
N2176 C17 ballot ISO/IEC 9899:2017

6.4.4 Constants
Syntax

1 constant:
integer-constant
floating-constant
enumeration-constant
character-constant

Constraints
2 Each constant shall have a type and the value of a constant shall be in the range of representable

values for its type.

Semantics
3 Each constant has a type, determined by its form and value, as detailed later.

6.4.4.1 Integer constants
Syntax

1 integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

hexadecimal-prefix: one of
0X 0X

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffix
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt

§ 6.4.4.1 Language 45

ISO/IEC 9899:2017 C17 ballot N2176

unsigned-suffix: one of
u U

long-suffix: one of
l L

long-long-suffix: one of
ll LL

Description
2 An integer constant begins with a digit, but has no period or exponent part. It may have a prefix

that specifies its base and a suffix that specifies its type.

3 A decimal constant begins with a nonzero digit and consists of a sequence of decimal digits. An
octal constant consists of the prefix 0 optionally followed by a sequence of the digits 0 through 7
only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the decimal
digits and the letters a (or A) through f (or F) with values 10 through 15 respectively.

Semantics
4 The value of a decimal constant is computed base 10; that of an octal constant, base 8; that of a

hexadecimal constant, base 16. The lexically first digit is the most significant.

5 The type of an integer constant is the first of the corresponding list in which its value can be
represented.

Octal or Hexadecimal
Suffix Decimal Constant Constant
none int int

long int unsigned int
long long int long int

unsigned long int
long long int
unsigned long long int

u or U unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int

l or L long int long int
long long int unsigned long int

long long int
unsigned long long int

Both u or U unsigned long int unsigned long int
and l or L unsigned long long int unsigned long long int
ll or LL long long int long long int

unsigned long long int
Both u or U unsigned long long int unsigned long long int
and ll or LL

6 If an integer constant cannot be represented by any type in its list, it may have an extended integer
type, if the extended integer type can represent its value. If all of the types in the list for the constant
are signed, the extended integer type shall be signed. If all of the types in the list for the constant
are unsigned, the extended integer type shall be unsigned. If the list contains both signed and
unsigned types, the extended integer type may be signed or unsigned. If an integer constant cannot
be represented by any type in its list and has no extended integer type, then the integer constant has
no type.

46 Language § 6.4.4.1

N2176 C17 ballot ISO/IEC 9899:2017

6.4.4.2 Floating constants
Syntax

1 floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

decimal-floating-constant:
fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suffixopt

hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant

binary-exponent-part floating-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence

binary-exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence .

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

hexadecimal-fractional-constant:
hexadecimal-digit-sequenceopt .

hexadecimal-digit-sequence
hexadecimal-digit-sequence .

binary-exponent-part:
p signopt digit-sequence
P signopt digit-sequence

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

floating-suffix: one of
f l F L

Description
2 A floating constant has a significand part that may be followed by an exponent part and a suffix that

specifies its type. The components of the significand part may include a digit sequence representing
the whole-number part, followed by a period (.), followed by a digit sequence representing the
fraction part. The components of the exponent part are an e, E, p, or P followed by an exponent
consisting of an optionally signed digit sequence. Either the whole-number part or the fraction part
has to be present; for decimal floating constants, either the period or the exponent part has to be
present.

§ 6.4.4.2 Language 47

ISO/IEC 9899:2017 C17 ballot N2176

Semantics
3 The significand part is interpreted as a (decimal or hexadecimal) rational number; the digit sequence

in the exponent part is interpreted as a decimal integer. For decimal floating constants, the exponent
indicates the power of 10 by which the significand part is to be scaled. For hexadecimal floating
constants, the exponent indicates the power of 2 by which the significand part is to be scaled. For
decimal floating constants, and also for hexadecimal floating constants when FLT_RADIX is not a
power of 2, the result is either the nearest representable value, or the larger or smaller representable
value immediately adjacent to the nearest representable value, chosen in an implementation-defined
manner. For hexadecimal floating constants when FLT_RADIX is a power of 2, the result is correctly
rounded.

4 An unsuffixed floating constant has type double. If suffixed by the letter f or F, it has type float.
If suffixed by the letter l or L, it has type long double.

5 Floating constants are converted to internal format as if at translation-time. The conversion of a
floating constant shall not raise an exceptional condition or a floating-point exception at execution
time. All floating constants of the same source form76) shall convert to the same internal format with
the same value.

Recommended practice
6 The implementation should produce a diagnostic message if a hexadecimal constant cannot be

represented exactly in its evaluation format; the implementation should then proceed with the
translation of the program.

7 The translation-time conversion of floating constants should match the execution-time conversion
of character strings by library functions, such as strtod, given matching inputs suitable for both
conversions, the same result format, and default execution-time rounding.77)

6.4.4.3 Enumeration constants
Syntax

1 enumeration-constant:
identifier

Semantics
2 An identifier declared as an enumeration constant has type int.

Forward references: enumeration specifiers (6.7.2.2).

6.4.4.4 Character constants
Syntax

1 character-constant:
’ c-char-sequence ’
L’ c-char-sequence ’
u’ c-char-sequence ’
U’ c-char-sequence ’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence

76)1.23, 1.230, 123e-2, 123e-02, and 1.23L are all different source forms and thus need not convert to the same internal
format and value.

77)The specification for the library functions recommends more accurate conversion than required for floating constants
(see 7.22.1.3).

48 Language § 6.4.4.4

N2176 C17 ballot ISO/IEC 9899:2017

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

simple-escape-sequence: one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Description
2 An integer character constant is a sequence of one or more multibyte characters enclosed in single-

quotes, as in’x’ . A wide character constant is the same, except prefixed by the letter L, u, or U. With
a few exceptions detailed later, the elements of the sequence are any members of the source character
set; they are mapped in an implementation-defined manner to members of the execution character
set.

3 The single-quote ’, the double-quote ", the question-mark ?, the backslash \, and arbitrary integer
values are representable according to the following table of escape sequences:

single quote’ \’
double quote " \"
question mark ? \?
backslash \ \\
octal character \octal digits
hexadecimal character \x hexadecimal digits

4 The double-quote " and question-mark ? are representable either by themselves or by the escape
sequences \" and \?, respectively, but the single-quote ’ and the backslash \ shall be represented,
respectively, by the escape sequences \’ and \\.

5 The octal digits that follow the backslash in an octal escape sequence are taken to be part of the
construction of a single character for an integer character constant or of a single wide character for a
wide character constant. The numerical value of the octal integer so formed specifies the value of
the desired character or wide character.

6 The hexadecimal digits that follow the backslash and the letter x in a hexadecimal escape sequence
are taken to be part of the construction of a single character for an integer character constant or of a
single wide character for a wide character constant. The numerical value of the hexadecimal integer
so formed specifies the value of the desired character or wide character.

7 Each octal or hexadecimal escape sequence is the longest sequence of characters that can constitute
the escape sequence.

8 In addition, characters not in the basic character set are representable by universal character names
and certain nongraphic characters are representable by escape sequences consisting of the backslash \

followed by a lowercase letter: \a, \b, \f, \n, \r, \t, and \v.78)

78)The semantics of these characters were discussed in 5.2.2. If any other character follows a backslash, the result is not a
token and a diagnostic is required. See “future language directions” (6.11.4).

§ 6.4.4.4 Language 49

ISO/IEC 9899:2017 C17 ballot N2176

Constraints
9 The value of an octal or hexadecimal escape sequence shall be in the range of representable values

for the corresponding type:

Prefix Corresponding Type
none unsigned char
L the unsigned type corresponding to wchar_t
u char16_t
U char32_t

Semantics
10 An integer character constant has type int. The value of an integer character constant containing

a single character that maps to a single-byte execution character is the numerical value of the
representation of the mapped character interpreted as an integer. The value of an integer character
constant containing more than one character (e.g.,’ab’), or containing a character or escape sequence
that does not map to a single-byte execution character, is implementation-defined. If an integer
character constant contains a single character or escape sequence, its value is the one that results
when an object with type char whose value is that of the single character or escape sequence is
converted to type int.

11 A wide character constant prefixed by the letter L has type wchar_t, an integer type defined in the
<stddef.h> header; a wide character constant prefixed by the letter u or U has type char16_t or
char32_t, respectively, unsigned integer types defined in the <uchar.h> header. The value of a
wide character constant containing a single multibyte character that maps to a single member of the
extended execution character set is the wide character corresponding to that multibyte character,
as defined by the mbtowc, mbrtoc16, or mbrtoc32 function as appropriate for its type, with an
implementation-defined current locale. The value of a wide character constant containing more
than one multibyte character or a single multibyte character that maps to multiple members of
the extended execution character set, or containing a multibyte character or escape sequence not
represented in the extended execution character set, is implementation-defined.

12 EXAMPLE 1 The construction’\0’ is commonly used to represent the null character.

13 EXAMPLE 2 Consider implementations that use two’s complement representation for integers and eight bits for objects
that have type char. In an implementation in which type char has the same range of values as signed char, the integer
character constant’\xFF’ has the value −1; if type char has the same range of values as unsigned char, the character
constant’\xFF’ has the value +255.

14 EXAMPLE 3 Even if eight bits are used for objects that have type char, the construction’\x123’ specifies an integer character
constant containing only one character, since a hexadecimal escape sequence is terminated only by a non-hexadecimal
character. To specify an integer character constant containing the two characters whose values are’\x12’ and’3’ , the
construction’\0223’ may be used, since an octal escape sequence is terminated after three octal digits. (The value of this
two-character integer character constant is implementation-defined.)

15 EXAMPLE 4 Even if 12 or more bits are used for objects that have type wchar_t, the construction L’\1234’ specifies the
implementation-defined value that results from the combination of the values 0123 and’4’ .

Forward references: common definitions <stddef.h> (7.19), the mbtowc function (7.22.7.2), Uni-
code utilities <uchar.h> (7.28).

6.4.5 String literals
Syntax

1 string-literal:
encoding-prefixopt " s-char-sequenceopt "

50 Language § 6.4.5

N2176 C17 ballot ISO/IEC 9899:2017

encoding-prefix:
u8
u
U
L

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote ", backslash \, or new-line character
escape-sequence

Constraints
2 A sequence of adjacent string literal tokens shall not include both a wide string literal and a UTF–8

string literal.

Description
3 A character string literal is a sequence of zero or more multibyte characters enclosed in double-quotes,

as in "xyz". A UTF–8 string literal is the same, except prefixed by u8. A wide string literal is the same,
except prefixed by the letter L, u, or U.

4 The same considerations apply to each element of the sequence in a string literal as if it were in an
integer character constant (for a character or UTF–8 string literal) or a wide character constant (for a
wide string literal), except that the single-quote’ is representable either by itself or by the escape
sequence \’, but the double-quote " shall be represented by the escape sequence \".

Semantics
5 In translation phase 6, the multibyte character sequences specified by any sequence of adjacent

character and identically-prefixed string literal tokens are concatenated into a single multibyte
character sequence. If any of the tokens has an encoding prefix, the resulting multibyte character
sequence is treated as having the same prefix; otherwise, it is treated as a character string literal.
Whether differently-prefixed wide string literal tokens can be concatenated and, if so, the treatment
of the resulting multibyte character sequence are implementation-defined.

6 In translation phase 7, a byte or code of value zero is appended to each multibyte character sequence
that results from a string literal or literals.79) The multibyte character sequence is then used to
initialize an array of static storage duration and length just sufficient to contain the sequence. For
character string literals, the array elements have type char, and are initialized with the individual
bytes of the multibyte character sequence. For UTF–8 string literals, the array elements have type
char, and are initialized with the characters of the multibyte character sequence, as encoded in
UTF–8. For wide string literals prefixed by the letter L, the array elements have type wchar_t
and are initialized with the sequence of wide characters corresponding to the multibyte character
sequence, as defined by the mbstowcs function with an implementation-defined current locale.
For wide string literals prefixed by the letter u or U, the array elements have type char16_t or
char32_t, respectively, and are initialized with the sequence of wide characters corresponding
to the multibyte character sequence, as defined by successive calls to the mbrtoc16, or mbrtoc32
function as appropriate for its type, with an implementation-defined current locale. The value of a
string literal containing a multibyte character or escape sequence not represented in the execution
character set is implementation-defined.

7 It is unspecified whether these arrays are distinct provided their elements have the appropriate
values. If the program attempts to modify such an array, the behavior is undefined.

79)A string literal need not be a string (see 7.1.1), because a null character may be embedded in it by a \0 escape sequence.

§ 6.4.5 Language 51

ISO/IEC 9899:2017 C17 ballot N2176

8 EXAMPLE 1 This pair of adjacent character string literals

"\x12" "3"

produces a single character string literal containing the two characters whose values are’\x12’ and’3’ , because escape
sequences are converted into single members of the execution character set just prior to adjacent string literal concatenation.

9 EXAMPLE 2 Each of the sequences of adjacent string literal tokens

"a" "b" L"c"
"a" L"b" "c"
L"a" "b" L"c"
L"a" L"b" L"c"

is equivalent to the string literal

L"abc"

Likewise, each of the sequences

"a" "b" u"c"
"a" u"b" "c"
u"a" "b" u"c"
u"a" u"b" u"c"

is equivalent to

u"abc"

Forward references: common definitions <stddef.h> (7.19), the mbstowcs function (7.22.8.1),
Unicode utilities <uchar.h> (7.28).

6.4.6 Punctuators
Syntax

1 punctuator: one of
[] () { } . ->
++ -- & * + - ~ !
/ % << >> < > <= >= == != ^ | && ||
? : ; ...
= *= /= %= += -= <<= >>= &= ^= |=
, # ##
<: :> <% %> %: %:%:

Semantics
2 A punctuator is a symbol that has independent syntactic and semantic significance. Depending on

context, it may specify an operation to be performed (which in turn may yield a value or a function
designator, produce a side effect, or some combination thereof) in which case it is known as an
operator (other forms of operator also exist in some contexts). An operand is an entity on which an
operator acts.

3 In all aspects of the language, the six tokens80)

<: :> <% %> %: %:%:

behave, respectively, the same as the six tokens

[] { } # ##

except for their spelling.81)

80)These tokens are sometimes called “digraphs”.
81)Thus [and<: behave differently when “stringized” (see 6.10.3.2), but can otherwise be freely interchanged.

52 Language § 6.4.6

