
N2176 C17 ballot ISO/IEC 9899:2017

7.14 Signal handling <signal.h>
1 The header <signal.h> declares a type and two functions and defines several macros, for handling

various signals (conditions that may be reported during program execution).

2 The type defined is

sig_atomic_t

which is the (possibly volatile-qualified) integer type of an object that can be accessed as an atomic
entity, even in the presence of asynchronous interrupts.

3 The macros defined are

SIG_DFL
SIG_ERR
SIG_IGN

which expand to constant expressions with distinct values that have type compatible with the second
argument to, and the return value of, the signal function, and whose values compare unequal to
the address of any declarable function; and the following, which expand to positive integer constant
expressions with type int and distinct values that are the signal numbers, each corresponding to
the specified condition:

SIGABRT abnormal termination, such as is initiated by the abort function

SIGFPE an erroneous arithmetic operation, such as zero divide or an operation resulting in
overflow

SIGILL detection of an invalid function image, such as an invalid instruction

SIGINT receipt of an interactive attention signal

SIGSEGV an invalid access to storage

SIGTERM a termination request sent to the program

4 An implementation need not generate any of these signals, except as a result of explicit calls to the
raise function. Additional signals and pointers to undeclarable functions, with macro definitions
beginning, respectively, with the letters SIG and an uppercase letter or with SIG_ and an uppercase
letter,254) may also be specified by the implementation. The complete set of signals, their semantics,
and their default handling is implementation-defined; all signal numbers shall be positive.

7.14.1 Specify signal handling
7.14.1.1 The signal function
Synopsis

1 #include <signal.h>
void (*signal(int sig, void (*func)(int)))(int);

Description
2 The signal function chooses one of three ways in which receipt of the signal number sig is to

be subsequently handled. If the value of func is SIG_DFL, default handling for that signal will
occur. If the value of func is SIG_IGN, the signal will be ignored. Otherwise, func shall point to a
function to be called when that signal occurs. An invocation of such a function because of a signal, or
(recursively) of any further functions called by that invocation (other than functions in the standard
library),255) is called a signal handler.
254)See “future library directions” (7.31.7). The names of the signal numbers reflect the following terms (respectively): abort,

floating-point exception, illegal instruction, interrupt, segmentation violation, and termination.
255)This includes functions called indirectly via standard library functions (e.g., a SIGABRT handler called via the abort

function).

§ 7.14.1.1 Library 193



ISO/IEC 9899:2017 C17 ballot N2176

3 When a signal occurs and func points to a function, it is implementation-defined whether the
equivalent of signal(sig, SIG_DFL); is executed or the implementation prevents some imple-
mentation-defined set of signals (at least including sig) from occurring until the current signal
handling has completed; in the case of SIGILL, the implementation may alternatively define that
no action is taken. Then the equivalent of (*func)(sig); is executed. If and when the function
returns, if the value of sig is SIGFPE, SIGILL, SIGSEGV, or any other implementation-defined value
corresponding to a computational exception, the behavior is undefined; otherwise the program will
resume execution at the point it was interrupted.

4 If the signal occurs as the result of calling the abort or raise function, the signal handler shall not
call the raise function.

5 If the signal occurs other than as the result of calling the abort or raise function, the behavior is
undefined if the signal handler refers to any object with static or thread storage duration that is
not a lock-free atomic object other than by assigning a value to an object declared as volatile
sig_atomic_t, or the signal handler calls any function in the standard library other than

— the abort function,

— the _Exit function,

— the quick_exit function,

— the functions in <stdatomic.h> (except where explicitly stated otherwise) when the atomic
arguments are lock-free,

— the atomic_is_lock_free function with any atomic argument, or

— the signal function with the first argument equal to the signal number corresponding to the
signal that caused the invocation of the handler. Furthermore, if such a call to the signal
function results in a SIG_ERR return, the value of errno is indeterminate.256)

6 At program startup, the equivalent of

signal(sig, SIG_IGN);

may be executed for some signals selected in an implementation-defined manner; the equivalent of

signal(sig, SIG_DFL);

is executed for all other signals defined by the implementation.

7 Use of this function in a multi-threaded program results in undefined behavior. The implementation
shall behave as if no library function calls the signal function.

Returns
8 If the request can be honored, the signal function returns the value of func for the most recent

successful call to signal for the specified signal sig. Otherwise, a value of SIG_ERR is returned and
a positive value is stored in errno.

Forward references: the abort function (7.22.4.1), the exit function (7.22.4.4), the _Exit function
(7.22.4.5), the quick_exit function (7.22.4.7).

7.14.2 Send signal
7.14.2.1 The raise function
Synopsis

1 #include <signal.h>
int raise(int sig);

256)If any signal is generated by an asynchronous signal handler, the behavior is undefined.

194 Library § 7.14.2.1



N2176 C17 ballot ISO/IEC 9899:2017

Description
2 The raise function carries out the actions described in 7.14.1.1 for the signal sig. If a signal handler

is called, the raise function shall not return until after the signal handler does.

Returns
3 The raise function returns zero if successful, nonzero if unsuccessful.

§ 7.14.2.1 Library 195


