for this exercise.

3. Modify your program as follows:
• First, forget about using the potentiometer to control LED brightness (we will do that later). Instead

modify Lab4a to flash both LED’s using timer interrupts as outlined below…
• Write a function called void flashLEDs() which digitalReads the current LED values, and digitalWrites the

opposite values back to each LED if flashEnabled is set.
• Declare and instantiate a Timer object, calling its timer() constructor to generate events every 200 ms,

and calling flashLEDs() as an interrupt handler whenever these events occur.
• At the end of your setup() function, timer.start() the timer you have created.
• Your main program loop() no longer needs to worry about flashing or delays and can simply be empty!

https://docs.particle.io/reference/device-os/firmware/photon/#software-timers

Jan 2021

14

4. Compile, flash, and test your program. Do the LEDs still flash normally? You may find it possible to stop the
flashing, but with both LEDs frozen in their ‘on’ state, rather than being ‘off’. Why is this? Modify your
flashLEDs() function to correct for this problem, explaining in the adjacent comments why this is necessary.
Compile, flash and re-test.

5. Optional: Modify your program so the two LEDs flash at different rates. Without interrupts, this is very
hard(!), but with timer interrupts it should be fairly straightforward.

6. Now modify your program so that LED1 no longer flashes, but instead its brightness can be controlled using
the potentiometer input.
• Modify your flashLEDs() interrupt handler so that it no longer flashes LED1.
• insert code in your (currently empty) main program loop to analogRead() your potentiometer input into

a variable called adcVal and then use it (appropriately scaled) to write a PWM signal to LED1 to control
its brightness.

7. Make sure your external LED1 is connected to D0 and that your potentiometer is connected to A5 with a
jumper wire. Then compile, flash, and test your program. Does it behave as desired?

8. Check you program has a well-documented ‘header’ and nicely-aligned meaningful comments.
Demonstrate your program to your instructor (sign-off), and submit it to Blackboard as a *.cpp file.

5. Communicating with the cloud
Only use Chrome as your browser in this lab! Obscure problems can occur with other browsers.

5.1 Reading Photon variables from the cloud – Lab5a (uses http GET)
Your Lab4c program from Section 4.3 reads the potentiometer value and uses it to control the LED brightness.
Suppose we want to be able to view the value read from the potentiometer remotely from the cloud.

1. Read the firmware documentation for exposing a variable on your photon to the cloud
https://docs.particle.io/reference/device-os/firmware/photon/#particle-variable-

2. Create a new project using File>NewWindow. Then click StartNewProject (), and name the new project
Lab5a. In the Project directory tree pane, select the /src/Lab5a.ino file for editing and copy/paste your
solution from Lab4c as the start point for this exercise.

3. Modify your program as follows:
• We assume you are using analogRead() to read the potentiometer voltage into a variable adcVal.
• Within your setup() function, call Particle.variable() to register your adcVal variable in the cloud with an

associated string key eg. “adcValue”.

4. Compile and flash your program. It should respond to BTN1 and the potentiometer as before, but now the
adcVal should be visible as “adcValue” from the web. To test this, first login to Particle Console:
https://console.particle.io/

5. Within Console, double-click on your device: If your device is online, you should see your variable listed as
“adcValue” in the right hand pane. Try turning the potentiometer with a screwdriver. There may be a little
delay, but you should see the adcValue changing as well as the brightness of the LED. Note, you could view
this from the far side of the world if you wanted to.

9. Check you program has a well-documented ‘header’ and nicely-aligned meaningful comments.
Demonstrate your program to your instructor (sign-off), and submit it to Blackboard as a *.cpp file.

https://docs.particle.io/reference/device-os/firmware/photon/#particle-variable-
https://console.particle.io/

Jan 2021

15

5.2 Calling Photon functions from the cloud – Lab5b (uses PUT)
Your Lab4c program from Section 4.3 switches flashing behavior on/off whenever BTN1 is pressed. Suppose we
want to do the same thing remotely, from the cloud.

1. Read the firmware documentation for calling a user function on your photon from the cloud
https://docs.particle.io/reference/device-os/firmware/photon/#particle-function-

2. Create a new project using File>NewWindow. Then click StartNewProject (), and name the new project
Lab5b. In the Project directory tree pane, select the /src/Lab5b.ino file for editing and copy/paste your
solution from Lab5a as the start point for this exercise.

3. It would be nice just to expose your existing toggleFlashEnabled Interrupt handler function to the cloud
(since this already flips the value of flashEnabled), but interrupt handlers cannot accept or return any
parameters. Instead, modify your program as follows:
• Write a function cloudToggleFlash() which does exactly the same thing as toggleFlashEnabled, but which

accepts a String cmd argument and return an int, (in order to conform to the specification for cloud-
callable functions). [The body of your function can ignore the cmd argument, but should return(0) to
indicate successful execution].

• Within your setup() function, call Particle.function() to register your cloudToggleFlash function in the
cloud with an associated string key eg. “toggleFlash”.

4. Compile and flash your program. It should respond to BTN1 and the potentiometer as before, but now
flashing should be controllable from the web. To test this, first login to Particle Console:
https://console.particle.io/

5. Within Console, double-click on your device: If your device is online, you should see your function
“toggleFlash” listed on the right hand pane (if not, click the ‘refresh’ icon). Then try invoking the function by
clicking on the function call button. There may be a little delay, but you should be able to turn flashing
on/off. Note, you could do this from the far side of the world if you wanted to.

6. Now create a minimal web page as another example of how you can invoke your toggleFlash function from
the cloud:
• Copy the html code listed below into a text editor and File>Save it as myPage.html.
• You will need to substitute your DeviceID number and AccessToken in the html code.

o The DeviceID is listed in Particle Console>Devices.
o The AccessToken can be found under Particle Console>Web IDE (lowest icon in left-hand menu

strip), followed by >Settings (again lowest icon in left hand menu strip)

• Here is the html code:
<form
action="https://api.particle.io/v1/devices/<yourDeviceID>/toggleFlash?access_token=<yourAccess
Token>" method="POST">
<input type="submit" value="Toggle LED Flashing">
</form>

7. Open your myPage.html file with a web browser and click on the button in the top left of the web page.
Again you should be able to turn flashing on/off.

8. Check you program has a well-documented ‘header’ and nicely-aligned meaningful comments.
Demonstrate your program using both Console and Web page control to your instructor, (sign-off), but
submit only your program to Blackboard as a *.cpp file.

https://docs.particle.io/reference/device-os/firmware/photon/#particle-function-
https://console.particle.io/

Jan 2021

16

5.3 Publishing Photon Events to the cloud – Lab5c (using publish)
Suppose (from somewhere in the cloud), we want to get some notification that the BTN1 has been pressed
without needing to repeatedly poll the photon. Let’s get the Photon to publish an event to the cloud…

1. Read the firmware documentation for publishing events to the cloud
https://docs.particle.io/reference/firmware/photon/#particle-publish-

2. Create a new project using File>NewWindow. Then click StartNewProject (), and name the new project
Lab5c. In the Project directory tree pane, select the /src/Lab5c.ino file for editing and copy/paste your
solution from Lab5b as the start point for this exercise.

3. Modify your program as follows:
• Modify your toggleFlashEnabled function (which you previously attached as BTN1’s interrupt service

routine), so that it also sets a global volatile variable called publishFlag to be true.
• Modify your main program loop function so that, if publishFlag is true, it publishes an event called

“btnPressed” and passes the additional information “High”.
• Important: Within this if-statement, you should also reset the publishFlag to false, so you don’t keep on

publishing btnPressed events!

4. Compile and flash your program. It should behave exactly as before, only this time when BTN1 is pressed, it
should also publish an event to the cloud. To test this, first login to Particle Console:
https://console.particle.io/

5. Within Console, double-click on your device: You should see details of your device, including an empty list
of events. Press BTN1. You should see a new event generated within Particle Console.

6. Check you program has a well-documented ‘header’ and nicely-aligned meaningful comments.Demonstrate
your program using Console to your instructor, (sign-off), and submit to Blackboard as a *.cpp file.

5.4 Going beyond Particle Cloud – Lab5d (using IFTTT)
How can we get our published event to do something more useful, eg. to send us an email notification, log data
to a spreadsheet, or send a notification to our mobile phone? One possible answer is to setup IFTTT to listen for
our published events and to perform actions when they occur. [This does not require any more programming of
our photon].

1. Sign In (or Register for a free IFTTT Account): https://ifttt.com/
You may be asked to select some ‘favorite’ services. Just follow through till the process is complete.

2. Under the PersonalProfile menu (at the top, next to ‘Explore’), click on Create, and then click on the If This
icon. This will lead you through a sequence:

a. Choose service: Type Particle in the search field, and then click on the Particle Icon that appears. You
may need to authenticate with Particle using your Villanova email and photonXX password.

b. Choose a Trigger: Click on New Event Published to tell IFTTT to listen for our events

c. Fill in the fields that describe our btnPressed event and the High data that comes with it, as well as the
source (photonXX) of these events. Then Create Trigger!

d. Now click on the Then That icon to define what Action we want to have happen

https://docs.particle.io/reference/firmware/photon/#particle-publish-
https://console.particle.io/
https://ifttt.com/

Jan 2021

17

e. Define the Action you desire: eg. type Email in the search field, and then click on the Email icon. You
may need to authenticate to provide access to your gmail account.

f. Fill in the fields that define your email message: You can use a mixture of normal text, and some
‘Ingredients’ that embed the data about your event. Then Create Action!

3. Under My Applets you should see your new applet listed. Click on it, and click on the check now button to
see if it is live – [This will take a few minutes after your applet is first created].

4. Now press the btn1 (once!) on your photon, and check you see the event appearing on Particle Console.
Then login to your gmail account and check your mail! [It will take a few minutes to appear].

5. Demonstrate your program to your instructor, (sign-off), and submit a copy of the email you receive to
Blackboard as a *.cpp file.

6. Serial Communications
Although communicating with the cloud opens new possibilities for IOT, most communications with other
devices occur locally, so it is important to understand how these communications protocols work.

6.1 Using a UART– Lab6a (talking to a friend)
So far, we have used a USB cable as a convenient way to power the Photon, but we have not attempted to use it
for communication. The aim of this lab is to establish serial communications between our Photon and the PC
host using a USB-based virtual COM port. It is often useful to be able to send such messages when debugging a
program.

1. Read the firmware documentation for serial communications:
https://docs.particle.io/reference/device-os/firmware/photon/#serial

2. Create a new project using File>NewWindow. Then click StartNewProject (), and name the new project
Lab6a. In the Project directory tree pane, select the /src/Lab6a.ino file to edit your program.

3. Write a program to echo any data / messages received on the USB Serial port back to whoever was sending
this data.
• You will need to initialize the USB virtual Serial port by calling begin within your setup() function.
• Only try reading from the Serial port while it is connected() and there are bytes available() to read.
• Store the data read from the Serial port in a char called inByte, then write it back to the Serial port.

4. Flash your program to the photon, and ensure it has rebooted and that your program is running and ready
to receive data before you attempt to connect to it from your host PC.

5. You now have a program executing on the photon waiting to talk, but you need to have a program executing
on the PC to provide the other end of this conversation. There are a number of public domain programs (eg.
putty) that can talk to a Virtual COM port on a PC, but there is also a serial monitor utility within Particle Dev
itself. Select the Particle > SerialMonitor menu item, or click on the USB icon within Particle Dev to open
this utility. Then click Connect in the Serial Monitor pane that appears.

6. Check your program works by typing some message, eg. “Hello!” in the message entry strip at the bottom of
the Serial Monitor pane. When you hit return, the message is sent. The photon should echo the same
message back, and you should see it appear in the main area of the Serial Monitor pane.

https://docs.particle.io/reference/device-os/firmware/photon/#serial

Jan 2021

18

We now want to use the true UART called Serial1 which communicates through the Rx and Tx pins of the
photon, rather than using a virtual USB serial port.

7. Extend your program so that as well as echoing the message back to the PC, it also transmits the same
message out through the Serial1 port. Likewise, if any message is received through the Serial1 port, your
program should send it to the USB-Serial port, so that you can see it on the Serial Monitor.
• Within setup(), configure the Serial1 port to be 9600 baud, 8-bit, even parity, 1 stop bit.
• Insert a 200 ms delay after transmitting the message to Serial1 before you check to see if any response

to your message has been received back from Serial1.
• Insert a 10 ms delay at the end of your main loop() just to add a break between messages.

8. Flash your program, and check it still echoes messages back to the Serial Monitor. Nothing much will seem
to have changed because nothing is connected to the Serial1 port.

9. Now use jumper wires to connect your board to a friend’s board who is at the same stage in the lab:
First connect the ground, then connect the Tx and Rx lines appropriately – think carefully what
‘appropriately’ might mean!

[If you cannot find a partner, you can test your program by using a jumper wire to pipe your Tx line directly
back into your Rx input. The messages you receive will obviously be identical to the ones you sent (which is
a bit boring), but you should be able to verify that your program works].

10. When looking at the results in the Serial Monitor, it would be nice to be able to distinguish received
messages from those you sent. Modify your program, so that it pre-pends a ‘> ‘ before the start of any
received message, so the results look something like this:

Hello …this is the message we sent
> Hi there! …this is the reply we received, as indicated by the initial ‘> ‘

11. Check you program has a well-documented ‘header’ and nicely-aligned meaningful comments.
Demonstrate your program to your instructor (sign-off), and submit it to Blackboard as a *.cpp file.

Jan 2021

19

6.2 UART Signals – Lab6b (oscilloscope waveform analysis)
The aim of this lab is to use the Oscilloscope to look at the waveform transmitted from the Tx pin, and to write a
brief report / analysis of your results in a short Word document.

Please ensure this project is entirely your own work. If you need help, ask an instructor. Do not ask for, or
give any help to a classmate.

1. Create a new project using File>NewWindow. Then click StartNewProject (), and name the new project
Lab6b. In the Project directory tree pane, select the /src/Lab6b.ino file to edit your program.

2. Write a simple program that repeatedly sends the message “VU” to the Serrial1 port, using 9600 baud, 8-bit,
even parity, 1 stop bit. Also insert a delay of 10 ms between each transmission. Flash your program to the
photon.

3. Connect Channel1 of the oscilloscope to the Tx output pin, [and connect the oscilloscope ground to the
ground of your breadboard]. Hit Autoscale on the oscilloscope, and then fine-tune the display so that:
• The x-axis time-scale is 300us / division.
• The y-axis scale is 2V / division
• The falling edge of the waveform is nicely lined up with the display grid and all the trace is visible
• The ground level of the waveform is nicely lined up with the display grid

4. Use oscilloscope cursors to measure the baud rate of the transmitted signal and take a photograph or
screen capture of your waveform (with cursors on).

Download the Lab6b Oscilloscope results from the Blackboard > Lab Assignments folder and continue as if
you had made these measurements yourself.

5. Paste your image into your report, and annotate the waveform showing where the start, stop, data and
parity bits all appear. Read off the binary data that is being transmitted and explain how this relates to the
characters “VU”. Also confirm that any parity bits have the right value.

6. Now edit your program so that you repeatedly transmit a numeric value, x, where int16_t x = 27099; Flash
your program and observe the result [see Lab6b Oscilloscope Results]. Why doesn’t this work as intended?

7. We need to re-interpret the bit pattern of our 16-bit integer as two 8-bit characters which we can do as
indicated on p. 25 entitled “Type Reinterpretation” which is the last page of the first big packet of note.
• Declare a union called myData with two overlapping fields, an int16_t intVal, and an array of two char

txBuff[2].
• In your program, assign x (ie.the value 27099) to myData’s intVal, and then transmit it as txBuff.

8. Once you have this working, repeat steps #4 and #5, only explaining in this case how the results relate to the
numeric value of x. Use the results to confirm whether the photon is a big-endian or little-endian machine.

9. Write brief introduction and conclusion sections of your report, outlining the purpose of this work, the main
results obtained, and any other practical details or additional observations. Submit both your program from
step #7 and your report on Blackboard.

Jan 2021

20

7. Register Bit Manipulation
Many hardware devices, including the onboard timers, serial IO, and GPIO of the photon are configured using
bits within a register to act as switches that control the device operation. Often the necessary low-level bit
manipulation is hidden from the user by higher level functions like pinMode(), digitalWrite(), digitalRead().
However, like any good mechanic, it is important to be able to go under the hood…

7.1 Programming GPIO Registers Directly – Lab7 (Lab1c revisited)
The aim of this lab is to rewrite Lab1c (flashing LED’s controlled by the push-button) without using higher level
functions like pinMode(), digitalWrite(), digitalRead(). Instead, you will need to set/clear the appropriate bits in
the appropriate GPIO registers in order to give the same overall functionality. To do this you will need to know
the following pin mappings:

 Photon Pin D0 = GPIO PortB pin #7; Pin D7 = GPIO PortA pin #13; Pin A0 = GPIO PortC pin #5;

1. Read the lecture notes about “Registers & Bit flags” on p.5 of the Boolean Logic note packet.

2. Create a new project using File>NewWindow. Then click StartNewProject (), and name the new project
Lab7. In the Project directory tree pane, select the /src/ Lab7.ino file for editing and copy/paste your
solution from Lab1c as the start point for this exercise.

3. Compile and test your program to check it still works as before.

4. Now try to re-program pin D0, so that you no longer use pinMode() or digitalWrite() for this pin.
Instead you will need to:

• set/clear the appropriate bits in the GPIOB Mode Register MODER… ← within setup()
• …and also set/clear the appropriate bits in the Output Type Register OTYPER. ← within setup()
• set/clear the appropriate bit within the Output Data Register ODR ← within loop()

(in order to turn the LED on/off as desired).

• Important: In all cases, the other bits in these registers should be left unchanged.

5. Compile and test your program to check it still works as before.

6. Repeat steps #4, #5, only this time reprogramming pin D7.

7. Then do the same again for pin A0. In this case you will need to mask/extract the appropriate bit from the
Input Data Register IDR in order to read the A0 logic input level.

8. Check you program has a well-documented ‘header’ and nicely-aligned meaningful comments.
Demonstrate your program to your instructor (sign-off), and submit it to Blackboard as a *.cpp file.

Jan 2021

21

8. Finite State Machines
Embedded systems need to be able to respond to sequences of events that drive the system into different
behavior states. A finite state machine provides a useful framework for encoding such behavior. This lab is
optional, but you might find that doing it will give you insight and help with your final Alarm system project.

8.1 A first FSM– Lab7a (Vending Machine)
The aim of this lab is to implement a FSM to emulate the behavior of a vending machine for dispensing 15c gum
packets in response to users inserting nickels, or dimes into the machine as indicated in the diagram below:

The rising edge of BTN0 will be used to simulate the insertion of a nickel (N), and the rising edge of BTN1
simulates the insertion of a dime (D). Activation of the LED0 is used to simulate actually dispensing the gum.
The FSM should execute every 0.2 seconds.

1. Read the course notes for implementing the vending machine

2. Create a new project using File>NewWindow. Then click StartNewProject (), and name the new project
Lab7a. In the Project directory tree pane, select the /src/Lab7a.ino file to edit your program.

3. Develop your program incrementally as suggested below:
• Declare a timer object and use it to call a function setTickFlag() every 200 ms. You also need to write

this function which should set a global variable tickFlag whenever it is called.
• Within loop(), respond whenever the tickFlag is set by calling your vendingFsm() function. This function

still needs to be written, but you can create an empty vendingFsm() function for now.
• Set up your two buttons as inputs that generate interrupts, and write interrupt service routines to set

flags N and D representing the occurrence of a Nickel or Dime insertion event.
• Write the body of your vending Fsm() function, lighting LED1 whenever ‘gum’ is dispensed

4. Compile and test your program. You may find that the LED flashes so briefly it is almost invisible, so go back
and modify your state machine design in order to keep the LED lit for 2 seconds while ‘gum’ isi being
dispensed. Modify your vendingFsm() function accordingly, and re-compile and test.

5. The management like your work so much they want to you add an extra feature: Assuming the vending
machine is loaded with 5 packs of gum, the machine should keep track of how many packs are remaining,
and stop dispensing gum (lighting the LED) if there are none left.

6. Check you program has a well-documented ‘header’ and nicely-aligned meaningful comments.
Demonstrate your program to your instructor (sign-off), and submit it to Blackboard as a *.cpp file.

Jan 2021

22

9. APPENDIX

9.1 Photon Pinout

9.2 Oscilloscope overview

P

Auto Scale

Vertical Scale

Horizontal
Scale

Up-down shift

Left-Right
Shift

Channel
on/off

Cursor Controls
Push=menu on
 Turn= cursorSelect
Push=menu off
 Turn= cursorAdjust

Run / Stop

Jan 2021

23

9.3 Particle Build (Web-based IDE)
1. Log in to Particle Build https://build.particle.io/build but skip any offer of setting up dual authentication:

Email address: <your VU email address> … eg. username@villanova.edu
Password: photonXX ….where XX denotes the number of your device, eg. 50, 51, etc.

2. Enter Lab1a as the name for the Current App, and then in the right-hand editor pane enter your source code
as shown below.

/* Project Lab1a
 * Description: <what it does + why + important points>
 * Author: <your name>
 * Date: <data written>
 */

 */#define LED0 D7 // now we can call pin D7 by the more meaningful name ‘LED0’

void setup() {
 pinMode(LED0, OUTPUT); // sets LED0 pin D7 mode to Output
}

void loop() {
 digitalWrite(LED0, HIGH); // turn LED0 on
 delay(1000); // wait 1 second
 digitalWrite(LED0, LOW); // turn LED0 off
 delay(1000); // wait 1 second
}

3. Save your code by clicking the 3rd from top ‘Save’ folder icon in the left-hand strip.

4. Compile your code by clicking the 2nd from top ‘Verify’ check-mark icon in the left-hand strip. The result will
be shown in the bottom ‘status’ strip of your window. If there are errors, click on Show Raw and scroll
down to the first reported error and fix it. Then recompile and Repeat.

5. Click the 3rd from bottom ‘Devices’ compass icon in the left-hand strip which brings up a list of devices
‘owned’ by your account. In this case you own only one device, previously named as photonXX. If not
already selected, Click on star next to its name to select this device as the one to be programmed. The
device name should appear in the bottom ‘status’ strip with a colored dot which matches the device’s LED

6. Your program is now ready to be flashed to your photon. Check your photon is powered on and connected
to the network (ie. ‘breathing cyan’ on the central led, and in the bottom status strip of your IDE). Click the
flash icon to recompile and flash your code to your device. Your photon may ‘blink magenta’ while
flashing is in progress, and once complete will immediately start executing your program !

7. Modify your code to make the LED flash more quickly (eg. every 1/5 second), re-compile, and re-flash to see
your modified code execute on the device. [Use this new flash-rate for subsequent exercises, eg. Lab1b].

8. Optional challenge: How could you modify your loop() code, to achieve the same result only with half the
lines of code – ie. get it to flash with only two, rather than four, lines of code within the main loop ?

9. Check you program has a well-documented ‘header’ and nicely-aligned meaningful comments (see grading
rubric in appendix). Demonstrate your program to your instructor (sign-off), then submit as detailed below:

10. Click the 4th from top ‘Code’ <> icon, and then next to ‘Files’ click the ‘Download sources’ icon. Change the
file extension to *.cpp and submit it to Blackboard as a *.cpp file – (this allows Blackboard to display
submitted files).

https://build.particle.io/build

	Introduction
	1. Getting Started – Lab1a (onboard LED)
	1.1 Simple Digital Output – Lab1b (external LED)
	1.2 Simple Digital Input – Lab1c (push-button input)
	1.3 Simple Digital Input - Lab1d (reflective light sensor)
	2. ‘Analog’ Input / Output
	2.1 ADC Input and PWM Output – Lab2a (pot-controlled LED & Motor)
	2.2 PWM, Servo, and Tone Outputs – Lab2b (pot-controlled LED, Servo, Tone)
	2.3 PWM, Servo, and Tone Signals – Lab2c (oscilloscope waveform analysis)
	3. Robot Control Project
	3.1 Part1: A function to ‘drive’ the robot motors fwd/back at specified speed
	3.2 Part2: Calling your ‘drive’ function for Line-following robot control
	4. Dealing with Events & Interrupts
	4.1 A first attempt: The need for interrupts – Lab4a (toggling flashing on/off)
	4.2 Using a hardware interrupt – Lab4b (easier toggling of flashing on/off)
	4.3 Using timer interrupts – Lab4c (dimmable flashing of LED1)
	5. Communicating with the cloud
	Only use Chrome as your browser in this lab! Obscure problems can occur with other browsers.
	5.1 Reading Photon variables from the cloud – Lab5a (uses http GET)
	5.2 Calling Photon functions from the cloud – Lab5b (uses PUT)
	5.3 Publishing Photon Events to the cloud – Lab5c (using publish)
	5.4 Going beyond Particle Cloud – Lab5d (using IFTTT)
	6. Serial Communications
	6.1 Using a UART– Lab6a (talking to a friend)
	6.2 UART Signals – Lab6b (oscilloscope waveform analysis)
	7. Register Bit Manipulation
	7.1 Programming GPIO Registers Directly – Lab7 (Lab1c revisited)
	8. Finite State Machines
	8.1 A first FSM– Lab7a (Vending Machine)
	9. APPENDIX
	9.1 Photon Pinout
	9.2 Oscilloscope overview
	9.3 Particle Build (Web-based IDE)

